xref: /freebsd/sys/kern/subr_sleepqueue.c (revision 5944f899a2519c6321bac3c17cc076418643a088)
1 /*-
2  * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 /*
28  * Implementation of sleep queues used to hold queue of threads blocked on
29  * a wait channel.  Sleep queues are different from turnstiles in that wait
30  * channels are not owned by anyone, so there is no priority propagation.
31  * Sleep queues can also provide a timeout and can also be interrupted by
32  * signals.  That said, there are several similarities between the turnstile
33  * and sleep queue implementations.  (Note: turnstiles were implemented
34  * first.)  For example, both use a hash table of the same size where each
35  * bucket is referred to as a "chain" that contains both a spin lock and
36  * a linked list of queues.  An individual queue is located by using a hash
37  * to pick a chain, locking the chain, and then walking the chain searching
38  * for the queue.  This means that a wait channel object does not need to
39  * embed its queue head just as locks do not embed their turnstile queue
40  * head.  Threads also carry around a sleep queue that they lend to the
41  * wait channel when blocking.  Just as in turnstiles, the queue includes
42  * a free list of the sleep queues of other threads blocked on the same
43  * wait channel in the case of multiple waiters.
44  *
45  * Some additional functionality provided by sleep queues include the
46  * ability to set a timeout.  The timeout is managed using a per-thread
47  * callout that resumes a thread if it is asleep.  A thread may also
48  * catch signals while it is asleep (aka an interruptible sleep).  The
49  * signal code uses sleepq_abort() to interrupt a sleeping thread.  Finally,
50  * sleep queues also provide some extra assertions.  One is not allowed to
51  * mix the sleep/wakeup and cv APIs for a given wait channel.  Also, one
52  * must consistently use the same lock to synchronize with a wait channel,
53  * though this check is currently only a warning for sleep/wakeup due to
54  * pre-existing abuse of that API.  The same lock must also be held when
55  * awakening threads, though that is currently only enforced for condition
56  * variables.
57  */
58 
59 #include <sys/cdefs.h>
60 __FBSDID("$FreeBSD$");
61 
62 #include "opt_sleepqueue_profiling.h"
63 #include "opt_ddb.h"
64 #include "opt_sched.h"
65 #include "opt_stack.h"
66 
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/lock.h>
70 #include <sys/kernel.h>
71 #include <sys/ktr.h>
72 #include <sys/mutex.h>
73 #include <sys/proc.h>
74 #include <sys/sbuf.h>
75 #include <sys/sched.h>
76 #include <sys/sdt.h>
77 #include <sys/signalvar.h>
78 #include <sys/sleepqueue.h>
79 #include <sys/stack.h>
80 #include <sys/sysctl.h>
81 #include <sys/time.h>
82 
83 #include <machine/atomic.h>
84 
85 #include <vm/uma.h>
86 
87 #ifdef DDB
88 #include <ddb/ddb.h>
89 #endif
90 
91 
92 /*
93  * Constants for the hash table of sleep queue chains.
94  * SC_TABLESIZE must be a power of two for SC_MASK to work properly.
95  */
96 #define	SC_TABLESIZE	256			/* Must be power of 2. */
97 #define	SC_MASK		(SC_TABLESIZE - 1)
98 #define	SC_SHIFT	8
99 #define	SC_HASH(wc)	((((uintptr_t)(wc) >> SC_SHIFT) ^ (uintptr_t)(wc)) & \
100 			    SC_MASK)
101 #define	SC_LOOKUP(wc)	&sleepq_chains[SC_HASH(wc)]
102 #define NR_SLEEPQS      2
103 /*
104  * There are two different lists of sleep queues.  Both lists are connected
105  * via the sq_hash entries.  The first list is the sleep queue chain list
106  * that a sleep queue is on when it is attached to a wait channel.  The
107  * second list is the free list hung off of a sleep queue that is attached
108  * to a wait channel.
109  *
110  * Each sleep queue also contains the wait channel it is attached to, the
111  * list of threads blocked on that wait channel, flags specific to the
112  * wait channel, and the lock used to synchronize with a wait channel.
113  * The flags are used to catch mismatches between the various consumers
114  * of the sleep queue API (e.g. sleep/wakeup and condition variables).
115  * The lock pointer is only used when invariants are enabled for various
116  * debugging checks.
117  *
118  * Locking key:
119  *  c - sleep queue chain lock
120  */
121 struct sleepqueue {
122 	TAILQ_HEAD(, thread) sq_blocked[NR_SLEEPQS];	/* (c) Blocked threads. */
123 	u_int sq_blockedcnt[NR_SLEEPQS];	/* (c) N. of blocked threads. */
124 	LIST_ENTRY(sleepqueue) sq_hash;		/* (c) Chain and free list. */
125 	LIST_HEAD(, sleepqueue) sq_free;	/* (c) Free queues. */
126 	void	*sq_wchan;			/* (c) Wait channel. */
127 	int	sq_type;			/* (c) Queue type. */
128 #ifdef INVARIANTS
129 	struct lock_object *sq_lock;		/* (c) Associated lock. */
130 #endif
131 };
132 
133 struct sleepqueue_chain {
134 	LIST_HEAD(, sleepqueue) sc_queues;	/* List of sleep queues. */
135 	struct mtx sc_lock;			/* Spin lock for this chain. */
136 #ifdef SLEEPQUEUE_PROFILING
137 	u_int	sc_depth;			/* Length of sc_queues. */
138 	u_int	sc_max_depth;			/* Max length of sc_queues. */
139 #endif
140 };
141 
142 #ifdef SLEEPQUEUE_PROFILING
143 u_int sleepq_max_depth;
144 static SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling");
145 static SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0,
146     "sleepq chain stats");
147 SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth,
148     0, "maxmimum depth achieved of a single chain");
149 
150 static void	sleepq_profile(const char *wmesg);
151 static int	prof_enabled;
152 #endif
153 static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE];
154 static uma_zone_t sleepq_zone;
155 
156 /*
157  * Prototypes for non-exported routines.
158  */
159 static int	sleepq_catch_signals(void *wchan, int pri);
160 static int	sleepq_check_signals(void);
161 static int	sleepq_check_timeout(void);
162 #ifdef INVARIANTS
163 static void	sleepq_dtor(void *mem, int size, void *arg);
164 #endif
165 static int	sleepq_init(void *mem, int size, int flags);
166 static int	sleepq_resume_thread(struct sleepqueue *sq, struct thread *td,
167 		    int pri);
168 static void	sleepq_switch(void *wchan, int pri);
169 static void	sleepq_timeout(void *arg);
170 
171 SDT_PROBE_DECLARE(sched, , , sleep);
172 SDT_PROBE_DECLARE(sched, , , wakeup);
173 
174 /*
175  * Initialize SLEEPQUEUE_PROFILING specific sysctl nodes.
