1 /*- 2 * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 /* 28 * Implementation of sleep queues used to hold queue of threads blocked on 29 * a wait channel. Sleep queues are different from turnstiles in that wait 30 * channels are not owned by anyone, so there is no priority propagation. 31 * Sleep queues can also provide a timeout and can also be interrupted by 32 * signals. That said, there are several similarities between the turnstile 33 * and sleep queue implementations. (Note: turnstiles were implemented 34 * first.) For example, both use a hash table of the same size where each 35 * bucket is referred to as a "chain" that contains both a spin lock and 36 * a linked list of queues. An individual queue is located by using a hash 37 * to pick a chain, locking the chain, and then walking the chain searching 38 * for the queue. This means that a wait channel object does not need to 39 * embed its queue head just as locks do not embed their turnstile queue 40 * head. Threads also carry around a sleep queue that they lend to the 41 * wait channel when blocking. Just as in turnstiles, the queue includes 42 * a free list of the sleep queues of other threads blocked on the same 43 * wait channel in the case of multiple waiters. 44 * 45 * Some additional functionality provided by sleep queues include the 46 * ability to set a timeout. The timeout is managed using a per-thread 47 * callout that resumes a thread if it is asleep. A thread may also 48 * catch signals while it is asleep (aka an interruptible sleep). The 49 * signal code uses sleepq_abort() to interrupt a sleeping thread. Finally, 50 * sleep queues also provide some extra assertions. One is not allowed to 51 * mix the sleep/wakeup and cv APIs for a given wait channel. Also, one 52 * must consistently use the same lock to synchronize with a wait channel, 53 * though this check is currently only a warning for sleep/wakeup due to 54 * pre-existing abuse of that API. The same lock must also be held when 55 * awakening threads, though that is currently only enforced for condition 56 * variables. 57 */ 58 59 #include <sys/cdefs.h> 60 __FBSDID("$FreeBSD$"); 61 62 #include "opt_sleepqueue_profiling.h" 63 #include "opt_ddb.h" 64 #include "opt_sched.h" 65 #include "opt_stack.h" 66 67 #include <sys/param.h> 68 #include <sys/systm.h> 69 #include <sys/lock.h> 70 #include <sys/kernel.h> 71 #include <sys/ktr.h> 72 #include <sys/mutex.h> 73 #include <sys/proc.h> 74 #include <sys/sbuf.h> 75 #include <sys/sched.h> 76 #include <sys/sdt.h> 77 #include <sys/signalvar.h> 78 #include <sys/sleepqueue.h> 79 #include <sys/stack.h> 80 #include <sys/sysctl.h> 81 #include <sys/time.h> 82 83 #include <machine/atomic.h> 84 85 #include <vm/uma.h> 86 87 #ifdef DDB 88 #include <ddb/ddb.h> 89 #endif 90 91 92 /* 93 * Constants for the hash table of sleep queue chains. 94 * SC_TABLESIZE must be a power of two for SC_MASK to work properly. 95 */ 96 #define SC_TABLESIZE 256 /* Must be power of 2. */ 97 #define SC_MASK (SC_TABLESIZE - 1) 98 #define SC_SHIFT 8 99 #define SC_HASH(wc) ((((uintptr_t)(wc) >> SC_SHIFT) ^ (uintptr_t)(wc)) & \ 100 SC_MASK) 101 #define SC_LOOKUP(wc) &sleepq_chains[SC_HASH(wc)] 102 #define NR_SLEEPQS 2 103 /* 104 * There are two different lists of sleep queues. Both lists are connected 105 * via the sq_hash entries. The first list is the sleep queue chain list 106 * that a sleep queue is on when it is attached to a wait channel. The 107 * second list is the free list hung off of a sleep queue that is attached 108 * to a wait channel. 109 * 110 * Each sleep queue also contains the wait channel it is attached to, the 111 * list of threads blocked on that wait channel, flags specific to the 112 * wait channel, and the lock used to synchronize with a wait channel. 113 * The flags are used to catch mismatches between the various consumers 114 * of the sleep queue API (e.g. sleep/wakeup and condition variables). 115 * The lock pointer is only used when invariants are enabled for various 116 * debugging checks. 117 * 118 * Locking key: 119 * c - sleep queue chain lock 120 */ 121 struct sleepqueue { 122 TAILQ_HEAD(, thread) sq_blocked[NR_SLEEPQS]; /* (c) Blocked threads. */ 123 u_int sq_blockedcnt[NR_SLEEPQS]; /* (c) N. of blocked threads. */ 124 LIST_ENTRY(sleepqueue) sq_hash; /* (c) Chain and free list. */ 125 LIST_HEAD(, sleepqueue) sq_free; /* (c) Free queues. */ 126 void *sq_wchan; /* (c) Wait channel. */ 127 int sq_type; /* (c) Queue type. */ 128 #ifdef INVARIANTS 129 struct lock_object *sq_lock; /* (c) Associated lock. */ 130 #endif 131 }; 132 133 struct sleepqueue_chain { 134 LIST_HEAD(, sleepqueue) sc_queues; /* List of sleep queues. */ 135 struct mtx sc_lock; /* Spin lock for this chain. */ 136 #ifdef SLEEPQUEUE_PROFILING 137 u_int sc_depth; /* Length of sc_queues. */ 138 u_int sc_max_depth; /* Max length of sc_queues. */ 139 #endif 140 }; 141 142 #ifdef SLEEPQUEUE_PROFILING 143 u_int sleepq_max_depth; 144 static SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling"); 145 static SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0, 146 "sleepq chain stats"); 147 SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth, 148 0, "maxmimum depth achieved of a single chain"); 149 150 static void sleepq_profile(const char *wmesg); 151 static int prof_enabled; 152 #endif 153 static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE]; 154 static uma_zone_t sleepq_zone; 155 156 /* 157 * Prototypes for non-exported routines. 