xref: /freebsd/sys/kern/subr_sleepqueue.c (revision 5608fd23c27fa1e8ee595d7b678cbfd35d657fbe)
1 /*-
2  * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 /*
28  * Implementation of sleep queues used to hold queue of threads blocked on
29  * a wait channel.  Sleep queues different from turnstiles in that wait
30  * channels are not owned by anyone, so there is no priority propagation.
31  * Sleep queues can also provide a timeout and can also be interrupted by
32  * signals.  That said, there are several similarities between the turnstile
33  * and sleep queue implementations.  (Note: turnstiles were implemented
34  * first.)  For example, both use a hash table of the same size where each
35  * bucket is referred to as a "chain" that contains both a spin lock and
36  * a linked list of queues.  An individual queue is located by using a hash
37  * to pick a chain, locking the chain, and then walking the chain searching
38  * for the queue.  This means that a wait channel object does not need to
39  * embed it's queue head just as locks do not embed their turnstile queue
40  * head.  Threads also carry around a sleep queue that they lend to the
41  * wait channel when blocking.  Just as in turnstiles, the queue includes
42  * a free list of the sleep queues of other threads blocked on the same
43  * wait channel in the case of multiple waiters.
44  *
45  * Some additional functionality provided by sleep queues include the
46  * ability to set a timeout.  The timeout is managed using a per-thread
47  * callout that resumes a thread if it is asleep.  A thread may also
48  * catch signals while it is asleep (aka an interruptible sleep).  The
49  * signal code uses sleepq_abort() to interrupt a sleeping thread.  Finally,
50  * sleep queues also provide some extra assertions.  One is not allowed to
51  * mix the sleep/wakeup and cv APIs for a given wait channel.  Also, one
52  * must consistently use the same lock to synchronize with a wait channel,
53  * though this check is currently only a warning for sleep/wakeup due to
54  * pre-existing abuse of that API.  The same lock must also be held when
55  * awakening threads, though that is currently only enforced for condition
56  * variables.
57  */
58 
59 #include <sys/cdefs.h>
60 __FBSDID("$FreeBSD$");
61 
62 #include "opt_sleepqueue_profiling.h"
63 #include "opt_ddb.h"
64 #include "opt_sched.h"
65 
66 #include <sys/param.h>
67 #include <sys/systm.h>
68 #include <sys/lock.h>
69 #include <sys/kernel.h>
70 #include <sys/ktr.h>
71 #include <sys/mutex.h>
72 #include <sys/proc.h>
73 #include <sys/sbuf.h>
74 #include <sys/sched.h>
75 #include <sys/sdt.h>
76 #include <sys/signalvar.h>
77 #include <sys/sleepqueue.h>
78 #include <sys/sysctl.h>
79 
80 #include <vm/uma.h>
81 
82 #ifdef DDB
83 #include <ddb/ddb.h>
84 #endif
85 
86 /*
87  * Constants for the hash table of sleep queue chains.
88  * SC_TABLESIZE must be a power of two for SC_MASK to work properly.
89  */
90 #define	SC_TABLESIZE	256			/* Must be power of 2. */
91 #define	SC_MASK		(SC_TABLESIZE - 1)
92 #define	SC_SHIFT	8
93 #define	SC_HASH(wc)	((((uintptr_t)(wc) >> SC_SHIFT) ^ (uintptr_t)(wc)) & \
94 			    SC_MASK)
95 #define	SC_LOOKUP(wc)	&sleepq_chains[SC_HASH(wc)]
96 #define NR_SLEEPQS      2
97 /*
98  * There two different lists of sleep queues.  Both lists are connected
99  * via the sq_hash entries.  The first list is the sleep queue chain list
100  * that a sleep queue is on when it is attached to a wait channel.  The
101  * second list is the free list hung off of a sleep queue that is attached
102  * to a wait channel.
103  *
104  * Each sleep queue also contains the wait channel it is attached to, the
105  * list of threads blocked on that wait channel, flags specific to the
106  * wait channel, and the lock used to synchronize with a wait channel.
107  * The flags are used to catch mismatches between the various consumers
108  * of the sleep queue API (e.g. sleep/wakeup and condition variables).
109  * The lock pointer is only used when invariants are enabled for various
110  * debugging checks.
111  *
112  * Locking key:
113  *  c - sleep queue chain lock
114  */
115 struct sleepqueue {
116 	TAILQ_HEAD(, thread) sq_blocked[NR_SLEEPQS];	/* (c) Blocked threads. */
117 	u_int sq_blockedcnt[NR_SLEEPQS];	/* (c) N. of blocked threads. */
118 	LIST_ENTRY(sleepqueue) sq_hash;		/* (c) Chain and free list. */
119 	LIST_HEAD(, sleepqueue) sq_free;	/* (c) Free queues. */
120 	void	*sq_wchan;			/* (c) Wait channel. */
121 	int	sq_type;			/* (c) Queue type. */
122 #ifdef INVARIANTS
123 	struct lock_object *sq_lock;		/* (c) Associated lock. */
124 #endif
125 };
126 
127 struct sleepqueue_chain {
128 	LIST_HEAD(, sleepqueue) sc_queues;	/* List of sleep queues. */
129 	struct mtx sc_lock;			/* Spin lock for this chain. */
130 #ifdef SLEEPQUEUE_PROFILING
131 	u_int	sc_depth;			/* Length of sc_queues. */
132 	u_int	sc_max_depth;			/* Max length of sc_queues. */
133 #endif
134 };
135 
136 #ifdef SLEEPQUEUE_PROFILING
137 u_int sleepq_max_depth;
138 static SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling");
139 static SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0,
140     "sleepq chain stats");
141 SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth,
142     0, "maxmimum depth achieved of a single chain");
143 
144 static void	sleepq_profile(const char *wmesg);
145 static int	prof_enabled;
146 #endif
147 static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE];
148 static uma_zone_t sleepq_zone;
149 
150 /*
151  * Prototypes for non-exported routines.
