1 /*- 2 * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 /* 28 * Implementation of sleep queues used to hold queue of threads blocked on 29 * a wait channel. Sleep queues different from turnstiles in that wait 30 * channels are not owned by anyone, so there is no priority propagation. 31 * Sleep queues can also provide a timeout and can also be interrupted by 32 * signals. That said, there are several similarities between the turnstile 33 * and sleep queue implementations. (Note: turnstiles were implemented 34 * first.) For example, both use a hash table of the same size where each 35 * bucket is referred to as a "chain" that contains both a spin lock and 36 * a linked list of queues. An individual queue is located by using a hash 37 * to pick a chain, locking the chain, and then walking the chain searching 38 * for the queue. This means that a wait channel object does not need to 39 * embed it's queue head just as locks do not embed their turnstile queue 40 * head. Threads also carry around a sleep queue that they lend to the 41 * wait channel when blocking. Just as in turnstiles, the queue includes 42 * a free list of the sleep queues of other threads blocked on the same 43 * wait channel in the case of multiple waiters. 44 * 45 * Some additional functionality provided by sleep queues include the 46 * ability to set a timeout. The timeout is managed using a per-thread 47 * callout that resumes a thread if it is asleep. A thread may also 48 * catch signals while it is asleep (aka an interruptible sleep). The 49 * signal code uses sleepq_abort() to interrupt a sleeping thread. Finally, 50 * sleep queues also provide some extra assertions. One is not allowed to 51 * mix the sleep/wakeup and cv APIs for a given wait channel. Also, one 52 * must consistently use the same lock to synchronize with a wait channel, 53 * though this check is currently only a warning for sleep/wakeup due to 54 * pre-existing abuse of that API. The same lock must also be held when 55 * awakening threads, though that is currently only enforced for condition 56 * variables. 57 */ 58 59 #include <sys/cdefs.h> 60 __FBSDID("$FreeBSD$"); 61 62 #include "opt_sleepqueue_profiling.h" 63 #include "opt_ddb.h" 64 #include "opt_sched.h" 65 #include "opt_stack.h" 66 67 #include <sys/param.h> 68 #include <sys/systm.h> 69 #include <sys/lock.h> 70 #include <sys/kernel.h> 71 #include <sys/ktr.h> 72 #include <sys/mutex.h> 73 #include <sys/proc.h> 74 #include <sys/sbuf.h> 75 #include <sys/sched.h> 76 #include <sys/sdt.h> 77 #include <sys/signalvar.h> 78 #include <sys/sleepqueue.h> 79 #include <sys/stack.h> 80 #include <sys/sysctl.h> 81 82 #include <vm/uma.h> 83 84 #ifdef DDB 85 #include <ddb/ddb.h> 86 #endif 87 88 89 /* 90 * Constants for the hash table of sleep queue chains. 91 * SC_TABLESIZE must be a power of two for SC_MASK to work properly. 92 */ 93 #define SC_TABLESIZE 256 /* Must be power of 2. */ 94 #define SC_MASK (SC_TABLESIZE - 1) 95 #define SC_SHIFT 8 96 #define SC_HASH(wc) ((((uintptr_t)(wc) >> SC_SHIFT) ^ (uintptr_t)(wc)) & \ 97 SC_MASK) 98 #define SC_LOOKUP(wc) &sleepq_chains[SC_HASH(wc)] 99 #define NR_SLEEPQS 2 100 /* 101 * There two different lists of sleep queues. Both lists are connected 102 * via the sq_hash entries. The first list is the sleep queue chain list 103 * that a sleep queue is on when it is attached to a wait channel. The 104 * second list is the free list hung off of a sleep queue that is attached 105 * to a wait channel. 