158 */ 159 static int sleepq_catch_signals(void *wchan, int pri); 160 static int sleepq_check_signals(void); 161 static int sleepq_check_timeout(void); 162 #ifdef INVARIANTS 163 static void sleepq_dtor(void *mem, int size, void *arg); 164 #endif 165 static int sleepq_init(void *mem, int size, int flags); 166 static int sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, 167 int pri); 168 static void sleepq_switch(void *wchan, int pri); 169 static void sleepq_timeout(void *arg); 170 171 SDT_PROBE_DECLARE(sched, , , sleep); 172 SDT_PROBE_DECLARE(sched, , , wakeup); 173 174 /* 175 * Initialize SLEEPQUEUE_PROFILING specific sysctl nodes. 176 * Note that it must happen after sleepinit() has been fully executed, so 177 * it must happen after SI_SUB_KMEM SYSINIT() subsystem setup. 178 */ 179 #ifdef SLEEPQUEUE_PROFILING 180 static void 181 init_sleepqueue_profiling(void) 182 { 183 char chain_name[10]; 184 struct sysctl_oid *chain_oid; 185 u_int i; 186 187 for (i = 0; i < SC_TABLESIZE; i++) { 188 snprintf(chain_name, sizeof(chain_name), "%u", i); 189 chain_oid = SYSCTL_ADD_NODE(NULL, 190 SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO, 191 chain_name, CTLFLAG_RD, NULL, "sleepq chain stats"); 192 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO, 193 "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL); 194 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO, 195 "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0, 196 NULL); 197 } 198 } 199 200 SYSINIT(sleepqueue_profiling, SI_SUB_LOCK, SI_ORDER_ANY, 201 init_sleepqueue_profiling, NULL); 202 #endif 203 204 /* 205 * Early initialization of sleep queues that is called from the sleepinit() 206 * SYSINIT. 207 */ 208 void 209 init_sleepqueues(void) 210 { 211 int i; 212 213 for (i = 0; i < SC_TABLESIZE; i++) { 214 LIST_INIT(&sleepq_chains[i].sc_queues); 215 mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL, 216 MTX_SPIN | MTX_RECURSE); 217 } 218 sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue), 219 #ifdef INVARIANTS 220 NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0); 221 #else 222 NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0); 223 #endif 224 225 thread0.td_sleepqueue = sleepq_alloc(); 226 } 227 228 /* 229 * Get a sleep queue for a new thread. 230 */ 231 struct sleepqueue * 232 sleepq_alloc(void) 233 { 234 235 return (uma_zalloc(sleepq_zone, M_WAITOK)); 236 } 237 238 /* 239 * Free a sleep queue when a thread is destroyed. 240 */ 241 void 242 sleepq_free(struct sleepqueue *sq) 243 { 244 245 uma_zfree(sleepq_zone, sq); 246 } 247 248 /* 249 * Lock the sleep queue chain associated with the specified wait channel. 250 */ 251 void 252 sleepq_lock(void *wchan) 253 { 254 struct sleepqueue_chain *sc; 255 256 sc = SC_LOOKUP(wchan); 257 mtx_lock_spin(&sc->sc_lock); 258 } 259 260 /* 261 * Look up the sleep queue associated with a given wait channel in the hash 262 * table locking the associated sleep queue chain. If no queue is found in 263 * the table, NULL is returned. 264 */ 265 struct sleepqueue * 266 sleepq_lookup(void *wchan) 267 { 268 struct sleepqueue_chain *sc; 269 struct sleepqueue *sq; 270 271 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 272 sc = SC_LOOKUP(wchan); 273 mtx_assert(&sc->sc_lock, MA_OWNED); 274 LIST_FOREACH(sq, &sc->sc_queues, sq_hash) 275 if (sq->sq_wchan == wchan) 276 return (sq); 277 return (NULL); 278 } 279 280 /* 281 * Unlock the sleep queue chain associated with a given wait channel. 282 */ 283 void 284 sleepq_release(void *wchan) 285 { 286 struct sleepqueue_chain *sc; 287 288 sc = SC_LOOKUP(wchan); 289 mtx_unlock_spin(&sc->sc_lock); 290 } 291 292 /* 293 * Places the current thread on the sleep queue for the specified wait 294 * channel. If INVARIANTS is enabled, then it associates the passed in 295 * lock with the sleepq to make sure it is held when that sleep queue is 296 * woken up. 297 */ 298 void 299 sleepq_add(void *wchan, struct lock_object *lock, const char *wmesg, int flags, 300 int queue) 301 { 302 struct sleepqueue_chain *sc; 303 struct sleepqueue *sq; 304 struct thread *td; 305 306 td = curthread; 307 sc = SC_LOOKUP(wchan); 308 mtx_assert(&sc->sc_lock, MA_OWNED); 309 MPASS(td->td_sleepqueue != NULL); 310 MPASS(wchan != NULL); 311 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 312 313 /* If this thread is not allowed to sleep, die a horrible death. */ 314 KASSERT(td->td_no_sleeping == 0, 315 ("%s: td %p to sleep on wchan %p with sleeping prohibited", 316 __func__, td, wchan)); 317 318 /* Look up the sleep queue associated with the wait channel 'wchan'. */ 319 sq = sleepq_lookup(wchan); 320 321 /* 322 * If the wait channel does not already have a sleep queue, use 323 * this thread's sleep queue. Otherwise, insert the current thread 324 * into the sleep queue already in use by this wait channel. 