176  * Note that it must happen after sleepinit() has been fully executed, so
177  * it must happen after SI_SUB_KMEM SYSINIT() subsystem setup.
178  */
179 #ifdef SLEEPQUEUE_PROFILING
180 static void
181 init_sleepqueue_profiling(void)
182 {
183 	char chain_name[10];
184 	struct sysctl_oid *chain_oid;
185 	u_int i;
186 
187 	for (i = 0; i < SC_TABLESIZE; i++) {
188 		snprintf(chain_name, sizeof(chain_name), "%u", i);
189 		chain_oid = SYSCTL_ADD_NODE(NULL,
190 		    SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO,
191 		    chain_name, CTLFLAG_RD, NULL, "sleepq chain stats");
192 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
193 		    "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL);
194 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
195 		    "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0,
196 		    NULL);
197 	}
198 }
199 
200 SYSINIT(sleepqueue_profiling, SI_SUB_LOCK, SI_ORDER_ANY,
201     init_sleepqueue_profiling, NULL);
202 #endif
203 
204 /*
205  * Early initialization of sleep queues that is called from the sleepinit()
206  * SYSINIT.
207  */
208 void
209 init_sleepqueues(void)
210 {
211 	int i;
212 
213 	for (i = 0; i < SC_TABLESIZE; i++) {
214 		LIST_INIT(&sleepq_chains[i].sc_queues);
215 		mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL,
216 		    MTX_SPIN | MTX_RECURSE);
217 	}
218 	sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue),
219 #ifdef INVARIANTS
220 	    NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
221 #else
222 	    NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
223 #endif
224 
225 	thread0.td_sleepqueue = sleepq_alloc();
226 }
227 
228 /*
229  * Get a sleep queue for a new thread.
230  */
231 struct sleepqueue *
232 sleepq_alloc(void)
233 {
234 
235 	return (uma_zalloc(sleepq_zone, M_WAITOK));
236 }
237 
238 /*
239  * Free a sleep queue when a thread is destroyed.
240  */
241 void
242 sleepq_free(struct sleepqueue *sq)
243 {
244 
245 	uma_zfree(sleepq_zone, sq);
246 }
247 
248 /*
249  * Lock the sleep queue chain associated with the specified wait channel.
250  */
251 void
252 sleepq_lock(void *wchan)
253 {
254 	struct sleepqueue_chain *sc;
255 
256 	sc = SC_LOOKUP(wchan);
257 	mtx_lock_spin(&sc->sc_lock);
258 }
259 
260 /*
261  * Look up the sleep queue associated with a given wait channel in the hash
262  * table locking the associated sleep queue chain.  If no queue is found in
263  * the table, NULL is returned.
264  */
265 struct sleepqueue *
266 sleepq_lookup(void *wchan)
267 {
268 	struct sleepqueue_chain *sc;
269 	struct sleepqueue *sq;
270 
271 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
272 	sc = SC_LOOKUP(wchan);
273 	mtx_assert(&sc->sc_lock, MA_OWNED);
274 	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
275 		if (sq->sq_wchan == wchan)
276 			return (sq);
277 	return (NULL);
278 }
279 
280 /*
281  * Unlock the sleep queue chain associated with a given wait channel.
282  */
283 void
284 sleepq_release(void *wchan)
285 {
286 	struct sleepqueue_chain *sc;
287 
288 	sc = SC_LOOKUP(wchan);
289 	mtx_unlock_spin(&sc->sc_lock);
290 }
291 
292 /*
293  * Places the current thread on the sleep queue for the specified wait
294  * channel.  If INVARIANTS is enabled, then it associates the passed in
295  * lock with the sleepq to make sure it is held when that sleep queue is
296  * woken up.
297  */
298 void
299 sleepq_add(void *wchan, struct lock_object *lock, const char *wmesg, int flags,
300     int queue)
301 {
302 	struct sleepqueue_chain *sc;
303 	struct sleepqueue *sq;
304 	struct thread *td;
305 
306 	td = curthread;
307 	sc = SC_LOOKUP(wchan);
308 	mtx_assert(&sc->sc_lock, MA_OWNED);
309 	MPASS(td->td_sleepqueue != NULL);
310 	MPASS(wchan != NULL);
311 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
312 
313 	/* If this thread is not allowed to sleep, die a horrible death. */
314 	KASSERT(td->td_no_sleeping == 0,
315 	    ("%s: td %p to sleep on wchan %p with sleeping prohibited",
316 	    __func__, td, wchan));
317 
318 	/* Look up the sleep queue associated with the wait channel 'wchan'. */
319 	sq = sleepq_lookup(wchan);
320 
321 	/*
322 	 * If the wait channel does not already have a sleep queue, use
323 	 * this thread's sleep queue.  Otherwise, insert the current thread
324 	 * into the sleep queue already in use by this wait channel.
325 	 */
326 	if (sq == NULL) {
327 #ifdef INVARIANTS
328 		int i;
329 
330 		sq = td->td_sleepqueue;
331 		for (i = 0; i < NR_SLEEPQS; i++) {
332 			KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]),
333 			    ("thread's sleep queue %d is not empty", i));
334 			KASSERT(sq->sq_blockedcnt[i] == 0,
335 			    ("thread's sleep queue %d count mismatches", i));
336 		}
337 		KASSERT(LIST_EMPTY(&sq->sq_free),
338 		    ("thread's sleep queue has a non-empty free list"));
339 		KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer"));
340 		sq->sq_lock = lock;
341 #endif
342 #ifdef SLEEPQUEUE_PROFILING
343 		sc->sc_depth++;
344 		if (sc->sc_depth > sc->sc_max_depth) {
345 			sc->sc_max_depth = sc->sc_depth;
346 			if (sc->sc_max_depth > sleepq_max_depth)
347 				sleepq_max_depth = sc->sc_max_depth;
348 		}
349 #endif
350 		sq = td->td_sleepqueue;
351 		LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash);
352 		sq->sq_wchan = wchan;
353 		sq->sq_type = flags & SLEEPQ_TYPE;
354 	} else {
355 		MPASS(wchan == sq->sq_wchan);
356 		MPASS(lock == sq->sq_lock);
357 		MPASS((flags & SLEEPQ_TYPE) == sq->sq_type);
358 		LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash);
359 	}
360 	thread_lock(td);
361 	TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq);
362 	sq->sq_blockedcnt[queue]++;
363 	td->td_sleepqueue = NULL;
364 	td->td_sqqueue = queue;
365 	td->td_wchan = wchan;
366 	td->td_wmesg = wmesg;
367 	if (flags & SLEEPQ_INTERRUPTIBLE) {
368 		td->td_flags |= TDF_SINTR;
369 		td->td_flags &= ~TDF_SLEEPABORT;
370 	}
371 	thread_unlock(td);
372 }
373 
374 /*
375  * Sets a timeout that will remove the current thread from the specified
376  * sleep queue after timo ticks if the thread has not already been awakened.