106 * 107 * Each sleep queue also contains the wait channel it is attached to, the 108 * list of threads blocked on that wait channel, flags specific to the 109 * wait channel, and the lock used to synchronize with a wait channel. 110 * The flags are used to catch mismatches between the various consumers 111 * of the sleep queue API (e.g. sleep/wakeup and condition variables). 112 * The lock pointer is only used when invariants are enabled for various 113 * debugging checks. 114 * 115 * Locking key: 116 * c - sleep queue chain lock 117 */ 118 struct sleepqueue { 119 TAILQ_HEAD(, thread) sq_blocked[NR_SLEEPQS]; /* (c) Blocked threads. */ 120 u_int sq_blockedcnt[NR_SLEEPQS]; /* (c) N. of blocked threads. */ 121 LIST_ENTRY(sleepqueue) sq_hash; /* (c) Chain and free list. */ 122 LIST_HEAD(, sleepqueue) sq_free; /* (c) Free queues. */ 123 void *sq_wchan; /* (c) Wait channel. */ 124 int sq_type; /* (c) Queue type. */ 125 #ifdef INVARIANTS 126 struct lock_object *sq_lock; /* (c) Associated lock. */ 127 #endif 128 }; 129 130 struct sleepqueue_chain { 131 LIST_HEAD(, sleepqueue) sc_queues; /* List of sleep queues. */ 132 struct mtx sc_lock; /* Spin lock for this chain. */ 133 #ifdef SLEEPQUEUE_PROFILING 134 u_int sc_depth; /* Length of sc_queues. */ 135 u_int sc_max_depth; /* Max length of sc_queues. */ 136 #endif 137 }; 138 139 #ifdef SLEEPQUEUE_PROFILING 140 u_int sleepq_max_depth; 141 static SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling"); 142 static SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0, 143 "sleepq chain stats"); 144 SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth, 145 0, "maxmimum depth achieved of a single chain"); 146 147 static void sleepq_profile(const char *wmesg); 148 static int prof_enabled; 149 #endif 150 static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE]; 151 static uma_zone_t sleepq_zone; 152 153 /* 154 * Prototypes for non-exported routines. 155 */ 156 static int sleepq_catch_signals(void *wchan, int pri); 157 static int sleepq_check_signals(void); 158 static int sleepq_check_timeout(void); 159 #ifdef INVARIANTS 160 static void sleepq_dtor(void *mem, int size, void *arg); 161 #endif 162 static int sleepq_init(void *mem, int size, int flags); 163 static int sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, 164 int pri); 165 static void sleepq_switch(void *wchan, int pri); 166 static void sleepq_timeout(void *arg); 167 168 SDT_PROBE_DECLARE(sched, , , sleep); 169 SDT_PROBE_DECLARE(sched, , , wakeup); 170 171 /* 172 * Initialize SLEEPQUEUE_PROFILING specific sysctl nodes. 173 * Note that it must happen after sleepinit() has been fully executed, so 174 * it must happen after SI_SUB_KMEM SYSINIT() subsystem setup. 175 */ 176 #ifdef SLEEPQUEUE_PROFILING 177 static void 178 init_sleepqueue_profiling(void) 179 { 180 char chain_name[10]; 181 struct sysctl_oid *chain_oid; 182 u_int i; 183 184 for (i = 0; i < SC_TABLESIZE; i++) { 185 snprintf(chain_name, sizeof(chain_name), "%u", i); 186 chain_oid = SYSCTL_ADD_NODE(NULL, 187 SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO, 188 chain_name, CTLFLAG_RD, NULL, "sleepq chain stats"); 189 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO, 190 "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL); 191 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO, 192 "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0, 193 NULL); 194 } 195 } 196 197 SYSINIT(sleepqueue_profiling, SI_SUB_LOCK, SI_ORDER_ANY, 198 init_sleepqueue_profiling, NULL); 199 #endif 200 201 /* 202 * Early initialization of sleep queues that is called from the sleepinit() 203 * SYSINIT. 