152  */
153 static int	sleepq_catch_signals(void *wchan, int pri);
154 static int	sleepq_check_signals(void);
155 static int	sleepq_check_timeout(void);
156 #ifdef INVARIANTS
157 static void	sleepq_dtor(void *mem, int size, void *arg);
158 #endif
159 static int	sleepq_init(void *mem, int size, int flags);
160 static int	sleepq_resume_thread(struct sleepqueue *sq, struct thread *td,
161 		    int pri);
162 static void	sleepq_switch(void *wchan, int pri);
163 static void	sleepq_timeout(void *arg);
164 
165 SDT_PROBE_DECLARE(sched, , , sleep);
166 SDT_PROBE_DECLARE(sched, , , wakeup);
167 
168 /*
169  * Initialize SLEEPQUEUE_PROFILING specific sysctl nodes.
170  * Note that it must happen after sleepinit() has been fully executed, so
171  * it must happen after SI_SUB_KMEM SYSINIT() subsystem setup.
172  */
173 #ifdef SLEEPQUEUE_PROFILING
174 static void
175 init_sleepqueue_profiling(void)
176 {
177 	char chain_name[10];
178 	struct sysctl_oid *chain_oid;
179 	u_int i;
180 
181 	for (i = 0; i < SC_TABLESIZE; i++) {
182 		snprintf(chain_name, sizeof(chain_name), "%u", i);
183 		chain_oid = SYSCTL_ADD_NODE(NULL,
184 		    SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO,
185 		    chain_name, CTLFLAG_RD, NULL, "sleepq chain stats");
186 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
187 		    "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL);
188 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
189 		    "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0,
190 		    NULL);
191 	}
192 }
193 
194 SYSINIT(sleepqueue_profiling, SI_SUB_LOCK, SI_ORDER_ANY,
195     init_sleepqueue_profiling, NULL);
196 #endif
197 
198 /*
199  * Early initialization of sleep queues that is called from the sleepinit()
200  * SYSINIT.
201  */
202 void
203 init_sleepqueues(void)
204 {
205 	int i;
206 
207 	for (i = 0; i < SC_TABLESIZE; i++) {
208 		LIST_INIT(&sleepq_chains[i].sc_queues);
209 		mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL,
210 		    MTX_SPIN | MTX_RECURSE);
211 	}
212 	sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue),
213 #ifdef INVARIANTS
214 	    NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
215 #else
216 	    NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
217 #endif
218 
219 	thread0.td_sleepqueue = sleepq_alloc();
220 }
221 
222 /*
223  * Get a sleep queue for a new thread.
224  */
225 struct sleepqueue *
226 sleepq_alloc(void)
227 {
228 
229 	return (uma_zalloc(sleepq_zone, M_WAITOK));
230 }
231 
232 /*
233  * Free a sleep queue when a thread is destroyed.
234  */
235 void
236 sleepq_free(struct sleepqueue *sq)
237 {
238 
239 	uma_zfree(sleepq_zone, sq);
240 }
241 
242 /*
243  * Lock the sleep queue chain associated with the specified wait channel.
244  */
245 void
246 sleepq_lock(void *wchan)
247 {
248 	struct sleepqueue_chain *sc;
249 
250 	sc = SC_LOOKUP(wchan);
251 	mtx_lock_spin(&sc->sc_lock);
252 }
253 
254 /*
255  * Look up the sleep queue associated with a given wait channel in the hash
256  * table locking the associated sleep queue chain.  If no queue is found in
257  * the table, NULL is returned.
258  */
259 struct sleepqueue *
260 sleepq_lookup(void *wchan)
261 {
262 	struct sleepqueue_chain *sc;
263 	struct sleepqueue *sq;
264 
265 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
266 	sc = SC_LOOKUP(wchan);
267 	mtx_assert(&sc->sc_lock, MA_OWNED);
268 	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
269 		if (sq->sq_wchan == wchan)
270 			return (sq);
271 	return (NULL);
272 }
273 
274 /*
275  * Unlock the sleep queue chain associated with a given wait channel.
276  */
277 void
278 sleepq_release(void *wchan)
279 {
280 	struct sleepqueue_chain *sc;
281 
282 	sc = SC_LOOKUP(wchan);
283 	mtx_unlock_spin(&sc->sc_lock);
284 }
285 
286 /*
287  * Places the current thread on the sleep queue for the specified wait
288  * channel.  If INVARIANTS is enabled, then it associates the passed in
289  * lock with the sleepq to make sure it is held when that sleep queue is
290  * woken up.
291  */
292 void
293 sleepq_add(void *wchan, struct lock_object *lock, const char *wmesg, int flags,
294     int queue)
295 {
296 	struct sleepqueue_chain *sc;
297 	struct sleepqueue *sq;
298 	struct thread *td;
299 
300 	td = curthread;
301 	sc = SC_LOOKUP(wchan);
302 	mtx_assert(&sc->sc_lock, MA_OWNED);
303 	MPASS(td->td_sleepqueue != NULL);
304 	MPASS(wchan != NULL);
305 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
306 
307 	/* If this thread is not allowed to sleep, die a horrible death. */
308 	KASSERT(td->td_no_sleeping == 0,
309 	    ("%s: td %p to sleep on wchan %p with sleeping prohibited",
310 	    __func__, td, wchan));
311 
312 	/* Look up the sleep queue associated with the wait channel 'wchan'. */
313 	sq = sleepq_lookup(wchan);
314 
315 	/*
316 	 * If the wait channel does not already have a sleep queue, use
317 	 * this thread's sleep queue.  Otherwise, insert the current thread
318 	 * into the sleep queue already in use by this wait channel.