377  */
378 void
379 sleepq_set_timeout_sbt(void *wchan, sbintime_t sbt, sbintime_t pr,
380     int flags)
381 {
382 	struct sleepqueue_chain *sc;
383 	struct thread *td;
384 	sbintime_t pr1;
385 
386 	td = curthread;
387 	sc = SC_LOOKUP(wchan);
388 	mtx_assert(&sc->sc_lock, MA_OWNED);
389 	MPASS(TD_ON_SLEEPQ(td));
390 	MPASS(td->td_sleepqueue == NULL);
391 	MPASS(wchan != NULL);
392 	if (cold && td == &thread0)
393 		panic("timed sleep before timers are working");
394 	KASSERT(td->td_sleeptimo == 0, ("td %d %p td_sleeptimo %jx",
395 	    td->td_tid, td, (uintmax_t)td->td_sleeptimo));
396 	thread_lock(td);
397 	callout_when(sbt, pr, flags, &td->td_sleeptimo, &pr1);
398 	thread_unlock(td);
399 	callout_reset_sbt_on(&td->td_slpcallout, td->td_sleeptimo, pr1,
400 	    sleepq_timeout, td, PCPU_GET(cpuid), flags | C_PRECALC |
401 	    C_DIRECT_EXEC);
402 }
403 
404 /*
405  * Return the number of actual sleepers for the specified queue.
406  */
407 u_int
408 sleepq_sleepcnt(void *wchan, int queue)
409 {
410 	struct sleepqueue *sq;
411 
412 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
413 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
414 	sq = sleepq_lookup(wchan);
415 	if (sq == NULL)
416 		return (0);
417 	return (sq->sq_blockedcnt[queue]);
418 }
419 
420 /*
421  * Marks the pending sleep of the current thread as interruptible and
422  * makes an initial check for pending signals before putting a thread
423  * to sleep. Enters and exits with the thread lock held.  Thread lock
424  * may have transitioned from the sleepq lock to a run lock.
425  */
426 static int
427 sleepq_catch_signals(void *wchan, int pri)
428 {
429 	struct sleepqueue_chain *sc;
430 	struct sleepqueue *sq;
431 	struct thread *td;
432 	struct proc *p;
433 	struct sigacts *ps;
434 	int sig, ret;
435 
436 	ret = 0;
437 	td = curthread;
438 	p = curproc;
439 	sc = SC_LOOKUP(wchan);
440 	mtx_assert(&sc->sc_lock, MA_OWNED);
441 	MPASS(wchan != NULL);
442 	if ((td->td_pflags & TDP_WAKEUP) != 0) {
443 		td->td_pflags &= ~TDP_WAKEUP;
444 		ret = EINTR;
445 		thread_lock(td);
446 		goto out;
447 	}
448 
449 	/*
450 	 * See if there are any pending signals or suspension requests for this
451 	 * thread.  If not, we can switch immediately.
452 	 */
453 	thread_lock(td);
454 	if ((td->td_flags & (TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK)) != 0) {
455 		thread_unlock(td);
456 		mtx_unlock_spin(&sc->sc_lock);
457 		CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)",
458 			(void *)td, (long)p->p_pid, td->td_name);
459 		PROC_LOCK(p);
460 		/*
461 		 * Check for suspension first. Checking for signals and then
462 		 * suspending could result in a missed signal, since a signal
463 		 * can be delivered while this thread is suspended.
464 		 */
465 		if ((td->td_flags & TDF_NEEDSUSPCHK) != 0) {
466 			ret = thread_suspend_check(1);
467 			MPASS(ret == 0 || ret == EINTR || ret == ERESTART);
468 			if (ret != 0) {
469 				PROC_UNLOCK(p);
470 				mtx_lock_spin(&sc->sc_lock);
471 				thread_lock(td);
472 				goto out;
473 			}
474 		}
475 		if ((td->td_flags & TDF_NEEDSIGCHK) != 0) {
476 			ps = p->p_sigacts;
477 			mtx_lock(&ps->ps_mtx);
478 			sig = cursig(td);
479 			if (sig == -1) {
480 				mtx_unlock(&ps->ps_mtx);
481 				KASSERT((td->td_flags & TDF_SBDRY) != 0,
482 				    ("lost TDF_SBDRY"));
483 				KASSERT(TD_SBDRY_INTR(td),
484 				    ("lost TDF_SERESTART of TDF_SEINTR"));
485 				KASSERT((td->td_flags &
486 				    (TDF_SEINTR | TDF_SERESTART)) !=
487 				    (TDF_SEINTR | TDF_SERESTART),
488 				    ("both TDF_SEINTR and TDF_SERESTART"));
489 				ret = TD_SBDRY_ERRNO(td);
490 			} else if (sig != 0) {
491 				ret = SIGISMEMBER(ps->ps_sigintr, sig) ?
492 				    EINTR : ERESTART;
493 				mtx_unlock(&ps->ps_mtx);
494 			} else {
495 				mtx_unlock(&ps->ps_mtx);
496 			}
497 		}
498 		/*
499 		 * Lock the per-process spinlock prior to dropping the PROC_LOCK
500 		 * to avoid a signal delivery race.  PROC_LOCK, PROC_SLOCK, and
501 		 * thread_lock() are currently held in tdsendsignal().
502 		 */
503 		PROC_SLOCK(p);
504 		mtx_lock_spin(&sc->sc_lock);
505 		PROC_UNLOCK(p);
506 		thread_lock(td);
507 		PROC_SUNLOCK(p);
508 	}
509 	if (ret == 0) {
510 		sleepq_switch(wchan, pri);
511 		return (0);
512 	}
513 out:
514 	/*
515 	 * There were pending signals and this thread is still
516 	 * on the sleep queue, remove it from the sleep queue.
517 	 */
518 	if (TD_ON_SLEEPQ(td)) {
519 		sq = sleepq_lookup(wchan);
520 		if (sleepq_resume_thread(sq, td, 0)) {
521 #ifdef INVARIANTS
522 			/*
523 			 * This thread hasn't gone to sleep yet, so it
524 			 * should not be swapped out.
525 			 */
526 			panic("not waking up swapper");
527 #endif
528 		}
529 	}
530 	mtx_unlock_spin(&sc->sc_lock);
531 	MPASS(td->td_lock != &sc->sc_lock);
532 	return (ret);
533 }
534 
535 /*
536  * Switches to another thread if we are still asleep on a sleep queue.