204 */ 205 void 206 init_sleepqueues(void) 207 { 208 int i; 209 210 for (i = 0; i < SC_TABLESIZE; i++) { 211 LIST_INIT(&sleepq_chains[i].sc_queues); 212 mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL, 213 MTX_SPIN | MTX_RECURSE); 214 } 215 sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue), 216 #ifdef INVARIANTS 217 NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0); 218 #else 219 NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0); 220 #endif 221 222 thread0.td_sleepqueue = sleepq_alloc(); 223 } 224 225 /* 226 * Get a sleep queue for a new thread. 227 */ 228 struct sleepqueue * 229 sleepq_alloc(void) 230 { 231 232 return (uma_zalloc(sleepq_zone, M_WAITOK)); 233 } 234 235 /* 236 * Free a sleep queue when a thread is destroyed. 237 */ 238 void 239 sleepq_free(struct sleepqueue *sq) 240 { 241 242 uma_zfree(sleepq_zone, sq); 243 } 244 245 /* 246 * Lock the sleep queue chain associated with the specified wait channel. 247 */ 248 void 249 sleepq_lock(void *wchan) 250 { 251 struct sleepqueue_chain *sc; 252 253 sc = SC_LOOKUP(wchan); 254 mtx_lock_spin(&sc->sc_lock); 255 } 256 257 /* 258 * Look up the sleep queue associated with a given wait channel in the hash 259 * table locking the associated sleep queue chain. If no queue is found in 260 * the table, NULL is returned. 261 */ 262 struct sleepqueue * 263 sleepq_lookup(void *wchan) 264 { 265 struct sleepqueue_chain *sc; 266 struct sleepqueue *sq; 267 268 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 269 sc = SC_LOOKUP(wchan); 270 mtx_assert(&sc->sc_lock, MA_OWNED); 271 LIST_FOREACH(sq, &sc->sc_queues, sq_hash) 272 if (sq->sq_wchan == wchan) 273 return (sq); 274 return (NULL); 275 } 276 277 /* 278 * Unlock the sleep queue chain associated with a given wait channel. 279 */ 280 void 281 sleepq_release(void *wchan) 282 { 283 struct sleepqueue_chain *sc; 284 285 sc = SC_LOOKUP(wchan); 286 mtx_unlock_spin(&sc->sc_lock); 287 } 288 289 /* 290 * Places the current thread on the sleep queue for the specified wait 291 * channel. If INVARIANTS is enabled, then it associates the passed in 292 * lock with the sleepq to make sure it is held when that sleep queue is 293 * woken up. 294 */ 295 void 296 sleepq_add(void *wchan, struct lock_object *lock, const char *wmesg, int flags, 297 int queue) 298 { 299 struct sleepqueue_chain *sc; 300 struct sleepqueue *sq; 301 struct thread *td; 302 303 td = curthread; 304 sc = SC_LOOKUP(wchan); 305 mtx_assert(&sc->sc_lock, MA_OWNED); 306 MPASS(td->td_sleepqueue != NULL); 307 MPASS(wchan != NULL); 308 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 309 310 /* If this thread is not allowed to sleep, die a horrible death. */ 311 KASSERT(td->td_no_sleeping == 0, 312 ("%s: td %p to sleep on wchan %p with sleeping prohibited", 313 __func__, td, wchan)); 314 315 /* Look up the sleep queue associated with the wait channel 'wchan'. */ 316 sq = sleepq_lookup(wchan); 317 318 /* 319 * If the wait channel does not already have a sleep queue, use 320 * this thread's sleep queue. Otherwise, insert the current thread 321 * into the sleep queue already in use by this wait channel. 