319 	 */
320 	if (sq == NULL) {
321 #ifdef INVARIANTS
322 		int i;
323 
324 		sq = td->td_sleepqueue;
325 		for (i = 0; i < NR_SLEEPQS; i++) {
326 			KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]),
327 			    ("thread's sleep queue %d is not empty", i));
328 			KASSERT(sq->sq_blockedcnt[i] == 0,
329 			    ("thread's sleep queue %d count mismatches", i));
330 		}
331 		KASSERT(LIST_EMPTY(&sq->sq_free),
332 		    ("thread's sleep queue has a non-empty free list"));
333 		KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer"));
334 		sq->sq_lock = lock;
335 #endif
336 #ifdef SLEEPQUEUE_PROFILING
337 		sc->sc_depth++;
338 		if (sc->sc_depth > sc->sc_max_depth) {
339 			sc->sc_max_depth = sc->sc_depth;
340 			if (sc->sc_max_depth > sleepq_max_depth)
341 				sleepq_max_depth = sc->sc_max_depth;
342 		}
343 #endif
344 		sq = td->td_sleepqueue;
345 		LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash);
346 		sq->sq_wchan = wchan;
347 		sq->sq_type = flags & SLEEPQ_TYPE;
348 	} else {
349 		MPASS(wchan == sq->sq_wchan);
350 		MPASS(lock == sq->sq_lock);
351 		MPASS((flags & SLEEPQ_TYPE) == sq->sq_type);
352 		LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash);
353 	}
354 	thread_lock(td);
355 	TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq);
356 	sq->sq_blockedcnt[queue]++;
357 	td->td_sleepqueue = NULL;
358 	td->td_sqqueue = queue;
359 	td->td_wchan = wchan;
360 	td->td_wmesg = wmesg;
361 	if (flags & SLEEPQ_INTERRUPTIBLE) {
362 		td->td_flags |= TDF_SINTR;
363 		td->td_flags &= ~TDF_SLEEPABORT;
364 	}
365 	thread_unlock(td);
366 }
367 
368 /*
369  * Sets a timeout that will remove the current thread from the specified
370  * sleep queue after timo ticks if the thread has not already been awakened.
371  */
372 void
373 sleepq_set_timeout_sbt(void *wchan, sbintime_t sbt, sbintime_t pr,
374     int flags)
375 {
376 	struct sleepqueue_chain *sc;
377 	struct thread *td;
378 
379 	td = curthread;
380 	sc = SC_LOOKUP(wchan);
381 	mtx_assert(&sc->sc_lock, MA_OWNED);
382 	MPASS(TD_ON_SLEEPQ(td));
383 	MPASS(td->td_sleepqueue == NULL);
384 	MPASS(wchan != NULL);
385 	callout_reset_sbt_on(&td->td_slpcallout, sbt, pr,
386 	    sleepq_timeout, td, PCPU_GET(cpuid), flags | C_DIRECT_EXEC);
387 }
388 
389 /*
390  * Return the number of actual sleepers for the specified queue.
391  */
392 u_int
393 sleepq_sleepcnt(void *wchan, int queue)
394 {
395 	struct sleepqueue *sq;
396 
397 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
398 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
399 	sq = sleepq_lookup(wchan);
400 	if (sq == NULL)
401 		return (0);
402 	return (sq->sq_blockedcnt[queue]);
403 }
404 
405 /*
406  * Marks the pending sleep of the current thread as interruptible and
407  * makes an initial check for pending signals before putting a thread
408  * to sleep. Enters and exits with the thread lock held.  Thread lock
409  * may have transitioned from the sleepq lock to a run lock.
410  */
411 static int
412 sleepq_catch_signals(void *wchan, int pri)
413 {
414 	struct sleepqueue_chain *sc;
415 	struct sleepqueue *sq;
416 	struct thread *td;
417 	struct proc *p;
418 	struct sigacts *ps;
419 	int sig, ret;
420 
421 	td = curthread;
422 	p = curproc;
423 	sc = SC_LOOKUP(wchan);
424 	mtx_assert(&sc->sc_lock, MA_OWNED);
425 	MPASS(wchan != NULL);
426 	if ((td->td_pflags & TDP_WAKEUP) != 0) {
427 		td->td_pflags &= ~TDP_WAKEUP;
428 		ret = EINTR;
429 		thread_lock(td);
430 		goto out;
431 	}
432 
433 	/*
434 	 * See if there are any pending signals for this thread.  If not
435 	 * we can switch immediately.  Otherwise do the signal processing
436 	 * directly.
437 	 */
438 	thread_lock(td);
439 	if ((td->td_flags & (TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK)) == 0) {
440 		sleepq_switch(wchan, pri);
441 		return (0);
442 	}
443 	thread_unlock(td);
444 	mtx_unlock_spin(&sc->sc_lock);
445 	CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)",
446 		(void *)td, (long)p->p_pid, td->td_name);
447 	PROC_LOCK(p);
448 	ps = p->p_sigacts;
449 	mtx_lock(&ps->ps_mtx);
450 	sig = cursig(td);
451 	if (sig == 0) {
452 		mtx_unlock(&ps->ps_mtx);
453 		ret = thread_suspend_check(1);
454 		MPASS(ret == 0 || ret == EINTR || ret == ERESTART);
455 	} else {
456 		if (SIGISMEMBER(ps->ps_sigintr, sig))
457 			ret = EINTR;
458 		else
459 			ret = ERESTART;
460 		mtx_unlock(&ps->ps_mtx);
461 	}
462 	/*
463 	 * Lock the per-process spinlock prior to dropping the PROC_LOCK
464 	 * to avoid a signal delivery race.  PROC_LOCK, PROC_SLOCK, and
465 	 * thread_lock() are currently held in tdsendsignal().