537  * Returns with thread lock.
538  */
539 static void
540 sleepq_switch(void *wchan, int pri)
541 {
542 	struct sleepqueue_chain *sc;
543 	struct sleepqueue *sq;
544 	struct thread *td;
545 	bool rtc_changed;
546 
547 	td = curthread;
548 	sc = SC_LOOKUP(wchan);
549 	mtx_assert(&sc->sc_lock, MA_OWNED);
550 	THREAD_LOCK_ASSERT(td, MA_OWNED);
551 
552 	/*
553 	 * If we have a sleep queue, then we've already been woken up, so
554 	 * just return.
555 	 */
556 	if (td->td_sleepqueue != NULL) {
557 		mtx_unlock_spin(&sc->sc_lock);
558 		return;
559 	}
560 
561 	/*
562 	 * If TDF_TIMEOUT is set, then our sleep has been timed out
563 	 * already but we are still on the sleep queue, so dequeue the
564 	 * thread and return.
565 	 *
566 	 * Do the same if the real-time clock has been adjusted since this
567 	 * thread calculated its timeout based on that clock.  This handles
568 	 * the following race:
569 	 * - The Ts thread needs to sleep until an absolute real-clock time.
570 	 *   It copies the global rtc_generation into curthread->td_rtcgen,
571 	 *   reads the RTC, and calculates a sleep duration based on that time.
572 	 *   See umtxq_sleep() for an example.
573 	 * - The Tc thread adjusts the RTC, bumps rtc_generation, and wakes
574 	 *   threads that are sleeping until an absolute real-clock time.
575 	 *   See tc_setclock() and the POSIX specification of clock_settime().
576 	 * - Ts reaches the code below.  It holds the sleepqueue chain lock,
577 	 *   so Tc has finished waking, so this thread must test td_rtcgen.
578 	 * (The declaration of td_rtcgen refers to this comment.)
579 	 */
580 	rtc_changed = td->td_rtcgen != 0 && td->td_rtcgen != rtc_generation;
581 	if ((td->td_flags & TDF_TIMEOUT) || rtc_changed) {
582 		if (rtc_changed) {
583 			td->td_rtcgen = 0;
584 		}
585 		MPASS(TD_ON_SLEEPQ(td));
586 		sq = sleepq_lookup(wchan);
587 		if (sleepq_resume_thread(sq, td, 0)) {
588 #ifdef INVARIANTS
589 			/*
590 			 * This thread hasn't gone to sleep yet, so it
591 			 * should not be swapped out.
592 			 */
593 			panic("not waking up swapper");
594 #endif
595 		}
596 		mtx_unlock_spin(&sc->sc_lock);
597 		return;
598 	}
599 #ifdef SLEEPQUEUE_PROFILING
600 	if (prof_enabled)
601 		sleepq_profile(td->td_wmesg);
602 #endif
603 	MPASS(td->td_sleepqueue == NULL);
604 	sched_sleep(td, pri);
605 	thread_lock_set(td, &sc->sc_lock);
606 	SDT_PROBE0(sched, , , sleep);
607 	TD_SET_SLEEPING(td);
608 	mi_switch(SW_VOL | SWT_SLEEPQ, NULL);
609 	KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
610 	CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)",
611 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
612 }
613 
614 /*
615  * Check to see if we timed out.
616  */
617 static int
618 sleepq_check_timeout(void)
619 {
620 	struct thread *td;
621 	int res;
622 
623 	td = curthread;
624 	THREAD_LOCK_ASSERT(td, MA_OWNED);
625 
626 	/*
627 	 * If TDF_TIMEOUT is set, we timed out.  But recheck
628 	 * td_sleeptimo anyway.
629 	 */
630 	res = 0;
631 	if (td->td_sleeptimo != 0) {
632 		if (td->td_sleeptimo <= sbinuptime())
633 			res = EWOULDBLOCK;
634 		td->td_sleeptimo = 0;
635 	}
636 	if (td->td_flags & TDF_TIMEOUT)
637 		td->td_flags &= ~TDF_TIMEOUT;
638 	else
639 		/*
640 		 * We ignore the situation where timeout subsystem was
641 		 * unable to stop our callout.  The struct thread is
642 		 * type-stable, the callout will use the correct
643 		 * memory when running.  The checks of the
644 		 * td_sleeptimo value in this function and in
645 		 * sleepq_timeout() ensure that the thread does not
646 		 * get spurious wakeups, even if the callout was reset
647 		 * or thread reused.
648 		 */
649 		callout_stop(&td->td_slpcallout);
650 	return (res);
651 }
652 
653 /*
654  * Check to see if we were awoken by a signal.
655  */
656 static int
657 sleepq_check_signals(void)
658 {
659 	struct thread *td;
660 
661 	td = curthread;
662 	THREAD_LOCK_ASSERT(td, MA_OWNED);
663 
664 	/* We are no longer in an interruptible sleep. */
665 	if (td->td_flags & TDF_SINTR)
666 		td->td_flags &= ~TDF_SINTR;
667 
668 	if (td->td_flags & TDF_SLEEPABORT) {
669 		td->td_flags &= ~TDF_SLEEPABORT;
670 		return (td->td_intrval);
671 	}
672 
673 	return (0);
674 }
675 
676 /*
677  * Block the current thread until it is awakened from its sleep queue.
678  */
679 void
680 sleepq_wait(void *wchan, int pri)
681 {
682 	struct thread *td;
683 
684 	td = curthread;
685 	MPASS(!(td->td_flags & TDF_SINTR));
686 	thread_lock(td);
687 	sleepq_switch(wchan, pri);
688 	thread_unlock(td);
689 }
690 
691 /*
692  * Block the current thread until it is awakened from its sleep queue
693  * or it is interrupted by a signal.
694  */
695 int
696 sleepq_wait_sig(void *wchan, int pri)
697 {
698 	int rcatch;
699 	int rval;
700 
701 	rcatch = sleepq_catch_signals(wchan, pri);
702 	rval = sleepq_check_signals();
703 	thread_unlock(curthread);
704 	if (rcatch)
705 		return (rcatch);
706 	return (rval);
707 }
708 
709 /*
710  * Block the current thread until it is awakened from its sleep queue
711  * or it times out while waiting.
712  */
713 int
714 sleepq_timedwait(void *wchan, int pri)
715 {
716 	struct thread *td;
717 	int rval;
718 
719 	td = curthread;
720 	MPASS(!(td->td_flags & TDF_SINTR));
721 	thread_lock(td);
722 	sleepq_switch(wchan, pri);
723 	rval = sleepq_check_timeout();
724 	thread_unlock(td);
725 
726 	return (rval);
727 }
728 
729 /*
730  * Block the current thread until it is awakened from its sleep queue,
731  * it is interrupted by a signal, or it times out waiting to be awakened.