322 */ 323 if (sq == NULL) { 324 #ifdef INVARIANTS 325 int i; 326 327 sq = td->td_sleepqueue; 328 for (i = 0; i < NR_SLEEPQS; i++) { 329 KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]), 330 ("thread's sleep queue %d is not empty", i)); 331 KASSERT(sq->sq_blockedcnt[i] == 0, 332 ("thread's sleep queue %d count mismatches", i)); 333 } 334 KASSERT(LIST_EMPTY(&sq->sq_free), 335 ("thread's sleep queue has a non-empty free list")); 336 KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer")); 337 sq->sq_lock = lock; 338 #endif 339 #ifdef SLEEPQUEUE_PROFILING 340 sc->sc_depth++; 341 if (sc->sc_depth > sc->sc_max_depth) { 342 sc->sc_max_depth = sc->sc_depth; 343 if (sc->sc_max_depth > sleepq_max_depth) 344 sleepq_max_depth = sc->sc_max_depth; 345 } 346 #endif 347 sq = td->td_sleepqueue; 348 LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash); 349 sq->sq_wchan = wchan; 350 sq->sq_type = flags & SLEEPQ_TYPE; 351 } else { 352 MPASS(wchan == sq->sq_wchan); 353 MPASS(lock == sq->sq_lock); 354 MPASS((flags & SLEEPQ_TYPE) == sq->sq_type); 355 LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash); 356 } 357 thread_lock(td); 358 TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq); 359 sq->sq_blockedcnt[queue]++; 360 td->td_sleepqueue = NULL; 361 td->td_sqqueue = queue; 362 td->td_wchan = wchan; 363 td->td_wmesg = wmesg; 364 if (flags & SLEEPQ_INTERRUPTIBLE) { 365 td->td_flags |= TDF_SINTR; 366 td->td_flags &= ~TDF_SLEEPABORT; 367 } 368 thread_unlock(td); 369 } 370 371 /* 372 * Sets a timeout that will remove the current thread from the specified 373 * sleep queue after timo ticks if the thread has not already been awakened. 374 */ 375 void 376 sleepq_set_timeout_sbt(void *wchan, sbintime_t sbt, sbintime_t pr, 377 int flags) 378 { 379 struct sleepqueue_chain *sc; 380 struct thread *td; 381 382 td = curthread; 383 sc = SC_LOOKUP(wchan); 384 mtx_assert(&sc->sc_lock, MA_OWNED); 385 MPASS(TD_ON_SLEEPQ(td)); 386 MPASS(td->td_sleepqueue == NULL); 387 MPASS(wchan != NULL); 388 callout_reset_sbt_on(&td->td_slpcallout, sbt, pr, 389 sleepq_timeout, td, PCPU_GET(cpuid), flags | C_DIRECT_EXEC); 390 } 391 392 /* 393 * Return the number of actual sleepers for the specified queue. 394 */ 395 u_int 396 sleepq_sleepcnt(void *wchan, int queue) 397 { 398 struct sleepqueue *sq; 399 400 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 401 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 402 sq = sleepq_lookup(wchan); 403 if (sq == NULL) 404 return (0); 405 return (sq->sq_blockedcnt[queue]); 406 } 407 408 /* 409 * Marks the pending sleep of the current thread as interruptible and 410 * makes an initial check for pending signals before putting a thread 411 * to sleep. Enters and exits with the thread lock held. Thread lock 412 * may have transitioned from the sleepq lock to a run lock. 413 */ 414 static int 415 sleepq_catch_signals(void *wchan, int pri) 416 { 417 struct sleepqueue_chain *sc; 418 struct sleepqueue *sq; 419 struct thread *td; 420 struct proc *p; 421 struct sigacts *ps; 422 int sig, ret; 423 424 td = curthread; 425 p = curproc; 426 sc = SC_LOOKUP(wchan); 427 mtx_assert(&sc->sc_lock, MA_OWNED); 428 MPASS(wchan != NULL); 429 if ((td->td_pflags & TDP_WAKEUP) != 0) { 430 td->td_pflags &= ~TDP_WAKEUP; 431 ret = EINTR; 432 thread_lock(td); 433 goto out; 434 } 435 436 /* 437 * See if there are any pending signals for this thread. If not 438 * we can switch immediately. Otherwise do the signal processing 439 * directly. 