466 	 */
467 	PROC_SLOCK(p);
468 	mtx_lock_spin(&sc->sc_lock);
469 	PROC_UNLOCK(p);
470 	thread_lock(td);
471 	PROC_SUNLOCK(p);
472 	if (ret == 0) {
473 		sleepq_switch(wchan, pri);
474 		return (0);
475 	}
476 out:
477 	/*
478 	 * There were pending signals and this thread is still
479 	 * on the sleep queue, remove it from the sleep queue.
480 	 */
481 	if (TD_ON_SLEEPQ(td)) {
482 		sq = sleepq_lookup(wchan);
483 		if (sleepq_resume_thread(sq, td, 0)) {
484 #ifdef INVARIANTS
485 			/*
486 			 * This thread hasn't gone to sleep yet, so it
487 			 * should not be swapped out.
488 			 */
489 			panic("not waking up swapper");
490 #endif
491 		}
492 	}
493 	mtx_unlock_spin(&sc->sc_lock);
494 	MPASS(td->td_lock != &sc->sc_lock);
495 	return (ret);
496 }
497 
498 /*
499  * Switches to another thread if we are still asleep on a sleep queue.
500  * Returns with thread lock.
501  */
502 static void
503 sleepq_switch(void *wchan, int pri)
504 {
505 	struct sleepqueue_chain *sc;
506 	struct sleepqueue *sq;
507 	struct thread *td;
508 
509 	td = curthread;
510 	sc = SC_LOOKUP(wchan);
511 	mtx_assert(&sc->sc_lock, MA_OWNED);
512 	THREAD_LOCK_ASSERT(td, MA_OWNED);
513 
514 	/*
515 	 * If we have a sleep queue, then we've already been woken up, so
516 	 * just return.
517 	 */
518 	if (td->td_sleepqueue != NULL) {
519 		mtx_unlock_spin(&sc->sc_lock);
520 		return;
521 	}
522 
523 	/*
524 	 * If TDF_TIMEOUT is set, then our sleep has been timed out
525 	 * already but we are still on the sleep queue, so dequeue the
526 	 * thread and return.
527 	 */
528 	if (td->td_flags & TDF_TIMEOUT) {
529 		MPASS(TD_ON_SLEEPQ(td));
530 		sq = sleepq_lookup(wchan);
531 		if (sleepq_resume_thread(sq, td, 0)) {
532 #ifdef INVARIANTS
533 			/*
534 			 * This thread hasn't gone to sleep yet, so it
535 			 * should not be swapped out.
536 			 */
537 			panic("not waking up swapper");
538 #endif
539 		}
540 		mtx_unlock_spin(&sc->sc_lock);
541 		return;
542 	}
543 #ifdef SLEEPQUEUE_PROFILING
544 	if (prof_enabled)
545 		sleepq_profile(td->td_wmesg);
546 #endif
547 	MPASS(td->td_sleepqueue == NULL);
548 	sched_sleep(td, pri);
549 	thread_lock_set(td, &sc->sc_lock);
550 	SDT_PROBE0(sched, , , sleep);
551 	TD_SET_SLEEPING(td);
552 	mi_switch(SW_VOL | SWT_SLEEPQ, NULL);
553 	KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
554 	CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)",
555 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
556 }
557 
558 /*
559  * Check to see if we timed out.
560  */
561 static int
562 sleepq_check_timeout(void)
563 {
564 	struct thread *td;
565 
566 	td = curthread;
567 	THREAD_LOCK_ASSERT(td, MA_OWNED);
568 
569 	/*
570 	 * If TDF_TIMEOUT is set, we timed out.
571 	 */
572 	if (td->td_flags & TDF_TIMEOUT) {
573 		td->td_flags &= ~TDF_TIMEOUT;
574 		return (EWOULDBLOCK);
575 	}
576 
577 	/*
578 	 * If TDF_TIMOFAIL is set, the timeout ran after we had
579 	 * already been woken up.
580 	 */
581 	if (td->td_flags & TDF_TIMOFAIL)
582 		td->td_flags &= ~TDF_TIMOFAIL;
583 
584 	/*
585 	 * If callout_stop() fails, then the timeout is running on
586 	 * another CPU, so synchronize with it to avoid having it
587 	 * accidentally wake up a subsequent sleep.
588 	 */
589 	else if (callout_stop(&td->td_slpcallout) == 0) {
590 		td->td_flags |= TDF_TIMEOUT;
591 		TD_SET_SLEEPING(td);
592 		mi_switch(SW_INVOL | SWT_SLEEPQTIMO, NULL);
593 	}
594 	return (0);
595 }
596 
597 /*
598  * Check to see if we were awoken by a signal.
599  */
600 static int
601 sleepq_check_signals(void)
602 {
603 	struct thread *td;
604 
605 	td = curthread;
606 	THREAD_LOCK_ASSERT(td, MA_OWNED);
607 
608 	/* We are no longer in an interruptible sleep. */
609 	if (td->td_flags & TDF_SINTR)
610 		td->td_flags &= ~TDF_SINTR;
611 
612 	if (td->td_flags & TDF_SLEEPABORT) {
613 		td->td_flags &= ~TDF_SLEEPABORT;
614 		return (td->td_intrval);
615 	}
616 
617 	return (0);
618 }
619 
620 /*
621  * Block the current thread until it is awakened from its sleep queue.