732  */
733 int
734 sleepq_timedwait_sig(void *wchan, int pri)
735 {
736 	int rcatch, rvalt, rvals;
737 
738 	rcatch = sleepq_catch_signals(wchan, pri);
739 	rvalt = sleepq_check_timeout();
740 	rvals = sleepq_check_signals();
741 	thread_unlock(curthread);
742 	if (rcatch)
743 		return (rcatch);
744 	if (rvals)
745 		return (rvals);
746 	return (rvalt);
747 }
748 
749 /*
750  * Returns the type of sleepqueue given a waitchannel.
751  */
752 int
753 sleepq_type(void *wchan)
754 {
755 	struct sleepqueue *sq;
756 	int type;
757 
758 	MPASS(wchan != NULL);
759 
760 	sleepq_lock(wchan);
761 	sq = sleepq_lookup(wchan);
762 	if (sq == NULL) {
763 		sleepq_release(wchan);
764 		return (-1);
765 	}
766 	type = sq->sq_type;
767 	sleepq_release(wchan);
768 	return (type);
769 }
770 
771 /*
772  * Removes a thread from a sleep queue and makes it
773  * runnable.
774  */
775 static int
776 sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri)
777 {
778 	struct sleepqueue_chain *sc;
779 
780 	MPASS(td != NULL);
781 	MPASS(sq->sq_wchan != NULL);
782 	MPASS(td->td_wchan == sq->sq_wchan);
783 	MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0);
784 	THREAD_LOCK_ASSERT(td, MA_OWNED);
785 	sc = SC_LOOKUP(sq->sq_wchan);
786 	mtx_assert(&sc->sc_lock, MA_OWNED);
787 
788 	SDT_PROBE2(sched, , , wakeup, td, td->td_proc);
789 
790 	/* Remove the thread from the queue. */
791 	sq->sq_blockedcnt[td->td_sqqueue]--;
792 	TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq);
793 
794 	/*
795 	 * Get a sleep queue for this thread.  If this is the last waiter,
796 	 * use the queue itself and take it out of the chain, otherwise,
797 	 * remove a queue from the free list.
798 	 */
799 	if (LIST_EMPTY(&sq->sq_free)) {
800 		td->td_sleepqueue = sq;
801 #ifdef INVARIANTS
802 		sq->sq_wchan = NULL;
803 #endif
804 #ifdef SLEEPQUEUE_PROFILING
805 		sc->sc_depth--;
806 #endif
807 	} else
808 		td->td_sleepqueue = LIST_FIRST(&sq->sq_free);
809 	LIST_REMOVE(td->td_sleepqueue, sq_hash);
810 
811 	td->td_wmesg = NULL;
812 	td->td_wchan = NULL;
813 	td->td_flags &= ~TDF_SINTR;
814 
815 	CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)",
816 	    (void *)td, (long)td->td_proc->p_pid, td->td_name);
817 
818 	/* Adjust priority if requested. */
819 	MPASS(pri == 0 || (pri >= PRI_MIN && pri <= PRI_MAX));
820 	if (pri != 0 && td->td_priority > pri &&
821 	    PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
822 		sched_prio(td, pri);
823 
824 	/*
825 	 * Note that thread td might not be sleeping if it is running
826 	 * sleepq_catch_signals() on another CPU or is blocked on its
827 	 * proc lock to check signals.  There's no need to mark the
828 	 * thread runnable in that case.
829 	 */
830 	if (TD_IS_SLEEPING(td)) {
831 		TD_CLR_SLEEPING(td);
832 		return (setrunnable(td));
833 	}
834 	return (0);
835 }
836 
837 #ifdef INVARIANTS
838 /*
839  * UMA zone item deallocator.
840  */
841 static void
842 sleepq_dtor(void *mem, int size, void *arg)
843 {
844 	struct sleepqueue *sq;
845 	int i;
846 
847 	sq = mem;
848 	for (i = 0; i < NR_SLEEPQS; i++) {
849 		MPASS(TAILQ_EMPTY(&sq->sq_blocked[i]));
850 		MPASS(sq->sq_blockedcnt[i] == 0);
851 	}
852 }
853 #endif
854 
855 /*
856  * UMA zone item initializer.
857  */
858 static int
859 sleepq_init(void *mem, int size, int flags)
860 {
861 	struct sleepqueue *sq;
862 	int i;
863 
864 	bzero(mem, size);
865 	sq = mem;
866 	for (i = 0; i < NR_SLEEPQS; i++) {
867 		TAILQ_INIT(&sq->sq_blocked[i]);
868 		sq->sq_blockedcnt[i] = 0;
869 	}
870 	LIST_INIT(&sq->sq_free);
871 	return (0);
872 }
873 
874 /*
875  * Find the highest priority thread sleeping on a wait channel and resume it.
876  */
877 int
878 sleepq_signal(void *wchan, int flags, int pri, int queue)
879 {
880 	struct sleepqueue *sq;
881 	struct thread *td, *besttd;
882 	int wakeup_swapper;
883 
884 	CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags);
885 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
886 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
887 	sq = sleepq_lookup(wchan);
888 	if (sq == NULL)
889 		return (0);
890 	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
891 	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
892 
893 	/*
894 	 * Find the highest priority thread on the queue.  If there is a
895 	 * tie, use the thread that first appears in the queue as it has
896 	 * been sleeping the longest since threads are always added to
897 	 * the tail of sleep queues.
898 	 */
899 	besttd = TAILQ_FIRST(&sq->sq_blocked[queue]);
900 	TAILQ_FOREACH(td, &sq->sq_blocked[queue], td_slpq) {
901 		if (td->td_priority < besttd->td_priority)
902 			besttd = td;
903 	}
904 	MPASS(besttd != NULL);
905 	thread_lock(besttd);
906 	wakeup_swapper = sleepq_resume_thread(sq, besttd, pri);
907 	thread_unlock(besttd);
908 	return (wakeup_swapper);
909 }
910 
911 static bool
912 match_any(struct thread *td __unused)
913 {
914 
915 	return (true);
916 }
917 
918 /*
919  * Resume all threads sleeping on a specified wait channel.
920  */
921 int
922 sleepq_broadcast(void *wchan, int flags, int pri, int queue)
923 {
924 	struct sleepqueue *sq;
925 
926 	CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags);
927 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
928 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
929 	sq = sleepq_lookup(wchan);
930 	if (sq == NULL)
931 		return (0);
932 	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
933 	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
934 
935 	return (sleepq_remove_matching(sq, queue, match_any, pri));
936 }
937 
938 /*
939  * Resume threads on the sleep queue that match the given predicate.