325 */ 326 if (sq == NULL) { 327 #ifdef INVARIANTS 328 int i; 329 330 sq = td->td_sleepqueue; 331 for (i = 0; i < NR_SLEEPQS; i++) { 332 KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]), 333 ("thread's sleep queue %d is not empty", i)); 334 KASSERT(sq->sq_blockedcnt[i] == 0, 335 ("thread's sleep queue %d count mismatches", i)); 336 } 337 KASSERT(LIST_EMPTY(&sq->sq_free), 338 ("thread's sleep queue has a non-empty free list")); 339 KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer")); 340 sq->sq_lock = lock; 341 #endif 342 #ifdef SLEEPQUEUE_PROFILING 343 sc->sc_depth++; 344 if (sc->sc_depth > sc->sc_max_depth) { 345 sc->sc_max_depth = sc->sc_depth; 346 if (sc->sc_max_depth > sleepq_max_depth) 347 sleepq_max_depth = sc->sc_max_depth; 348 } 349 #endif 350 sq = td->td_sleepqueue; 351 LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash); 352 sq->sq_wchan = wchan; 353 sq->sq_type = flags & SLEEPQ_TYPE; 354 } else { 355 MPASS(wchan == sq->sq_wchan); 356 MPASS(lock == sq->sq_lock); 357 MPASS((flags & SLEEPQ_TYPE) == sq->sq_type); 358 LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash); 359 } 360 thread_lock(td); 361 TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq); 362 sq->sq_blockedcnt[queue]++; 363 td->td_sleepqueue = NULL; 364 td->td_sqqueue = queue; 365 td->td_wchan = wchan; 366 td->td_wmesg = wmesg; 367 if (flags & SLEEPQ_INTERRUPTIBLE) { 368 td->td_flags |= TDF_SINTR; 369 td->td_flags &= ~TDF_SLEEPABORT; 370 } 371 thread_unlock(td); 372 } 373 374 /* 375 * Sets a timeout that will remove the current thread from the specified 376 * sleep queue after timo ticks if the thread has not already been awakened. 377 */ 378 void 379 sleepq_set_timeout_sbt(void *wchan, sbintime_t sbt, sbintime_t pr, 380 int flags) 381 { 382 struct sleepqueue_chain *sc; 383 struct thread *td; 384 sbintime_t pr1; 385 386 td = curthread; 387 sc = SC_LOOKUP(wchan); 388 mtx_assert(&sc->sc_lock, MA_OWNED); 389 MPASS(TD_ON_SLEEPQ(td)); 390 MPASS(td->td_sleepqueue == NULL); 391 MPASS(wchan != NULL); 392 if (cold && td == &thread0) 393 panic("timed sleep before timers are working"); 394 KASSERT(td->td_sleeptimo == 0, ("td %d %p td_sleeptimo %jx", 395 td->td_tid, td, (uintmax_t)td->td_sleeptimo)); 396 thread_lock(td); 397 callout_when(sbt, pr, flags, &td->td_sleeptimo, &pr1); 398 thread_unlock(td); 399 callout_reset_sbt_on(&td->td_slpcallout, td->td_sleeptimo, pr1, 400 sleepq_timeout, td, PCPU_GET(cpuid), flags | C_PRECALC | 401 C_DIRECT_EXEC); 402 } 403 404 /* 405 * Return the number of actual sleepers for the specified queue. 406 */ 407 u_int 408 sleepq_sleepcnt(void *wchan, int queue) 409 { 410 struct sleepqueue *sq; 411 412 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 413 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 414 sq = sleepq_lookup(wchan); 415 if (sq == NULL) 416 return (0); 417 return (sq->sq_blockedcnt[queue]); 418 } 419 420 /* 421 * Marks the pending sleep of the current thread as interruptible and 422 * makes an initial check for pending signals before putting a thread 423 * to sleep. Enters and exits with the thread lock held. Thread lock 424 * may have transitioned from the sleepq lock to a run lock. 425 */ 426 static int 427 sleepq_catch_signals(void *wchan, int pri) 428 { 429 struct sleepqueue_chain *sc; 430 struct sleepqueue *sq; 431 struct thread *td; 432 struct proc *p; 433 struct sigacts *ps; 434 int sig, ret; 435 436 ret = 0; 437 td = curthread; 438 p = curproc; 439 sc = SC_LOOKUP(wchan); 440 mtx_assert(&sc->sc_lock, MA_OWNED); 441 MPASS(wchan != NULL); 442 if ((td->td_pflags & TDP_WAKEUP) != 0) { 443 td->td_pflags &= ~TDP_WAKEUP; 444 ret = EINTR; 445 thread_lock(td); 446 goto out; 447 } 448 449 /* 450 * See if there are any pending signals or suspension requests for this 451 * thread. If not, we can switch immediately. 452 */ 453 thread_lock(td); 454 if ((td->td_flags & (TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK)) != 0) { 455 thread_unlock(td); 456 mtx_unlock_spin(&sc->sc_lock); 457 CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)", 458 (void *)td, (long)p->p_pid, td->td_name); 459 PROC_LOCK(p); 460 /* 461 * Check for suspension first. Checking for signals and then 462 * suspending could result in a missed signal, since a signal 463 * can be delivered while this thread is suspended. 464 */ 465 if ((td->td_flags & TDF_NEEDSUSPCHK) != 0) { 466 ret = thread_suspend_check(1); 467 MPASS(ret == 0 || ret == EINTR || ret == ERESTART); 468 if (ret != 0) { 469 PROC_UNLOCK(p); 470 mtx_lock_spin(&sc->sc_lock); 471 thread_lock(td); 472 goto out; 473 } 474 } 475 if ((td->td_flags & TDF_NEEDSIGCHK) != 0) { 476 ps = p->p_sigacts; 477 mtx_lock(&ps->ps_mtx); 478 sig = cursig(td); 479 if (sig == -1) { 480 mtx_unlock(&ps->ps_mtx); 481 KASSERT((td->td_flags & TDF_SBDRY) != 0, 482 ("lost TDF_SBDRY")); 483 KASSERT(TD_SBDRY_INTR(td), 484 ("lost TDF_SERESTART of TDF_SEINTR")); 485 KASSERT((td->td_flags & 486 (TDF_SEINTR | TDF_SERESTART)) != 487 (TDF_SEINTR | TDF_SERESTART), 488 ("both TDF_SEINTR and TDF_SERESTART")); 489 ret = TD_SBDRY_ERRNO(td); 490 } else if (sig != 0) { 491 ret = SIGISMEMBER(ps->ps_sigintr, sig) ? 492 EINTR : ERESTART; 493 mtx_unlock(&ps->ps_mtx); 494 } else { 495 mtx_unlock(&ps->ps_mtx); 496 } 497 } 498 /* 499 * Lock the per-process spinlock prior to dropping the PROC_LOCK 500 * to avoid a signal delivery race. PROC_LOCK, PROC_SLOCK, and 501 * thread_lock() are currently held in tdsendsignal(). 