622  */
623 void
624 sleepq_wait(void *wchan, int pri)
625 {
626 	struct thread *td;
627 
628 	td = curthread;
629 	MPASS(!(td->td_flags & TDF_SINTR));
630 	thread_lock(td);
631 	sleepq_switch(wchan, pri);
632 	thread_unlock(td);
633 }
634 
635 /*
636  * Block the current thread until it is awakened from its sleep queue
637  * or it is interrupted by a signal.
638  */
639 int
640 sleepq_wait_sig(void *wchan, int pri)
641 {
642 	int rcatch;
643 	int rval;
644 
645 	rcatch = sleepq_catch_signals(wchan, pri);
646 	rval = sleepq_check_signals();
647 	thread_unlock(curthread);
648 	if (rcatch)
649 		return (rcatch);
650 	return (rval);
651 }
652 
653 /*
654  * Block the current thread until it is awakened from its sleep queue
655  * or it times out while waiting.
656  */
657 int
658 sleepq_timedwait(void *wchan, int pri)
659 {
660 	struct thread *td;
661 	int rval;
662 
663 	td = curthread;
664 	MPASS(!(td->td_flags & TDF_SINTR));
665 	thread_lock(td);
666 	sleepq_switch(wchan, pri);
667 	rval = sleepq_check_timeout();
668 	thread_unlock(td);
669 
670 	return (rval);
671 }
672 
673 /*
674  * Block the current thread until it is awakened from its sleep queue,
675  * it is interrupted by a signal, or it times out waiting to be awakened.
676  */
677 int
678 sleepq_timedwait_sig(void *wchan, int pri)
679 {
680 	int rcatch, rvalt, rvals;
681 
682 	rcatch = sleepq_catch_signals(wchan, pri);
683 	rvalt = sleepq_check_timeout();
684 	rvals = sleepq_check_signals();
685 	thread_unlock(curthread);
686 	if (rcatch)
687 		return (rcatch);
688 	if (rvals)
689 		return (rvals);
690 	return (rvalt);
691 }
692 
693 /*
694  * Returns the type of sleepqueue given a waitchannel.
695  */
696 int
697 sleepq_type(void *wchan)
698 {
699 	struct sleepqueue *sq;
700 	int type;
701 
702 	MPASS(wchan != NULL);
703 
704 	sleepq_lock(wchan);
705 	sq = sleepq_lookup(wchan);
706 	if (sq == NULL) {
707 		sleepq_release(wchan);
708 		return (-1);
709 	}
710 	type = sq->sq_type;
711 	sleepq_release(wchan);
712 	return (type);
713 }
714 
715 /*
716  * Removes a thread from a sleep queue and makes it
717  * runnable.
718  */
719 static int
720 sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri)
721 {
722 	struct sleepqueue_chain *sc;
723 
724 	MPASS(td != NULL);
725 	MPASS(sq->sq_wchan != NULL);
726 	MPASS(td->td_wchan == sq->sq_wchan);
727 	MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0);
728 	THREAD_LOCK_ASSERT(td, MA_OWNED);
729 	sc = SC_LOOKUP(sq->sq_wchan);
730 	mtx_assert(&sc->sc_lock, MA_OWNED);
731 
732 	SDT_PROBE2(sched, , , wakeup, td, td->td_proc);
733 
734 	/* Remove the thread from the queue. */
735 	sq->sq_blockedcnt[td->td_sqqueue]--;
736 	TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq);
737 
738 	/*
739 	 * Get a sleep queue for this thread.  If this is the last waiter,
740 	 * use the queue itself and take it out of the chain, otherwise,
741 	 * remove a queue from the free list.
742 	 */
743 	if (LIST_EMPTY(&sq->sq_free)) {
744 		td->td_sleepqueue = sq;
745 #ifdef INVARIANTS
746 		sq->sq_wchan = NULL;
747 #endif
748 #ifdef SLEEPQUEUE_PROFILING
749 		sc->sc_depth--;
750 #endif
751 	} else
752 		td->td_sleepqueue = LIST_FIRST(&sq->sq_free);
753 	LIST_REMOVE(td->td_sleepqueue, sq_hash);
754 
755 	td->td_wmesg = NULL;
756 	td->td_wchan = NULL;
757 	td->td_flags &= ~TDF_SINTR;
758 
759 	CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)",
760 	    (void *)td, (long)td->td_proc->p_pid, td->td_name);
761 
762 	/* Adjust priority if requested. */
763 	MPASS(pri == 0 || (pri >= PRI_MIN && pri <= PRI_MAX));
764 	if (pri != 0 && td->td_priority > pri &&
765 	    PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
766 		sched_prio(td, pri);
767 
768 	/*
769 	 * Note that thread td might not be sleeping if it is running
770 	 * sleepq_catch_signals() on another CPU or is blocked on its
771 	 * proc lock to check signals.  There's no need to mark the
772 	 * thread runnable in that case.
773 	 */
774 	if (TD_IS_SLEEPING(td)) {
775 		TD_CLR_SLEEPING(td);
776 		return (setrunnable(td));
777 	}
778 	return (0);
779 }
780 
781 #ifdef INVARIANTS
782 /*
783  * UMA zone item deallocator.
784  */
785 static void
786 sleepq_dtor(void *mem, int size, void *arg)
787 {
788 	struct sleepqueue *sq;
789 	int i;
790 
791 	sq = mem;
792 	for (i = 0; i < NR_SLEEPQS; i++) {
793 		MPASS(TAILQ_EMPTY(&sq->sq_blocked[i]));
794 		MPASS(sq->sq_blockedcnt[i] == 0);
795 	}
796 }
797 #endif
798 
799 /*
800  * UMA zone item initializer.