940  */
941 int
942 sleepq_remove_matching(struct sleepqueue *sq, int queue,
943     bool (*matches)(struct thread *), int pri)
944 {
945 	struct thread *td, *tdn;
946 	int wakeup_swapper;
947 
948 	/*
949 	 * The last thread will be given ownership of sq and may
950 	 * re-enqueue itself before sleepq_resume_thread() returns,
951 	 * so we must cache the "next" queue item at the beginning
952 	 * of the final iteration.
953 	 */
954 	wakeup_swapper = 0;
955 	TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, tdn) {
956 		thread_lock(td);
957 		if (matches(td))
958 			wakeup_swapper |= sleepq_resume_thread(sq, td, pri);
959 		thread_unlock(td);
960 	}
961 
962 	return (wakeup_swapper);
963 }
964 
965 /*
966  * Time sleeping threads out.  When the timeout expires, the thread is
967  * removed from the sleep queue and made runnable if it is still asleep.
968  */
969 static void
970 sleepq_timeout(void *arg)
971 {
972 	struct sleepqueue_chain *sc;
973 	struct sleepqueue *sq;
974 	struct thread *td;
975 	void *wchan;
976 	int wakeup_swapper;
977 
978 	td = arg;
979 	wakeup_swapper = 0;
980 	CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)",
981 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
982 
983 	thread_lock(td);
984 
985 	if (td->td_sleeptimo > sbinuptime() || td->td_sleeptimo == 0) {
986 		/*
987 		 * The thread does not want a timeout (yet).
988 		 */
989 	} else if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) {
990 		/*
991 		 * See if the thread is asleep and get the wait
992 		 * channel if it is.
993 		 */
994 		wchan = td->td_wchan;
995 		sc = SC_LOOKUP(wchan);
996 		THREAD_LOCKPTR_ASSERT(td, &sc->sc_lock);
997 		sq = sleepq_lookup(wchan);
998 		MPASS(sq != NULL);
999 		td->td_flags |= TDF_TIMEOUT;
1000 		wakeup_swapper = sleepq_resume_thread(sq, td, 0);
1001 	} else if (TD_ON_SLEEPQ(td)) {
1002 		/*
1003 		 * If the thread is on the SLEEPQ but isn't sleeping
1004 		 * yet, it can either be on another CPU in between
1005 		 * sleepq_add() and one of the sleepq_*wait*()
1006 		 * routines or it can be in sleepq_catch_signals().
1007 		 */
1008 		td->td_flags |= TDF_TIMEOUT;
1009 	}
1010 
1011 	thread_unlock(td);
1012 	if (wakeup_swapper)
1013 		kick_proc0();
1014 }
1015 
1016 /*
1017  * Resumes a specific thread from the sleep queue associated with a specific
1018  * wait channel if it is on that queue.
1019  */
1020 void
1021 sleepq_remove(struct thread *td, void *wchan)
1022 {
1023 	struct sleepqueue *sq;
1024 	int wakeup_swapper;
1025 
1026 	/*
1027 	 * Look up the sleep queue for this wait channel, then re-check
1028 	 * that the thread is asleep on that channel, if it is not, then
1029 	 * bail.
1030 	 */
1031 	MPASS(wchan != NULL);
1032 	sleepq_lock(wchan);
1033 	sq = sleepq_lookup(wchan);
1034 	/*
1035 	 * We can not lock the thread here as it may be sleeping on a
1036 	 * different sleepq.  However, holding the sleepq lock for this
1037 	 * wchan can guarantee that we do not miss a wakeup for this
1038 	 * channel.  The asserts below will catch any false positives.
1039 	 */
1040 	if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) {
1041 		sleepq_release(wchan);
1042 		return;
1043 	}
1044 	/* Thread is asleep on sleep queue sq, so wake it up. */
1045 	thread_lock(td);
1046 	MPASS(sq != NULL);
1047 	MPASS(td->td_wchan == wchan);
1048 	wakeup_swapper = sleepq_resume_thread(sq, td, 0);
1049 	thread_unlock(td);
1050 	sleepq_release(wchan);
1051 	if (wakeup_swapper)
1052 		kick_proc0();
1053 }
1054 
1055 /*
1056  * Abort a thread as if an interrupt had occurred.  Only abort
1057  * interruptible waits (unfortunately it isn't safe to abort others).
1058  */
1059 int
1060 sleepq_abort(struct thread *td, int intrval)
1061 {
1062 	struct sleepqueue *sq;
1063 	void *wchan;
1064 
1065 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1066 	MPASS(TD_ON_SLEEPQ(td));
1067 	MPASS(td->td_flags & TDF_SINTR);
1068 	MPASS(intrval == EINTR || intrval == ERESTART);
1069 
1070 	/*
1071 	 * If the TDF_TIMEOUT flag is set, just leave. A
1072 	 * timeout is scheduled anyhow.
1073 	 */
1074 	if (td->td_flags & TDF_TIMEOUT)
1075 		return (0);
1076 
1077 	CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)",
1078 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
1079 	td->td_intrval = intrval;
1080 	td->td_flags |= TDF_SLEEPABORT;
1081 	/*
1082 	 * If the thread has not slept yet it will find the signal in
1083 	 * sleepq_catch_signals() and call sleepq_resume_thread.  Otherwise
1084 	 * we have to do it here.
1085 	 */
1086 	if (!TD_IS_SLEEPING(td))
1087 		return (0);
1088 	wchan = td->td_wchan;
1089 	MPASS(wchan != NULL);
1090 	sq = sleepq_lookup(wchan);
1091 	MPASS(sq != NULL);
1092 
1093 	/* Thread is asleep on sleep queue sq, so wake it up. */
1094 	return (sleepq_resume_thread(sq, td, 0));
1095 }
1096 
1097 void
1098 sleepq_chains_remove_matching(bool (*matches)(struct thread *))
1099 {
1100 	struct sleepqueue_chain *sc;
1101 	struct sleepqueue *sq;
1102 	int i, wakeup_swapper;
1103 
1104 	wakeup_swapper = 0;
1105 	for (sc = &sleepq_chains[0]; sc < sleepq_chains + SC_TABLESIZE; ++sc) {
1106 		if (LIST_EMPTY(&sc->sc_queues)) {
1107 			continue;
1108 		}
1109 		mtx_lock_spin(&sc->sc_lock);
1110 		LIST_FOREACH(sq, &sc->sc_queues, sq_hash) {
1111 			for (i = 0; i < NR_SLEEPQS; ++i) {
1112 				wakeup_swapper |= sleepq_remove_matching(sq, i,
1113 				    matches, 0);
1114 			}
1115 		}
1116 		mtx_unlock_spin(&sc->sc_lock);
1117 	}
1118 	if (wakeup_swapper) {
1119 		kick_proc0();
1120 	}
1121 }
1122 
1123 /*
1124  * Prints the stacks of all threads presently sleeping on wchan/queue to
1125  * the sbuf sb.  Sets count_stacks_printed to the number of stacks actually
1126  * printed.  Typically, this will equal the number of threads sleeping on the
1127  * queue, but may be less if sb overflowed before all stacks were printed.