502 */ 503 PROC_SLOCK(p); 504 mtx_lock_spin(&sc->sc_lock); 505 PROC_UNLOCK(p); 506 thread_lock(td); 507 PROC_SUNLOCK(p); 508 } 509 if (ret == 0) { 510 sleepq_switch(wchan, pri); 511 return (0); 512 } 513 out: 514 /* 515 * There were pending signals and this thread is still 516 * on the sleep queue, remove it from the sleep queue. 517 */ 518 if (TD_ON_SLEEPQ(td)) { 519 sq = sleepq_lookup(wchan); 520 if (sleepq_resume_thread(sq, td, 0)) { 521 #ifdef INVARIANTS 522 /* 523 * This thread hasn't gone to sleep yet, so it 524 * should not be swapped out. 525 */ 526 panic("not waking up swapper"); 527 #endif 528 } 529 } 530 mtx_unlock_spin(&sc->sc_lock); 531 MPASS(td->td_lock != &sc->sc_lock); 532 return (ret); 533 } 534 535 /* 536 * Switches to another thread if we are still asleep on a sleep queue. 537 * Returns with thread lock. 538 */ 539 static void 540 sleepq_switch(void *wchan, int pri) 541 { 542 struct sleepqueue_chain *sc; 543 struct sleepqueue *sq; 544 struct thread *td; 545 bool rtc_changed; 546 547 td = curthread; 548 sc = SC_LOOKUP(wchan); 549 mtx_assert(&sc->sc_lock, MA_OWNED); 550 THREAD_LOCK_ASSERT(td, MA_OWNED); 551 552 /* 553 * If we have a sleep queue, then we've already been woken up, so 554 * just return. 555 */ 556 if (td->td_sleepqueue != NULL) { 557 mtx_unlock_spin(&sc->sc_lock); 558 return; 559 } 560 561 /* 562 * If TDF_TIMEOUT is set, then our sleep has been timed out 563 * already but we are still on the sleep queue, so dequeue the 564 * thread and return. 565 * 566 * Do the same if the real-time clock has been adjusted since this 567 * thread calculated its timeout based on that clock. This handles 568 * the following race: 569 * - The Ts thread needs to sleep until an absolute real-clock time. 570 * It copies the global rtc_generation into curthread->td_rtcgen, 571 * reads the RTC, and calculates a sleep duration based on that time. 572 * See umtxq_sleep() for an example. 573 * - The Tc thread adjusts the RTC, bumps rtc_generation, and wakes 574 * threads that are sleeping until an absolute real-clock time. 575 * See tc_setclock() and the POSIX specification of clock_settime(). 576 * - Ts reaches the code below. It holds the sleepqueue chain lock, 577 * so Tc has finished waking, so this thread must test td_rtcgen. 578 * (The declaration of td_rtcgen refers to this comment.) 579 */ 580 rtc_changed = td->td_rtcgen != 0 && td->td_rtcgen != rtc_generation; 581 if ((td->td_flags & TDF_TIMEOUT) || rtc_changed) { 582 if (rtc_changed) { 583 td->td_rtcgen = 0; 584 } 585 MPASS(TD_ON_SLEEPQ(td)); 586 sq = sleepq_lookup(wchan); 587 if (sleepq_resume_thread(sq, td, 0)) { 588 #ifdef INVARIANTS 589 /* 590 * This thread hasn't gone to sleep yet, so it 591 * should not be swapped out. 592 */ 593 panic("not waking up swapper"); 594 #endif 595 } 596 mtx_unlock_spin(&sc->sc_lock); 597 return; 598 } 599 #ifdef SLEEPQUEUE_PROFILING 600 if (prof_enabled) 601 sleepq_profile(td->td_wmesg); 602 #endif 603 MPASS(td->td_sleepqueue == NULL); 604 sched_sleep(td, pri); 605 thread_lock_set(td, &sc->sc_lock); 606 SDT_PROBE0(sched, , , sleep); 607 TD_SET_SLEEPING(td); 608 mi_switch(SW_VOL | SWT_SLEEPQ, NULL); 609 KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING")); 610 CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)", 611 (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name); 612 } 613 614 /* 615 * Check to see if we timed out. 616 */ 617 static int 618 sleepq_check_timeout(void) 619 { 620 struct thread *td; 621 int res; 622 623 td = curthread; 624 THREAD_LOCK_ASSERT(td, MA_OWNED); 625 626 /* 627 * If TDF_TIMEOUT is set, we timed out. But recheck 628 * td_sleeptimo anyway. 629 */ 630 res = 0; 631 if (td->td_sleeptimo != 0) { 632 if (td->td_sleeptimo <= sbinuptime()) 633 res = EWOULDBLOCK; 634 td->td_sleeptimo = 0; 635 } 636 if (td->td_flags & TDF_TIMEOUT) 637 td->td_flags &= ~TDF_TIMEOUT; 638 else 639 /* 640 * We ignore the situation where timeout subsystem was 641 * unable to stop our callout. The struct thread is 642 * type-stable, the callout will use the correct 643 * memory when running. The checks of the 644 * td_sleeptimo value in this function and in 645 * sleepq_timeout() ensure that the thread does not 646 * get spurious wakeups, even if the callout was reset 647 * or thread reused. 648 */ 649 callout_stop(&td->td_slpcallout); 650 return (res); 651 } 652 653 /* 654 * Check to see if we were awoken by a signal. 655 */ 656 static int 657 sleepq_check_signals(void) 658 { 659 struct thread *td; 660 661 td = curthread; 662 THREAD_LOCK_ASSERT(td, MA_OWNED); 663 664 /* We are no longer in an interruptible sleep. */ 665 if (td->td_flags & TDF_SINTR) 666 td->td_flags &= ~TDF_SINTR; 667 668 if (td->td_flags & TDF_SLEEPABORT) { 669 td->td_flags &= ~TDF_SLEEPABORT; 670 return (td->td_intrval); 671 } 672 673 return (0); 674 } 675 676 /* 677 * Block the current thread until it is awakened from its sleep queue. 678 */ 679 void 680 sleepq_wait(void *wchan, int pri) 681 { 682 struct thread *td; 683 684 td = curthread; 685 MPASS(!(td->td_flags & TDF_SINTR)); 686 thread_lock(td); 687 sleepq_switch(wchan, pri); 688 thread_unlock(td); 689 } 690 691 /* 692 * Block the current thread until it is awakened from its sleep queue 693 * or it is interrupted by a signal. 