801  */
802 static int
803 sleepq_init(void *mem, int size, int flags)
804 {
805 	struct sleepqueue *sq;
806 	int i;
807 
808 	bzero(mem, size);
809 	sq = mem;
810 	for (i = 0; i < NR_SLEEPQS; i++) {
811 		TAILQ_INIT(&sq->sq_blocked[i]);
812 		sq->sq_blockedcnt[i] = 0;
813 	}
814 	LIST_INIT(&sq->sq_free);
815 	return (0);
816 }
817 
818 /*
819  * Find the highest priority thread sleeping on a wait channel and resume it.
820  */
821 int
822 sleepq_signal(void *wchan, int flags, int pri, int queue)
823 {
824 	struct sleepqueue *sq;
825 	struct thread *td, *besttd;
826 	int wakeup_swapper;
827 
828 	CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags);
829 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
830 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
831 	sq = sleepq_lookup(wchan);
832 	if (sq == NULL)
833 		return (0);
834 	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
835 	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
836 
837 	/*
838 	 * Find the highest priority thread on the queue.  If there is a
839 	 * tie, use the thread that first appears in the queue as it has
840 	 * been sleeping the longest since threads are always added to
841 	 * the tail of sleep queues.
842 	 */
843 	besttd = NULL;
844 	TAILQ_FOREACH(td, &sq->sq_blocked[queue], td_slpq) {
845 		if (besttd == NULL || td->td_priority < besttd->td_priority)
846 			besttd = td;
847 	}
848 	MPASS(besttd != NULL);
849 	thread_lock(besttd);
850 	wakeup_swapper = sleepq_resume_thread(sq, besttd, pri);
851 	thread_unlock(besttd);
852 	return (wakeup_swapper);
853 }
854 
855 /*
856  * Resume all threads sleeping on a specified wait channel.
857  */
858 int
859 sleepq_broadcast(void *wchan, int flags, int pri, int queue)
860 {
861 	struct sleepqueue *sq;
862 	struct thread *td, *tdn;
863 	int wakeup_swapper;
864 
865 	CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags);
866 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
867 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
868 	sq = sleepq_lookup(wchan);
869 	if (sq == NULL)
870 		return (0);
871 	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
872 	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
873 
874 	/* Resume all blocked threads on the sleep queue. */
875 	wakeup_swapper = 0;
876 	TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, tdn) {
877 		thread_lock(td);
878 		if (sleepq_resume_thread(sq, td, pri))
879 			wakeup_swapper = 1;
880 		thread_unlock(td);
881 	}
882 	return (wakeup_swapper);
883 }
884 
885 /*
886  * Time sleeping threads out.  When the timeout expires, the thread is
887  * removed from the sleep queue and made runnable if it is still asleep.
888  */
889 static void
890 sleepq_timeout(void *arg)
891 {
892 	struct sleepqueue_chain *sc;
893 	struct sleepqueue *sq;
894 	struct thread *td;
895 	void *wchan;
896 	int wakeup_swapper;
897 
898 	td = arg;
899 	wakeup_swapper = 0;
900 	CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)",
901 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
902 
903 	/*
904 	 * First, see if the thread is asleep and get the wait channel if
905 	 * it is.
906 	 */
907 	thread_lock(td);
908 	if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) {
909 		wchan = td->td_wchan;
910 		sc = SC_LOOKUP(wchan);
911 		THREAD_LOCKPTR_ASSERT(td, &sc->sc_lock);
912 		sq = sleepq_lookup(wchan);
913 		MPASS(sq != NULL);
914 		td->td_flags |= TDF_TIMEOUT;
915 		wakeup_swapper = sleepq_resume_thread(sq, td, 0);
916 		thread_unlock(td);
917 		if (wakeup_swapper)
918 			kick_proc0();
919 		return;
920 	}
921 
922 	/*
923 	 * If the thread is on the SLEEPQ but isn't sleeping yet, it
924 	 * can either be on another CPU in between sleepq_add() and
925 	 * one of the sleepq_*wait*() routines or it can be in
926 	 * sleepq_catch_signals().
927 	 */
928 	if (TD_ON_SLEEPQ(td)) {
929 		td->td_flags |= TDF_TIMEOUT;
930 		thread_unlock(td);
931 		return;
932 	}
933 
934 	/*
935 	 * Now check for the edge cases.  First, if TDF_TIMEOUT is set,
936 	 * then the other thread has already yielded to us, so clear
937 	 * the flag and resume it.  If TDF_TIMEOUT is not set, then the
938 	 * we know that the other thread is not on a sleep queue, but it
939 	 * hasn't resumed execution yet.  In that case, set TDF_TIMOFAIL
940 	 * to let it know that the timeout has already run and doesn't
941 	 * need to be canceled.
942 	 */
943 	if (td->td_flags & TDF_TIMEOUT) {
944 		MPASS(TD_IS_SLEEPING(td));
945 		td->td_flags &= ~TDF_TIMEOUT;
946 		TD_CLR_SLEEPING(td);
947 		wakeup_swapper = setrunnable(td);
948 	} else
949 		td->td_flags |= TDF_TIMOFAIL;
950 	thread_unlock(td);
951 	if (wakeup_swapper)
952 		kick_proc0();
953 }
954 
955 /*
956  * Resumes a specific thread from the sleep queue associated with a specific
957  * wait channel if it is on that queue.
958  */
959 void
960 sleepq_remove(struct thread *td, void *wchan)
961 {
962 	struct sleepqueue *sq;
963 	int wakeup_swapper;
964 
965 	/*
966 	 * Look up the sleep queue for this wait channel, then re-check
967 	 * that the thread is asleep on that channel, if it is not, then
968 	 * bail.