1128  */
1129 #ifdef STACK
1130 int
1131 sleepq_sbuf_print_stacks(struct sbuf *sb, void *wchan, int queue,
1132     int *count_stacks_printed)
1133 {
1134 	struct thread *td, *td_next;
1135 	struct sleepqueue *sq;
1136 	struct stack **st;
1137 	struct sbuf **td_infos;
1138 	int i, stack_idx, error, stacks_to_allocate;
1139 	bool finished, partial_print;
1140 
1141 	error = 0;
1142 	finished = false;
1143 	partial_print = false;
1144 
1145 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
1146 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
1147 
1148 	stacks_to_allocate = 10;
1149 	for (i = 0; i < 3 && !finished ; i++) {
1150 		/* We cannot malloc while holding the queue's spinlock, so
1151 		 * we do our mallocs now, and hope it is enough.  If it
1152 		 * isn't, we will free these, drop the lock, malloc more,
1153 		 * and try again, up to a point.  After that point we will
1154 		 * give up and report ENOMEM. We also cannot write to sb
1155 		 * during this time since the client may have set the
1156 		 * SBUF_AUTOEXTEND flag on their sbuf, which could cause a
1157 		 * malloc as we print to it.  So we defer actually printing
1158 		 * to sb until after we drop the spinlock.
1159 		 */
1160 
1161 		/* Where we will store the stacks. */
1162 		st = malloc(sizeof(struct stack *) * stacks_to_allocate,
1163 		    M_TEMP, M_WAITOK);
1164 		for (stack_idx = 0; stack_idx < stacks_to_allocate;
1165 		    stack_idx++)
1166 			st[stack_idx] = stack_create();
1167 
1168 		/* Where we will store the td name, tid, etc. */
1169 		td_infos = malloc(sizeof(struct sbuf *) * stacks_to_allocate,
1170 		    M_TEMP, M_WAITOK);
1171 		for (stack_idx = 0; stack_idx < stacks_to_allocate;
1172 		    stack_idx++)
1173 			td_infos[stack_idx] = sbuf_new(NULL, NULL,
1174 			    MAXCOMLEN + sizeof(struct thread *) * 2 + 40,
1175 			    SBUF_FIXEDLEN);
1176 
1177 		sleepq_lock(wchan);
1178 		sq = sleepq_lookup(wchan);
1179 		if (sq == NULL) {
1180 			/* This sleepq does not exist; exit and return ENOENT. */
1181 			error = ENOENT;
1182 			finished = true;
1183 			sleepq_release(wchan);
1184 			goto loop_end;
1185 		}
1186 
1187 		stack_idx = 0;
1188 		/* Save thread info */
1189 		TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq,
1190 		    td_next) {
1191 			if (stack_idx >= stacks_to_allocate)
1192 				goto loop_end;
1193 
1194 			/* Note the td_lock is equal to the sleepq_lock here. */
1195 			stack_save_td(st[stack_idx], td);
1196 
1197 			sbuf_printf(td_infos[stack_idx], "%d: %s %p",
1198 			    td->td_tid, td->td_name, td);
1199 
1200 			++stack_idx;
1201 		}
1202 
1203 		finished = true;
1204 		sleepq_release(wchan);
1205 
1206 		/* Print the stacks */
1207 		for (i = 0; i < stack_idx; i++) {
1208 			sbuf_finish(td_infos[i]);
1209 			sbuf_printf(sb, "--- thread %s: ---\n", sbuf_data(td_infos[i]));
1210 			stack_sbuf_print(sb, st[i]);
1211 			sbuf_printf(sb, "\n");
1212 
1213 			error = sbuf_error(sb);
1214 			if (error == 0)
1215 				*count_stacks_printed = stack_idx;
1216 		}
1217 
1218 loop_end:
1219 		if (!finished)
1220 			sleepq_release(wchan);
1221 		for (stack_idx = 0; stack_idx < stacks_to_allocate;
1222 		    stack_idx++)
1223 			stack_destroy(st[stack_idx]);
1224 		for (stack_idx = 0; stack_idx < stacks_to_allocate;
1225 		    stack_idx++)
1226 			sbuf_delete(td_infos[stack_idx]);
1227 		free(st, M_TEMP);
1228 		free(td_infos, M_TEMP);
1229 		stacks_to_allocate *= 10;
1230 	}
1231 
1232 	if (!finished && error == 0)
1233 		error = ENOMEM;
1234 
1235 	return (error);
1236 }
1237 #endif
1238 
1239 #ifdef SLEEPQUEUE_PROFILING
1240 #define	SLEEPQ_PROF_LOCATIONS	1024
1241 #define	SLEEPQ_SBUFSIZE		512
1242 struct sleepq_prof {
1243 	LIST_ENTRY(sleepq_prof) sp_link;
1244 	const char	*sp_wmesg;
1245 	long		sp_count;
1246 };
1247 
1248 LIST_HEAD(sqphead, sleepq_prof);
1249 
1250 struct sqphead sleepq_prof_free;
1251 struct sqphead sleepq_hash[SC_TABLESIZE];
1252 static struct sleepq_prof sleepq_profent[SLEEPQ_PROF_LOCATIONS];
1253 static struct mtx sleepq_prof_lock;
1254 MTX_SYSINIT(sleepq_prof_lock, &sleepq_prof_lock, "sleepq_prof", MTX_SPIN);
1255 
1256 static void
1257 sleepq_profile(const char *wmesg)
1258 {
1259 	struct sleepq_prof *sp;
1260 
1261 	mtx_lock_spin(&sleepq_prof_lock);
1262 	if (prof_enabled == 0)
1263 		goto unlock;
1264 	LIST_FOREACH(sp, &sleepq_hash[SC_HASH(wmesg)], sp_link)
1265 		if (sp->sp_wmesg == wmesg)
1266 			goto done;
1267 	sp = LIST_FIRST(&sleepq_prof_free);
1268 	if (sp == NULL)
1269 		goto unlock;
1270 	sp->sp_wmesg = wmesg;
1271 	LIST_REMOVE(sp, sp_link);
1272 	LIST_INSERT_HEAD(&sleepq_hash[SC_HASH(wmesg)], sp, sp_link);
1273 done:
1274 	sp->sp_count++;
1275 unlock:
1276 	mtx_unlock_spin(&sleepq_prof_lock);
1277 	return;
1278 }
1279 
1280 static void
1281 sleepq_prof_reset(void)
1282 {