440 */ 441 thread_lock(td); 442 if ((td->td_flags & (TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK)) == 0) { 443 sleepq_switch(wchan, pri); 444 return (0); 445 } 446 thread_unlock(td); 447 mtx_unlock_spin(&sc->sc_lock); 448 CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)", 449 (void *)td, (long)p->p_pid, td->td_name); 450 PROC_LOCK(p); 451 ps = p->p_sigacts; 452 mtx_lock(&ps->ps_mtx); 453 sig = cursig(td); 454 if (sig == 0) { 455 mtx_unlock(&ps->ps_mtx); 456 ret = thread_suspend_check(1); 457 MPASS(ret == 0 || ret == EINTR || ret == ERESTART); 458 } else { 459 if (SIGISMEMBER(ps->ps_sigintr, sig)) 460 ret = EINTR; 461 else 462 ret = ERESTART; 463 mtx_unlock(&ps->ps_mtx); 464 } 465 /* 466 * Lock the per-process spinlock prior to dropping the PROC_LOCK 467 * to avoid a signal delivery race. PROC_LOCK, PROC_SLOCK, and 468 * thread_lock() are currently held in tdsendsignal(). 469 */ 470 PROC_SLOCK(p); 471 mtx_lock_spin(&sc->sc_lock); 472 PROC_UNLOCK(p); 473 thread_lock(td); 474 PROC_SUNLOCK(p); 475 if (ret == 0) { 476 sleepq_switch(wchan, pri); 477 return (0); 478 } 479 out: 480 /* 481 * There were pending signals and this thread is still 482 * on the sleep queue, remove it from the sleep queue. 483 */ 484 if (TD_ON_SLEEPQ(td)) { 485 sq = sleepq_lookup(wchan); 486 if (sleepq_resume_thread(sq, td, 0)) { 487 #ifdef INVARIANTS 488 /* 489 * This thread hasn't gone to sleep yet, so it 490 * should not be swapped out. 491 */ 492 panic("not waking up swapper"); 493 #endif 494 } 495 } 496 mtx_unlock_spin(&sc->sc_lock); 497 MPASS(td->td_lock != &sc->sc_lock); 498 return (ret); 499 } 500 501 /* 502 * Switches to another thread if we are still asleep on a sleep queue. 503 * Returns with thread lock. 504 */ 505 static void 506 sleepq_switch(void *wchan, int pri) 507 { 508 struct sleepqueue_chain *sc; 509 struct sleepqueue *sq; 510 struct thread *td; 511 512 td = curthread; 513 sc = SC_LOOKUP(wchan); 514 mtx_assert(&sc->sc_lock, MA_OWNED); 515 THREAD_LOCK_ASSERT(td, MA_OWNED); 516 517 /* 518 * If we have a sleep queue, then we've already been woken up, so 519 * just return. 520 */ 521 if (td->td_sleepqueue != NULL) { 522 mtx_unlock_spin(&sc->sc_lock); 523 return; 524 } 525 526 /* 527 * If TDF_TIMEOUT is set, then our sleep has been timed out 528 * already but we are still on the sleep queue, so dequeue the 529 * thread and return. 530 */ 531 if (td->td_flags & TDF_TIMEOUT) { 532 MPASS(TD_ON_SLEEPQ(td)); 533 sq = sleepq_lookup(wchan); 534 if (sleepq_resume_thread(sq, td, 0)) { 535 #ifdef INVARIANTS 536 /* 537 * This thread hasn't gone to sleep yet, so it 538 * should not be swapped out. 539 */ 540 panic("not waking up swapper"); 541 #endif 542 } 543 mtx_unlock_spin(&sc->sc_lock); 544 return; 545 } 546 #ifdef SLEEPQUEUE_PROFILING 547 if (prof_enabled) 548 sleepq_profile(td->td_wmesg); 549 #endif 550 MPASS(td->td_sleepqueue == NULL); 551 sched_sleep(td, pri); 552 thread_lock_set(td, &sc->sc_lock); 553 SDT_PROBE0(sched, , , sleep); 554 TD_SET_SLEEPING(td); 555 mi_switch(SW_VOL | SWT_SLEEPQ, NULL); 556 KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING")); 557 CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)", 558 (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name); 559 } 560 561 /* 