694 */ 695 int 696 sleepq_wait_sig(void *wchan, int pri) 697 { 698 int rcatch; 699 int rval; 700 701 rcatch = sleepq_catch_signals(wchan, pri); 702 rval = sleepq_check_signals(); 703 thread_unlock(curthread); 704 if (rcatch) 705 return (rcatch); 706 return (rval); 707 } 708 709 /* 710 * Block the current thread until it is awakened from its sleep queue 711 * or it times out while waiting. 712 */ 713 int 714 sleepq_timedwait(void *wchan, int pri) 715 { 716 struct thread *td; 717 int rval; 718 719 td = curthread; 720 MPASS(!(td->td_flags & TDF_SINTR)); 721 thread_lock(td); 722 sleepq_switch(wchan, pri); 723 rval = sleepq_check_timeout(); 724 thread_unlock(td); 725 726 return (rval); 727 } 728 729 /* 730 * Block the current thread until it is awakened from its sleep queue, 731 * it is interrupted by a signal, or it times out waiting to be awakened. 732 */ 733 int 734 sleepq_timedwait_sig(void *wchan, int pri) 735 { 736 int rcatch, rvalt, rvals; 737 738 rcatch = sleepq_catch_signals(wchan, pri); 739 rvalt = sleepq_check_timeout(); 740 rvals = sleepq_check_signals(); 741 thread_unlock(curthread); 742 if (rcatch) 743 return (rcatch); 744 if (rvals) 745 return (rvals); 746 return (rvalt); 747 } 748 749 /* 750 * Returns the type of sleepqueue given a waitchannel. 751 */ 752 int 753 sleepq_type(void *wchan) 754 { 755 struct sleepqueue *sq; 756 int type; 757 758 MPASS(wchan != NULL); 759 760 sleepq_lock(wchan); 761 sq = sleepq_lookup(wchan); 762 if (sq == NULL) { 763 sleepq_release(wchan); 764 return (-1); 765 } 766 type = sq->sq_type; 767 sleepq_release(wchan); 768 return (type); 769 } 770 771 /* 772 * Removes a thread from a sleep queue and makes it 773 * runnable. 774 */ 775 static int 776 sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri) 777 { 778 struct sleepqueue_chain *sc; 779 780 MPASS(td != NULL); 781 MPASS(sq->sq_wchan != NULL); 782 MPASS(td->td_wchan == sq->sq_wchan); 783 MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0); 784 THREAD_LOCK_ASSERT(td, MA_OWNED); 785 sc = SC_LOOKUP(sq->sq_wchan); 786 mtx_assert(&sc->sc_lock, MA_OWNED); 787 788 SDT_PROBE2(sched, , , wakeup, td, td->td_proc); 789 790 /* Remove the thread from the queue. */ 791 sq->sq_blockedcnt[td->td_sqqueue]--; 792 TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq); 793 794 /* 795 * Get a sleep queue for this thread. If this is the last waiter, 796 * use the queue itself and take it out of the chain, otherwise, 797 * remove a queue from the free list. 798 */ 799 if (LIST_EMPTY(&sq->sq_free)) { 800 td->td_sleepqueue = sq; 801 #ifdef INVARIANTS 802 sq->sq_wchan = NULL; 803 #endif 804 #ifdef SLEEPQUEUE_PROFILING 805 sc->sc_depth--; 806 #endif 807 } else 808 td->td_sleepqueue = LIST_FIRST(&sq->sq_free); 809 LIST_REMOVE(td->td_sleepqueue, sq_hash); 810 811 td->td_wmesg = NULL; 812 td->td_wchan = NULL; 813 td->td_flags &= ~TDF_SINTR; 814 815 CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)", 816 (void *)td, (long)td->td_proc->p_pid, td->td_name); 817 818 /* Adjust priority if requested. */ 819 MPASS(pri == 0 || (pri >= PRI_MIN && pri <= PRI_MAX)); 820 if (pri != 0 && td->td_priority > pri && 821 PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) 822 sched_prio(td, pri); 823 824 /* 825 * Note that thread td might not be sleeping if it is running 826 * sleepq_catch_signals() on another CPU or is blocked on its 827 * proc lock to check signals. There's no need to mark the 828 * thread runnable in that case. 829 */ 830 if (TD_IS_SLEEPING(td)) { 831 TD_CLR_SLEEPING(td); 832 return (setrunnable(td)); 833 } 834 return (0); 835 } 836 837 #ifdef INVARIANTS 838 /* 839 * UMA zone item deallocator. 840 */ 841 static void 842 sleepq_dtor(void *mem, int size, void *arg) 843 { 844 struct sleepqueue *sq; 845 int i; 846 847 sq = mem; 848 for (i = 0; i < NR_SLEEPQS; i++) { 849 MPASS(TAILQ_EMPTY(&sq->sq_blocked[i])); 850 MPASS(sq->sq_blockedcnt[i] == 0); 851 } 852 } 853 #endif 854 855 /* 856 * UMA zone item initializer. 857 */ 858 static int 859 sleepq_init(void *mem, int size, int flags) 860 { 861 struct sleepqueue *sq; 862 int i; 863 864 bzero(mem, size); 865 sq = mem; 866 for (i = 0; i < NR_SLEEPQS; i++) { 867 TAILQ_INIT(&sq->sq_blocked[i]); 868 sq->sq_blockedcnt[i] = 0; 869 } 870 LIST_INIT(&sq->sq_free); 871 return (0); 872 } 873 874 /* 875 * Find the highest priority thread sleeping on a wait channel and resume it. 876 */ 877 int 878 sleepq_signal(void *wchan, int flags, int pri, int queue) 879 { 880 struct sleepqueue *sq; 881 struct thread *td, *besttd; 882 int wakeup_swapper; 883 884 CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags); 885 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 886 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 887 sq = sleepq_lookup(wchan); 888 if (sq == NULL) 889 return (0); 890 KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE), 891 ("%s: mismatch between sleep/wakeup and cv_*", __func__)); 892 893 /* 894 * Find the highest priority thread on the queue. If there is a 895 * tie, use the thread that first appears in the queue as it has 896 * been sleeping the longest since threads are always added to 897 * the tail of sleep queues. 