1283 	struct sleepq_prof *sp;
1284 	int enabled;
1285 	int i;
1286 
1287 	mtx_lock_spin(&sleepq_prof_lock);
1288 	enabled = prof_enabled;
1289 	prof_enabled = 0;
1290 	for (i = 0; i < SC_TABLESIZE; i++)
1291 		LIST_INIT(&sleepq_hash[i]);
1292 	LIST_INIT(&sleepq_prof_free);
1293 	for (i = 0; i < SLEEPQ_PROF_LOCATIONS; i++) {
1294 		sp = &sleepq_profent[i];
1295 		sp->sp_wmesg = NULL;
1296 		sp->sp_count = 0;
1297 		LIST_INSERT_HEAD(&sleepq_prof_free, sp, sp_link);
1298 	}
1299 	prof_enabled = enabled;
1300 	mtx_unlock_spin(&sleepq_prof_lock);
1301 }
1302 
1303 static int
1304 enable_sleepq_prof(SYSCTL_HANDLER_ARGS)
1305 {
1306 	int error, v;
1307 
1308 	v = prof_enabled;
1309 	error = sysctl_handle_int(oidp, &v, v, req);
1310 	if (error)
1311 		return (error);
1312 	if (req->newptr == NULL)
1313 		return (error);
1314 	if (v == prof_enabled)
1315 		return (0);
1316 	if (v == 1)
1317 		sleepq_prof_reset();
1318 	mtx_lock_spin(&sleepq_prof_lock);
1319 	prof_enabled = !!v;
1320 	mtx_unlock_spin(&sleepq_prof_lock);
1321 
1322 	return (0);
1323 }
1324 
1325 static int
1326 reset_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1327 {
1328 	int error, v;
1329 
1330 	v = 0;
1331 	error = sysctl_handle_int(oidp, &v, 0, req);
1332 	if (error)
1333 		return (error);
1334 	if (req->newptr == NULL)
1335 		return (error);
1336 	if (v == 0)
1337 		return (0);
1338 	sleepq_prof_reset();
1339 
1340 	return (0);
1341 }
1342 
1343 static int
1344 dump_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1345 {
1346 	struct sleepq_prof *sp;
1347 	struct sbuf *sb;
1348 	int enabled;
1349 	int error;
1350 	int i;
1351 
1352 	error = sysctl_wire_old_buffer(req, 0);
1353 	if (error != 0)
1354 		return (error);
1355 	sb = sbuf_new_for_sysctl(NULL, NULL, SLEEPQ_SBUFSIZE, req);
1356 	sbuf_printf(sb, "\nwmesg\tcount\n");
1357 	enabled = prof_enabled;
1358 	mtx_lock_spin(&sleepq_prof_lock);
1359 	prof_enabled = 0;
1360 	mtx_unlock_spin(&sleepq_prof_lock);
1361 	for (i = 0; i < SC_TABLESIZE; i++) {
1362 		LIST_FOREACH(sp, &sleepq_hash[i], sp_link) {
1363 			sbuf_printf(sb, "%s\t%ld\n",
1364 			    sp->sp_wmesg, sp->sp_count);
1365 		}
1366 	}
1367 	mtx_lock_spin(&sleepq_prof_lock);
1368 	prof_enabled = enabled;
1369 	mtx_unlock_spin(&sleepq_prof_lock);
1370 
1371 	error = sbuf_finish(sb);
1372 	sbuf_delete(sb);
1373 	return (error);
1374 }
1375 
1376 SYSCTL_PROC(_debug_sleepq, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD,
1377     NULL, 0, dump_sleepq_prof_stats, "A", "Sleepqueue profiling statistics");
1378 SYSCTL_PROC(_debug_sleepq, OID_AUTO, reset, CTLTYPE_INT | CTLFLAG_RW,
1379     NULL, 0, reset_sleepq_prof_stats, "I",
1380     "Reset sleepqueue profiling statistics");
1381 SYSCTL_PROC(_debug_sleepq, OID_AUTO, enable, CTLTYPE_INT | CTLFLAG_RW,
1382     NULL, 0, enable_sleepq_prof, "I", "Enable sleepqueue profiling");
1383 #endif
1384 
1385 #ifdef DDB
1386 DB_SHOW_COMMAND(sleepq, db_show_sleepqueue)
1387 {
1388 	struct sleepqueue_chain *sc;
1389 	struct sleepqueue *sq;
1390 #ifdef INVARIANTS
1391 	struct lock_object *lock;
1392 #endif
1393 	struct thread *td;
1394 	void *wchan;
1395 	int i;
1396 
1397 	if (!have_addr)
1398 		return;
1399 
1400 	/*
1401 	 * First, see if there is an active sleep queue for the wait channel
1402 	 * indicated by the address.
1403 	 */
1404 	wchan = (void *)addr;
1405 	sc = SC_LOOKUP(wchan);
1406 	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
1407 		if (sq->sq_wchan == wchan)
1408 			goto found;
1409 
1410 	/*
1411 	 * Second, see if there is an active sleep queue at the address
1412 	 * indicated.
1413 	 */
1414 	for (i = 0; i < SC_TABLESIZE; i++)
1415 		LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) {
1416 			if (sq == (struct sleepqueue *)addr)
1417 				goto found;
1418 		}
1419 
1420 	db_printf("Unable to locate a sleep queue via %p\n", (void *)addr);
1421 	return;
1422 found:
1423 	db_printf("Wait channel: %p\n", sq->sq_wchan);
1424 	db_printf("Queue type: %d\n", sq->sq_type);
1425 #ifdef INVARIANTS
1426 	if (sq->sq_lock) {
1427 		lock = sq->sq_lock;
1428 		db_printf("Associated Interlock: %p - (%s) %s\n", lock,
1429 		    LOCK_CLASS(lock)->lc_name, lock->lo_name);
1430 	}
1431 #endif
1432 	db_printf("Blocked threads:\n");
1433 	for (i = 0; i < NR_SLEEPQS; i++) {
1434 		db_printf("\nQueue[%d]:\n", i);
1435 		if (TAILQ_EMPTY(&sq->sq_blocked[i]))
1436 			db_printf("\tempty\n");
1437 		else
1438 			TAILQ_FOREACH(td, &sq->sq_blocked[0],
1439 				      td_slpq) {
1440 				db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td,
1441 					  td->td_tid, td->td_proc->p_pid,
1442 					  td->td_name);
1443 			}
1444 		db_printf("(expected: %u)\n", sq->sq_blockedcnt[i]);
1445 	}
1446 }
1447 
1448 /* Alias 'show sleepqueue' to 'show sleepq'. */
1449 DB_SHOW_ALIAS(sleepqueue, db_show_sleepqueue);
1450 #endif
1451