562 * Check to see if we timed out. 563 */ 564 static int 565 sleepq_check_timeout(void) 566 { 567 struct thread *td; 568 569 td = curthread; 570 THREAD_LOCK_ASSERT(td, MA_OWNED); 571 572 /* 573 * If TDF_TIMEOUT is set, we timed out. 574 */ 575 if (td->td_flags & TDF_TIMEOUT) { 576 td->td_flags &= ~TDF_TIMEOUT; 577 return (EWOULDBLOCK); 578 } 579 580 /* 581 * If TDF_TIMOFAIL is set, the timeout ran after we had 582 * already been woken up. 583 */ 584 if (td->td_flags & TDF_TIMOFAIL) 585 td->td_flags &= ~TDF_TIMOFAIL; 586 587 /* 588 * If callout_stop() fails, then the timeout is running on 589 * another CPU, so synchronize with it to avoid having it 590 * accidentally wake up a subsequent sleep. 591 */ 592 else if (_callout_stop_safe(&td->td_slpcallout, CS_MIGRBLOCK, NULL) 593 == 0) { 594 td->td_flags |= TDF_TIMEOUT; 595 TD_SET_SLEEPING(td); 596 mi_switch(SW_INVOL | SWT_SLEEPQTIMO, NULL); 597 } 598 return (0); 599 } 600 601 /* 602 * Check to see if we were awoken by a signal. 603 */ 604 static int 605 sleepq_check_signals(void) 606 { 607 struct thread *td; 608 609 td = curthread; 610 THREAD_LOCK_ASSERT(td, MA_OWNED); 611 612 /* We are no longer in an interruptible sleep. */ 613 if (td->td_flags & TDF_SINTR) 614 td->td_flags &= ~TDF_SINTR; 615 616 if (td->td_flags & TDF_SLEEPABORT) { 617 td->td_flags &= ~TDF_SLEEPABORT; 618 return (td->td_intrval); 619 } 620 621 return (0); 622 } 623 624 /* 625 * Block the current thread until it is awakened from its sleep queue. 626 */ 627 void 628 sleepq_wait(void *wchan, int pri) 629 { 630 struct thread *td; 631 632 td = curthread; 633 MPASS(!(td->td_flags & TDF_SINTR)); 634 thread_lock(td); 635 sleepq_switch(wchan, pri); 636 thread_unlock(td); 637 } 638 639 /* 640 * Block the current thread until it is awakened from its sleep queue 641 * or it is interrupted by a signal. 642 */ 643 int 644 sleepq_wait_sig(void *wchan, int pri) 645 { 646 int rcatch; 647 int rval; 648 649 rcatch = sleepq_catch_signals(wchan, pri); 650 rval = sleepq_check_signals(); 651 thread_unlock(curthread); 652 if (rcatch) 653 return (rcatch); 654 return (rval); 655 } 656 657 /* 658 * Block the current thread until it is awakened from its sleep queue 659 * or it times out while waiting. 660 */ 661 int 662 sleepq_timedwait(void *wchan, int pri) 663 { 664 struct thread *td; 665 int rval; 666 667 td = curthread; 668 MPASS(!(td->td_flags & TDF_SINTR)); 669 thread_lock(td); 670 sleepq_switch(wchan, pri); 671 rval = sleepq_check_timeout(); 672 thread_unlock(td); 673 674 return (rval); 675 } 676 677 /* 678 * Block the current thread until it is awakened from its sleep queue, 679 * it is interrupted by a signal, or it times out waiting to be awakened. 680 */ 681 int 682 sleepq_timedwait_sig(void *wchan, int pri) 683 { 684 int rcatch, rvalt, rvals; 685 686 rcatch = sleepq_catch_signals(wchan, pri); 687 rvalt = sleepq_check_timeout(); 688 rvals = sleepq_check_signals(); 689 thread_unlock(curthread); 690 if (rcatch) 691 return (rcatch); 692 if (rvals) 693 return (rvals); 694 return (rvalt); 695 } 696 697 /* 698 * Returns the type of sleepqueue given a waitchannel. 699 */ 700 int 701 sleepq_type(void *wchan) 702 { 703 struct sleepqueue *sq; 704 int type; 705 706 MPASS(wchan != NULL); 707 708 sleepq_lock(wchan); 709 sq = sleepq_lookup(wchan); 710 if (sq == NULL) { 711 sleepq_release(wchan); 712 return (-1); 713 } 714 type = sq->sq_type; 715 sleepq_release(wchan); 716 return (type); 717 } 718 719 /* 720 * Removes a thread from a sleep queue and makes it 721 * runnable. 