898 */ 899 besttd = TAILQ_FIRST(&sq->sq_blocked[queue]); 900 TAILQ_FOREACH(td, &sq->sq_blocked[queue], td_slpq) { 901 if (td->td_priority < besttd->td_priority) 902 besttd = td; 903 } 904 MPASS(besttd != NULL); 905 thread_lock(besttd); 906 wakeup_swapper = sleepq_resume_thread(sq, besttd, pri); 907 thread_unlock(besttd); 908 return (wakeup_swapper); 909 } 910 911 static bool 912 match_any(struct thread *td __unused) 913 { 914 915 return (true); 916 } 917 918 /* 919 * Resume all threads sleeping on a specified wait channel. 920 */ 921 int 922 sleepq_broadcast(void *wchan, int flags, int pri, int queue) 923 { 924 struct sleepqueue *sq; 925 926 CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags); 927 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 928 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 929 sq = sleepq_lookup(wchan); 930 if (sq == NULL) 931 return (0); 932 KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE), 933 ("%s: mismatch between sleep/wakeup and cv_*", __func__)); 934 935 return (sleepq_remove_matching(sq, queue, match_any, pri)); 936 } 937 938 /* 939 * Resume threads on the sleep queue that match the given predicate. 940 */ 941 int 942 sleepq_remove_matching(struct sleepqueue *sq, int queue, 943 bool (*matches)(struct thread *), int pri) 944 { 945 struct thread *td, *tdn; 946 int wakeup_swapper; 947 948 /* 949 * The last thread will be given ownership of sq and may 950 * re-enqueue itself before sleepq_resume_thread() returns, 951 * so we must cache the "next" queue item at the beginning 952 * of the final iteration. 953 */ 954 wakeup_swapper = 0; 955 TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, tdn) { 956 thread_lock(td); 957 if (matches(td)) 958 wakeup_swapper |= sleepq_resume_thread(sq, td, pri); 959 thread_unlock(td); 960 } 961 962 return (wakeup_swapper); 963 } 964 965 /* 966 * Time sleeping threads out. When the timeout expires, the thread is 967 * removed from the sleep queue and made runnable if it is still asleep. 968 */ 969 static void 970 sleepq_timeout(void *arg) 971 { 972 struct sleepqueue_chain *sc; 973 struct sleepqueue *sq; 974 struct thread *td; 975 void *wchan; 976 int wakeup_swapper; 977 978 td = arg; 979 wakeup_swapper = 0; 980 CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)", 981 (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name); 982 983 thread_lock(td); 984 985 if (td->td_sleeptimo > sbinuptime() || td->td_sleeptimo == 0) { 986 /* 987 * The thread does not want a timeout (yet). 988 */ 989 } else if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) { 990 /* 991 * See if the thread is asleep and get the wait 992 * channel if it is. 993 */ 994 wchan = td->td_wchan; 995 sc = SC_LOOKUP(wchan); 996 THREAD_LOCKPTR_ASSERT(td, &sc->sc_lock); 997 sq = sleepq_lookup(wchan); 998 MPASS(sq != NULL); 999 td->td_flags |= TDF_TIMEOUT; 1000 wakeup_swapper = sleepq_resume_thread(sq, td, 0); 1001 } else if (TD_ON_SLEEPQ(td)) { 1002 /* 1003 * If the thread is on the SLEEPQ but isn't sleeping 1004 * yet, it can either be on another CPU in between 1005 * sleepq_add() and one of the sleepq_*wait*() 1006 * routines or it can be in sleepq_catch_signals(). 1007 */ 1008 td->td_flags |= TDF_TIMEOUT; 1009 } 1010 1011 thread_unlock(td); 1012 if (wakeup_swapper) 1013 kick_proc0(); 1014 } 1015 1016 /* 1017 * Resumes a specific thread from the sleep queue associated with a specific 1018 * wait channel if it is on that queue. 1019 */ 1020 void 1021 sleepq_remove(struct thread *td, void *wchan) 1022 { 1023 struct sleepqueue *sq; 1024 int wakeup_swapper; 1025 1026 /* 1027 * Look up the sleep queue for this wait channel, then re-check 1028 * that the thread is asleep on that channel, if it is not, then 1029 * bail. 1030 */ 1031 MPASS(wchan != NULL); 1032 sleepq_lock(wchan); 1033 sq = sleepq_lookup(wchan); 1034 /* 1035 * We can not lock the thread here as it may be sleeping on a 1036 * different sleepq. However, holding the sleepq lock for this 1037 * wchan can guarantee that we do not miss a wakeup for this 1038 * channel. The asserts below will catch any false positives. 1039 */ 1040 if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) { 1041 sleepq_release(wchan); 1042 return; 1043 } 1044 /* Thread is asleep on sleep queue sq, so wake it up. */ 1045 thread_lock(td); 1046 MPASS(sq != NULL); 1047 MPASS(td->td_wchan == wchan); 1048 wakeup_swapper = sleepq_resume_thread(sq, td, 0); 1049 thread_unlock(td); 1050 sleepq_release(wchan); 1051 if (wakeup_swapper) 1052 kick_proc0(); 1053 } 1054 1055 /* 1056 * Abort a thread as if an interrupt had occurred. Only abort 1057 * interruptible waits (unfortunately it isn't safe to abort others). 1058 */ 1059 int 1060 sleepq_abort(struct thread *td, int intrval) 1061 { 1062 struct sleepqueue *sq; 1063 void *wchan; 1064 1065 THREAD_LOCK_ASSERT(td, MA_OWNED); 1066 MPASS(TD_ON_SLEEPQ(td)); 1067 MPASS(td->td_flags & TDF_SINTR); 1068 MPASS(intrval == EINTR || intrval == ERESTART); 1069 1070 /* 1071 * If the TDF_TIMEOUT flag is set, just leave. A 1072 * timeout is scheduled anyhow. 