969 	 */
970 	MPASS(wchan != NULL);
971 	sleepq_lock(wchan);
972 	sq = sleepq_lookup(wchan);
973 	/*
974 	 * We can not lock the thread here as it may be sleeping on a
975 	 * different sleepq.  However, holding the sleepq lock for this
976 	 * wchan can guarantee that we do not miss a wakeup for this
977 	 * channel.  The asserts below will catch any false positives.
978 	 */
979 	if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) {
980 		sleepq_release(wchan);
981 		return;
982 	}
983 	/* Thread is asleep on sleep queue sq, so wake it up. */
984 	thread_lock(td);
985 	MPASS(sq != NULL);
986 	MPASS(td->td_wchan == wchan);
987 	wakeup_swapper = sleepq_resume_thread(sq, td, 0);
988 	thread_unlock(td);
989 	sleepq_release(wchan);
990 	if (wakeup_swapper)
991 		kick_proc0();
992 }
993 
994 /*
995  * Abort a thread as if an interrupt had occurred.  Only abort
996  * interruptible waits (unfortunately it isn't safe to abort others).
997  */
998 int
999 sleepq_abort(struct thread *td, int intrval)
1000 {
1001 	struct sleepqueue *sq;
1002 	void *wchan;
1003 
1004 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1005 	MPASS(TD_ON_SLEEPQ(td));
1006 	MPASS(td->td_flags & TDF_SINTR);
1007 	MPASS(intrval == EINTR || intrval == ERESTART);
1008 
1009 	/*
1010 	 * If the TDF_TIMEOUT flag is set, just leave. A
1011 	 * timeout is scheduled anyhow.
1012 	 */
1013 	if (td->td_flags & TDF_TIMEOUT)
1014 		return (0);
1015 
1016 	CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)",
1017 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
1018 	td->td_intrval = intrval;
1019 	td->td_flags |= TDF_SLEEPABORT;
1020 	/*
1021 	 * If the thread has not slept yet it will find the signal in
1022 	 * sleepq_catch_signals() and call sleepq_resume_thread.  Otherwise
1023 	 * we have to do it here.
1024 	 */
1025 	if (!TD_IS_SLEEPING(td))
1026 		return (0);
1027 	wchan = td->td_wchan;
1028 	MPASS(wchan != NULL);
1029 	sq = sleepq_lookup(wchan);
1030 	MPASS(sq != NULL);
1031 
1032 	/* Thread is asleep on sleep queue sq, so wake it up. */
1033 	return (sleepq_resume_thread(sq, td, 0));
1034 }
1035 
1036 #ifdef SLEEPQUEUE_PROFILING
1037 #define	SLEEPQ_PROF_LOCATIONS	1024
1038 #define	SLEEPQ_SBUFSIZE		512
1039 struct sleepq_prof {
1040 	LIST_ENTRY(sleepq_prof) sp_link;
1041 	const char	*sp_wmesg;
1042 	long		sp_count;
1043 };
1044 
1045 LIST_HEAD(sqphead, sleepq_prof);
1046 
1047 struct sqphead sleepq_prof_free;
1048 struct sqphead sleepq_hash[SC_TABLESIZE];
1049 static struct sleepq_prof sleepq_profent[SLEEPQ_PROF_LOCATIONS];
1050 static struct mtx sleepq_prof_lock;
1051 MTX_SYSINIT(sleepq_prof_lock, &sleepq_prof_lock, "sleepq_prof", MTX_SPIN);
1052 
1053 static void
1054 sleepq_profile(const char *wmesg)
1055 {
1056 	struct sleepq_prof *sp;
1057 
1058 	mtx_lock_spin(&sleepq_prof_lock);
1059 	if (prof_enabled == 0)
1060 		goto unlock;
1061 	LIST_FOREACH(sp, &sleepq_hash[SC_HASH(wmesg)], sp_link)
1062 		if (sp->sp_wmesg == wmesg)
1063 			goto done;
1064 	sp = LIST_FIRST(&sleepq_prof_free);
1065 	if (sp == NULL)
1066 		goto unlock;
1067 	sp->sp_wmesg = wmesg;
1068 	LIST_REMOVE(sp, sp_link);
1069 	LIST_INSERT_HEAD(&sleepq_hash[SC_HASH(wmesg)], sp, sp_link);
1070 done:
1071 	sp->sp_count++;
1072 unlock:
1073 	mtx_unlock_spin(&sleepq_prof_lock);
1074 	return;
1075 }
1076 
1077 static void
1078 sleepq_prof_reset(void)
1079 {
1080 	struct sleepq_prof *sp;
1081 	int enabled;
1082 	int i;
1083 
1084 	mtx_lock_spin(&sleepq_prof_lock);
1085 	enabled = prof_enabled;
1086 	prof_enabled = 0;
1087 	for (i = 0; i < SC_TABLESIZE; i++)
1088 		LIST_INIT(&sleepq_hash[i]);
1089 	LIST_INIT(&sleepq_prof_free);
1090 	for (i = 0; i < SLEEPQ_PROF_LOCATIONS; i++) {
1091 		sp = &sleepq_profent[i];
1092 		sp->sp_wmesg = NULL;
1093 		sp->sp_count = 0;
1094 		LIST_INSERT_HEAD(&sleepq_prof_free, sp, sp_link);
1095 	}
1096 	prof_enabled = enabled;
1097 	mtx_unlock_spin(&sleepq_prof_lock);
1098 }
1099 
1100 static int
1101 enable_sleepq_prof(SYSCTL_HANDLER_ARGS)
1102 {
1103 	int error, v;
1104 
1105 	v = prof_enabled;
1106 	error = sysctl_handle_int(oidp, &v, v, req);