722 */ 723 static int 724 sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri) 725 { 726 struct sleepqueue_chain *sc; 727 728 MPASS(td != NULL); 729 MPASS(sq->sq_wchan != NULL); 730 MPASS(td->td_wchan == sq->sq_wchan); 731 MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0); 732 THREAD_LOCK_ASSERT(td, MA_OWNED); 733 sc = SC_LOOKUP(sq->sq_wchan); 734 mtx_assert(&sc->sc_lock, MA_OWNED); 735 736 SDT_PROBE2(sched, , , wakeup, td, td->td_proc); 737 738 /* Remove the thread from the queue. */ 739 sq->sq_blockedcnt[td->td_sqqueue]--; 740 TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq); 741 742 /* 743 * Get a sleep queue for this thread. If this is the last waiter, 744 * use the queue itself and take it out of the chain, otherwise, 745 * remove a queue from the free list. 746 */ 747 if (LIST_EMPTY(&sq->sq_free)) { 748 td->td_sleepqueue = sq; 749 #ifdef INVARIANTS 750 sq->sq_wchan = NULL; 751 #endif 752 #ifdef SLEEPQUEUE_PROFILING 753 sc->sc_depth--; 754 #endif 755 } else 756 td->td_sleepqueue = LIST_FIRST(&sq->sq_free); 757 LIST_REMOVE(td->td_sleepqueue, sq_hash); 758 759 td->td_wmesg = NULL; 760 td->td_wchan = NULL; 761 td->td_flags &= ~TDF_SINTR; 762 763 CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)", 764 (void *)td, (long)td->td_proc->p_pid, td->td_name); 765 766 /* Adjust priority if requested. */ 767 MPASS(pri == 0 || (pri >= PRI_MIN && pri <= PRI_MAX)); 768 if (pri != 0 && td->td_priority > pri && 769 PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) 770 sched_prio(td, pri); 771 772 /* 773 * Note that thread td might not be sleeping if it is running 774 * sleepq_catch_signals() on another CPU or is blocked on its 775 * proc lock to check signals. There's no need to mark the 776 * thread runnable in that case. 777 */ 778 if (TD_IS_SLEEPING(td)) { 779 TD_CLR_SLEEPING(td); 780 return (setrunnable(td)); 781 } 782 return (0); 783 } 784 785 #ifdef INVARIANTS 786 /* 787 * UMA zone item deallocator. 788 */ 789 static void 790 sleepq_dtor(void *mem, int size, void *arg) 791 { 792 struct sleepqueue *sq; 793 int i; 794 795 sq = mem; 796 for (i = 0; i < NR_SLEEPQS; i++) { 797 MPASS(TAILQ_EMPTY(&sq->sq_blocked[i])); 798 MPASS(sq->sq_blockedcnt[i] == 0); 799 } 800 } 801 #endif 802 803 /* 804 * UMA zone item initializer. 805 */ 806 static int 807 sleepq_init(void *mem, int size, int flags) 808 { 809 struct sleepqueue *sq; 810 int i; 811 812 bzero(mem, size); 813 sq = mem; 814 for (i = 0; i < NR_SLEEPQS; i++) { 815 TAILQ_INIT(&sq->sq_blocked[i]); 816 sq->sq_blockedcnt[i] = 0; 817 } 818 LIST_INIT(&sq->sq_free); 819 return (0); 820 } 821 822 /* 823 * Find the highest priority thread sleeping on a wait channel and resume it. 824 */ 825 int 826 sleepq_signal(void *wchan, int flags, int pri, int queue) 827 { 828 struct sleepqueue *sq; 829 struct thread *td, *besttd; 830 int wakeup_swapper; 831 832 CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags); 833 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 834 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 835 sq = sleepq_lookup(wchan); 836 if (sq == NULL) 837 return (0); 838 KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE), 839 ("%s: mismatch between sleep/wakeup and cv_*", __func__)); 840 841 /* 842 * Find the highest priority thread on the queue. If there is a 843 * tie, use the thread that first appears in the queue as it has 844 * been sleeping the longest since threads are always added to 845 * the tail of sleep queues. 