1073 */ 1074 if (td->td_flags & TDF_TIMEOUT) 1075 return (0); 1076 1077 CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)", 1078 (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name); 1079 td->td_intrval = intrval; 1080 td->td_flags |= TDF_SLEEPABORT; 1081 /* 1082 * If the thread has not slept yet it will find the signal in 1083 * sleepq_catch_signals() and call sleepq_resume_thread. Otherwise 1084 * we have to do it here. 1085 */ 1086 if (!TD_IS_SLEEPING(td)) 1087 return (0); 1088 wchan = td->td_wchan; 1089 MPASS(wchan != NULL); 1090 sq = sleepq_lookup(wchan); 1091 MPASS(sq != NULL); 1092 1093 /* Thread is asleep on sleep queue sq, so wake it up. */ 1094 return (sleepq_resume_thread(sq, td, 0)); 1095 } 1096 1097 void 1098 sleepq_chains_remove_matching(bool (*matches)(struct thread *)) 1099 { 1100 struct sleepqueue_chain *sc; 1101 struct sleepqueue *sq; 1102 int i, wakeup_swapper; 1103 1104 wakeup_swapper = 0; 1105 for (sc = &sleepq_chains[0]; sc < sleepq_chains + SC_TABLESIZE; ++sc) { 1106 if (LIST_EMPTY(&sc->sc_queues)) { 1107 continue; 1108 } 1109 mtx_lock_spin(&sc->sc_lock); 1110 LIST_FOREACH(sq, &sc->sc_queues, sq_hash) { 1111 for (i = 0; i < NR_SLEEPQS; ++i) { 1112 wakeup_swapper |= sleepq_remove_matching(sq, i, 1113 matches, 0); 1114 } 1115 } 1116 mtx_unlock_spin(&sc->sc_lock); 1117 } 1118 if (wakeup_swapper) { 1119 kick_proc0(); 1120 } 1121 } 1122 1123 /* 1124 * Prints the stacks of all threads presently sleeping on wchan/queue to 1125 * the sbuf sb. Sets count_stacks_printed to the number of stacks actually 1126 * printed. Typically, this will equal the number of threads sleeping on the 1127 * queue, but may be less if sb overflowed before all stacks were printed. 1128 */ 1129 #ifdef STACK 1130 int 1131 sleepq_sbuf_print_stacks(struct sbuf *sb, void *wchan, int queue, 1132 int *count_stacks_printed) 1133 { 1134 struct thread *td, *td_next; 1135 struct sleepqueue *sq; 1136 struct stack **st; 1137 struct sbuf **td_infos; 1138 int i, stack_idx, error, stacks_to_allocate; 1139 bool finished, partial_print; 1140 1141 error = 0; 1142 finished = false; 1143 partial_print = false; 1144 1145 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 1146 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 1147 1148 stacks_to_allocate = 10; 1149 for (i = 0; i < 3 && !finished ; i++) { 1150 /* We cannot malloc while holding the queue's spinlock, so 1151 * we do our mallocs now, and hope it is enough. If it 1152 * isn't, we will free these, drop the lock, malloc more, 1153 * and try again, up to a point. After that point we will 1154 * give up and report ENOMEM. We also cannot write to sb 1155 * during this time since the client may have set the 1156 * SBUF_AUTOEXTEND flag on their sbuf, which could cause a 1157 * malloc as we print to it. So we defer actually printing 1158 * to sb until after we drop the spinlock. 1159 */ 1160 1161 /* Where we will store the stacks. */ 1162 st = malloc(sizeof(struct stack *) * stacks_to_allocate, 1163 M_TEMP, M_WAITOK); 1164 for (stack_idx = 0; stack_idx < stacks_to_allocate; 1165 stack_idx++) 1166 st[stack_idx] = stack_create(); 1167 1168 /* Where we will store the td name, tid, etc. */ 1169 td_infos = malloc(sizeof(struct sbuf *) * stacks_to_allocate, 1170 M_TEMP, M_WAITOK); 1171 for (stack_idx = 0; stack_idx < stacks_to_allocate; 1172 stack_idx++) 1173 td_infos[stack_idx] = sbuf_new(NULL, NULL, 1174 MAXCOMLEN + sizeof(struct thread *) * 2 + 40, 1175 SBUF_FIXEDLEN); 1176 1177 sleepq_lock(wchan); 1178 sq = sleepq_lookup(wchan); 1179 if (sq == NULL) { 1180 /* This sleepq does not exist; exit and return ENOENT. */ 1181 error = ENOENT; 1182 finished = true; 1183 sleepq_release(wchan); 1184 goto loop_end; 1185 } 1186 1187 stack_idx = 0; 1188 /* Save thread info */ 1189 TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, 1190 td_next) { 1191 if (stack_idx >= stacks_to_allocate) 1192 goto loop_end; 1193 1194 /* Note the td_lock is equal to the sleepq_lock here. */ 1195 stack_save_td(st[stack_idx], td); 1196 1197 sbuf_printf(td_infos[stack_idx], "%d: %s %p", 1198 td->td_tid, td->td_name, td); 1199 1200 ++stack_idx; 1201 } 1202 1203 finished = true; 1204 sleepq_release(wchan); 1205 1206 /* Print the stacks */ 1207 for (i = 0; i < stack_idx; i++) { 1208 sbuf_finish(td_infos[i]); 1209 sbuf_printf(sb, "--- thread %s: ---\n", sbuf_data(td_infos[i])); 1210 stack_sbuf_print(sb, st[i]); 1211 sbuf_printf(sb, "\n"); 1212 1213 error = sbuf_error(sb); 1214 if (error == 0) 1215 *count_stacks_printed = stack_idx; 1216 } 1217 1218 loop_end: 1219 if (!finished) 1220 sleepq_release(wchan); 1221 for (stack_idx = 0; stack_idx < stacks_to_allocate; 1222 stack_idx++) 1223 stack_destroy(st[stack_idx]); 1224 for (stack_idx = 0; stack_idx < stacks_to_allocate; 1225 stack_idx++) 1226 sbuf_delete(td_infos[stack_idx]); 1227 free(st, M_TEMP); 1228 free(td_infos, M_TEMP); 1229 stacks_to_allocate *= 10; 1230 } 1231 1232 if (!finished && error == 0) 1233 error = ENOMEM; 1234 1235 return (error); 1236 } 1237 #endif 1238 1239 #ifdef SLEEPQUEUE_PROFILING 1240 #define SLEEPQ_PROF_LOCATIONS 1024 1241 #define SLEEPQ_SBUFSIZE 512 1242 struct sleepq_prof { 1243 LIST_ENTRY(sleepq_prof) sp_link; 1244 const char *sp_wmesg; 1245 long sp_count; 1246 }; 1247 1248 LIST_HEAD(sqphead, sleepq_prof); 1249 1250 struct sqphead sleepq_prof_free; 1251 struct sqphead sleepq_hash[SC_TABLESIZE]; 1252 static struct sleepq_prof sleepq_profent[SLEEPQ_PROF_LOCATIONS]; 1253 static struct mtx sleepq_prof_lock; 1254 MTX_SYSINIT(sleepq_prof_lock, &sleepq_prof_lock, "sleepq_prof", MTX_SPIN); 