1107 	if (error)
1108 		return (error);
1109 	if (req->newptr == NULL)
1110 		return (error);
1111 	if (v == prof_enabled)
1112 		return (0);
1113 	if (v == 1)
1114 		sleepq_prof_reset();
1115 	mtx_lock_spin(&sleepq_prof_lock);
1116 	prof_enabled = !!v;
1117 	mtx_unlock_spin(&sleepq_prof_lock);
1118 
1119 	return (0);
1120 }
1121 
1122 static int
1123 reset_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1124 {
1125 	int error, v;
1126 
1127 	v = 0;
1128 	error = sysctl_handle_int(oidp, &v, 0, req);
1129 	if (error)
1130 		return (error);
1131 	if (req->newptr == NULL)
1132 		return (error);
1133 	if (v == 0)
1134 		return (0);
1135 	sleepq_prof_reset();
1136 
1137 	return (0);
1138 }
1139 
1140 static int
1141 dump_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1142 {
1143 	struct sleepq_prof *sp;
1144 	struct sbuf *sb;
1145 	int enabled;
1146 	int error;
1147 	int i;
1148 
1149 	error = sysctl_wire_old_buffer(req, 0);
1150 	if (error != 0)
1151 		return (error);
1152 	sb = sbuf_new_for_sysctl(NULL, NULL, SLEEPQ_SBUFSIZE, req);
1153 	sbuf_printf(sb, "\nwmesg\tcount\n");
1154 	enabled = prof_enabled;
1155 	mtx_lock_spin(&sleepq_prof_lock);
1156 	prof_enabled = 0;
1157 	mtx_unlock_spin(&sleepq_prof_lock);
1158 	for (i = 0; i < SC_TABLESIZE; i++) {
1159 		LIST_FOREACH(sp, &sleepq_hash[i], sp_link) {
1160 			sbuf_printf(sb, "%s\t%ld\n",
1161 			    sp->sp_wmesg, sp->sp_count);
1162 		}
1163 	}
1164 	mtx_lock_spin(&sleepq_prof_lock);
1165 	prof_enabled = enabled;
1166 	mtx_unlock_spin(&sleepq_prof_lock);
1167 
1168 	error = sbuf_finish(sb);
1169 	sbuf_delete(sb);
1170 	return (error);
1171 }
1172 
1173 SYSCTL_PROC(_debug_sleepq, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD,
1174     NULL, 0, dump_sleepq_prof_stats, "A", "Sleepqueue profiling statistics");
1175 SYSCTL_PROC(_debug_sleepq, OID_AUTO, reset, CTLTYPE_INT | CTLFLAG_RW,
1176     NULL, 0, reset_sleepq_prof_stats, "I",
1177     "Reset sleepqueue profiling statistics");
1178 SYSCTL_PROC(_debug_sleepq, OID_AUTO, enable, CTLTYPE_INT | CTLFLAG_RW,
1179     NULL, 0, enable_sleepq_prof, "I", "Enable sleepqueue profiling");
1180 #endif
1181 
1182 #ifdef DDB
1183 DB_SHOW_COMMAND(sleepq, db_show_sleepqueue)
1184 {
1185 	struct sleepqueue_chain *sc;
1186 	struct sleepqueue *sq;
1187 #ifdef INVARIANTS
1188 	struct lock_object *lock;
1189 #endif
1190 	struct thread *td;
1191 	void *wchan;
1192 	int i;
1193 
1194 	if (!have_addr)
1195 		return;
1196 
1197 	/*
1198 	 * First, see if there is an active sleep queue for the wait channel
1199 	 * indicated by the address.
1200 	 */
1201 	wchan = (void *)addr;
1202 	sc = SC_LOOKUP(wchan);
1203 	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
1204 		if (sq->sq_wchan == wchan)
1205 			goto found;
1206 
1207 	/*
1208 	 * Second, see if there is an active sleep queue at the address
1209 	 * indicated.
1210 	 */
1211 	for (i = 0; i < SC_TABLESIZE; i++)
1212 		LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) {
1213 			if (sq == (struct sleepqueue *)addr)
1214 				goto found;
1215 		}
1216 
1217 	db_printf("Unable to locate a sleep queue via %p\n", (void *)addr);
1218 	return;
1219 found:
1220 	db_printf("Wait channel: %p\n", sq->sq_wchan);
1221 	db_printf("Queue type: %d\n", sq->sq_type);
1222 #ifdef INVARIANTS
1223 	if (sq->sq_lock) {
1224 		lock = sq->sq_lock;
1225 		db_printf("Associated Interlock: %p - (%s) %s\n", lock,
1226 		    LOCK_CLASS(lock)->lc_name, lock->lo_name);
1227 	}
1228 #endif
1229 	db_printf("Blocked threads:\n");
1230 	for (i = 0; i < NR_SLEEPQS; i++) {
1231 		db_printf("\nQueue[%d]:\n", i);
1232 		if (TAILQ_EMPTY(&sq->sq_blocked[i]))
1233 			db_printf("\tempty\n");
1234 		else
1235 			TAILQ_FOREACH(td, &sq->sq_blocked[0],
1236 				      td_slpq) {
1237 				db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td,
1238 					  td->td_tid, td->td_proc->p_pid,
1239 					  td->td_name);
1240 			}
1241 		db_printf("(expected: %u)\n", sq->sq_blockedcnt[i]);
1242 	}
1243 }
1244 
1245 /* Alias 'show sleepqueue' to 'show sleepq'. */
1246 DB_SHOW_ALIAS(sleepqueue, db_show_sleepqueue);
1247 #endif
1248