1255 1256 static void 1257 sleepq_profile(const char *wmesg) 1258 { 1259 struct sleepq_prof *sp; 1260 1261 mtx_lock_spin(&sleepq_prof_lock); 1262 if (prof_enabled == 0) 1263 goto unlock; 1264 LIST_FOREACH(sp, &sleepq_hash[SC_HASH(wmesg)], sp_link) 1265 if (sp->sp_wmesg == wmesg) 1266 goto done; 1267 sp = LIST_FIRST(&sleepq_prof_free); 1268 if (sp == NULL) 1269 goto unlock; 1270 sp->sp_wmesg = wmesg; 1271 LIST_REMOVE(sp, sp_link); 1272 LIST_INSERT_HEAD(&sleepq_hash[SC_HASH(wmesg)], sp, sp_link); 1273 done: 1274 sp->sp_count++; 1275 unlock: 1276 mtx_unlock_spin(&sleepq_prof_lock); 1277 return; 1278 } 1279 1280 static void 1281 sleepq_prof_reset(void) 1282 { 1283 struct sleepq_prof *sp; 1284 int enabled; 1285 int i; 1286 1287 mtx_lock_spin(&sleepq_prof_lock); 1288 enabled = prof_enabled; 1289 prof_enabled = 0; 1290 for (i = 0; i < SC_TABLESIZE; i++) 1291 LIST_INIT(&sleepq_hash[i]); 1292 LIST_INIT(&sleepq_prof_free); 1293 for (i = 0; i < SLEEPQ_PROF_LOCATIONS; i++) { 1294 sp = &sleepq_profent[i]; 1295 sp->sp_wmesg = NULL; 1296 sp->sp_count = 0; 1297 LIST_INSERT_HEAD(&sleepq_prof_free, sp, sp_link); 1298 } 1299 prof_enabled = enabled; 1300 mtx_unlock_spin(&sleepq_prof_lock); 1301 } 1302 1303 static int 1304 enable_sleepq_prof(SYSCTL_HANDLER_ARGS) 1305 { 1306 int error, v; 1307 1308 v = prof_enabled; 1309 error = sysctl_handle_int(oidp, &v, v, req); 1310 if (error) 1311 return (error); 1312 if (req->newptr == NULL) 1313 return (error); 1314 if (v == prof_enabled) 1315 return (0); 1316 if (v == 1) 1317 sleepq_prof_reset(); 1318 mtx_lock_spin(&sleepq_prof_lock); 1319 prof_enabled = !!v; 1320 mtx_unlock_spin(&sleepq_prof_lock); 1321 1322 return (0); 1323 } 1324 1325 static int 1326 reset_sleepq_prof_stats(SYSCTL_HANDLER_ARGS) 1327 { 1328 int error, v; 1329 1330 v = 0; 1331 error = sysctl_handle_int(oidp, &v, 0, req); 1332 if (error) 1333 return (error); 1334 if (req->newptr == NULL) 1335 return (error); 1336 if (v == 0) 1337 return (0); 1338 sleepq_prof_reset(); 1339 1340 return (0); 1341 } 1342 1343 static int 1344 dump_sleepq_prof_stats(SYSCTL_HANDLER_ARGS) 1345 { 1346 struct sleepq_prof *sp; 1347 struct sbuf *sb; 1348 int enabled; 1349 int error; 1350 int i; 1351 1352 error = sysctl_wire_old_buffer(req, 0); 1353 if (error != 0) 1354 return (error); 1355 sb = sbuf_new_for_sysctl(NULL, NULL, SLEEPQ_SBUFSIZE, req); 1356 sbuf_printf(sb, "\nwmesg\tcount\n"); 1357 enabled = prof_enabled; 1358 mtx_lock_spin(&sleepq_prof_lock); 1359 prof_enabled = 0; 1360 mtx_unlock_spin(&sleepq_prof_lock); 1361 for (i = 0; i < SC_TABLESIZE; i++) { 1362 LIST_FOREACH(sp, &sleepq_hash[i], sp_link) { 1363 sbuf_printf(sb, "%s\t%ld\n", 1364 sp->sp_wmesg, sp->sp_count); 1365 } 1366 } 1367 mtx_lock_spin(&sleepq_prof_lock); 1368 prof_enabled = enabled; 1369 mtx_unlock_spin(&sleepq_prof_lock); 1370 1371 error = sbuf_finish(sb); 1372 sbuf_delete(sb); 1373 return (error); 1374 } 1375 1376 SYSCTL_PROC(_debug_sleepq, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD, 1377 NULL, 0, dump_sleepq_prof_stats, "A", "Sleepqueue profiling statistics"); 1378 SYSCTL_PROC(_debug_sleepq, OID_AUTO, reset, CTLTYPE_INT | CTLFLAG_RW, 1379 NULL, 0, reset_sleepq_prof_stats, "I", 1380 "Reset sleepqueue profiling statistics"); 1381 SYSCTL_PROC(_debug_sleepq, OID_AUTO, enable, CTLTYPE_INT | CTLFLAG_RW, 1382 NULL, 0, enable_sleepq_prof, "I", "Enable sleepqueue profiling"); 1383 #endif 1384 1385 #ifdef DDB 1386 DB_SHOW_COMMAND(sleepq, db_show_sleepqueue) 1387 { 1388 struct sleepqueue_chain *sc; 1389 struct sleepqueue *sq; 1390 #ifdef INVARIANTS 1391 struct lock_object *lock; 1392 #endif 1393 struct thread *td; 1394 void *wchan; 1395 int i; 1396 1397 if (!have_addr) 1398 return; 1399 1400 /* 1401 * First, see if there is an active sleep queue for the wait channel 1402 * indicated by the address. 1403 */ 1404 wchan = (void *)addr; 1405 sc = SC_LOOKUP(wchan); 1406 LIST_FOREACH(sq, &sc->sc_queues, sq_hash) 1407 if (sq->sq_wchan == wchan) 1408 goto found; 1409 1410 /* 1411 * Second, see if there is an active sleep queue at the address 1412 * indicated. 1413 */ 1414 for (i = 0; i < SC_TABLESIZE; i++) 1415 LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) { 1416 if (sq == (struct sleepqueue *)addr) 1417 goto found; 1418 } 1419 1420 db_printf("Unable to locate a sleep queue via %p\n", (void *)addr); 1421 return; 1422 found: 1423 db_printf("Wait channel: %p\n", sq->sq_wchan); 1424 db_printf("Queue type: %d\n", sq->sq_type); 1425 #ifdef INVARIANTS 1426 if (sq->sq_lock) { 1427 lock = sq->sq_lock; 1428 db_printf("Associated Interlock: %p - (%s) %s\n", lock, 1429 LOCK_CLASS(lock)->lc_name, lock->lo_name); 1430 } 1431 #endif 1432 db_printf("Blocked threads:\n"); 1433 for (i = 0; i < NR_SLEEPQS; i++) { 1434 db_printf("\nQueue[%d]:\n", i); 1435 if (TAILQ_EMPTY(&sq->sq_blocked[i])) 1436 db_printf("\tempty\n"); 1437 else 1438 TAILQ_FOREACH(td, &sq->sq_blocked[0], 1439 td_slpq) { 1440 db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td, 1441 td->td_tid, td->td_proc->p_pid, 1442 td->td_name); 1443 } 1444 db_printf("(expected: %u)\n", sq->sq_blockedcnt[i]); 1445 } 1446 } 1447 1448 /* Alias 'show sleepqueue' to 'show sleepq'. */ 1449 DB_SHOW_ALIAS(sleepqueue, db_show_sleepqueue); 1450 #endif 1451