846 */ 847 besttd = NULL; 848 TAILQ_FOREACH(td, &sq->sq_blocked[queue], td_slpq) { 849 if (besttd == NULL || td->td_priority < besttd->td_priority) 850 besttd = td; 851 } 852 MPASS(besttd != NULL); 853 thread_lock(besttd); 854 wakeup_swapper = sleepq_resume_thread(sq, besttd, pri); 855 thread_unlock(besttd); 856 return (wakeup_swapper); 857 } 858 859 /* 860 * Resume all threads sleeping on a specified wait channel. 861 */ 862 int 863 sleepq_broadcast(void *wchan, int flags, int pri, int queue) 864 { 865 struct sleepqueue *sq; 866 struct thread *td, *tdn; 867 int wakeup_swapper; 868 869 CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags); 870 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 871 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 872 sq = sleepq_lookup(wchan); 873 if (sq == NULL) 874 return (0); 875 KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE), 876 ("%s: mismatch between sleep/wakeup and cv_*", __func__)); 877 878 /* Resume all blocked threads on the sleep queue. */ 879 wakeup_swapper = 0; 880 TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, tdn) { 881 thread_lock(td); 882 if (sleepq_resume_thread(sq, td, pri)) 883 wakeup_swapper = 1; 884 thread_unlock(td); 885 } 886 return (wakeup_swapper); 887 } 888 889 /* 890 * Time sleeping threads out. When the timeout expires, the thread is 891 * removed from the sleep queue and made runnable if it is still asleep. 892 */ 893 static void 894 sleepq_timeout(void *arg) 895 { 896 struct sleepqueue_chain *sc; 897 struct sleepqueue *sq; 898 struct thread *td; 899 void *wchan; 900 int wakeup_swapper; 901 902 td = arg; 903 wakeup_swapper = 0; 904 CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)", 905 (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name); 906 907 /* 908 * First, see if the thread is asleep and get the wait channel if 909 * it is. 910 */ 911 thread_lock(td); 912 if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) { 913 wchan = td->td_wchan; 914 sc = SC_LOOKUP(wchan); 915 THREAD_LOCKPTR_ASSERT(td, &sc->sc_lock); 916 sq = sleepq_lookup(wchan); 917 MPASS(sq != NULL); 918 td->td_flags |= TDF_TIMEOUT; 919 wakeup_swapper = sleepq_resume_thread(sq, td, 0); 920 thread_unlock(td); 921 if (wakeup_swapper) 922 kick_proc0(); 923 return; 924 } 925 926 /* 927 * If the thread is on the SLEEPQ but isn't sleeping yet, it 928 * can either be on another CPU in between sleepq_add() and 929 * one of the sleepq_*wait*() routines or it can be in 930 * sleepq_catch_signals(). 931 */ 932 if (TD_ON_SLEEPQ(td)) { 933 td->td_flags |= TDF_TIMEOUT; 934 thread_unlock(td); 935 return; 936 } 937 938 /* 939 * Now check for the edge cases. First, if TDF_TIMEOUT is set, 940 * then the other thread has already yielded to us, so clear 941 * the flag and resume it. If TDF_TIMEOUT is not set, then the 942 * we know that the other thread is not on a sleep queue, but it 943 * hasn't resumed execution yet. In that case, set TDF_TIMOFAIL 944 * to let it know that the timeout has already run and doesn't 945 * need to be canceled. 946 */ 947 if (td->td_flags & TDF_TIMEOUT) { 948 MPASS(TD_IS_SLEEPING(td)); 949 td->td_flags &= ~TDF_TIMEOUT; 950 TD_CLR_SLEEPING(td); 951 wakeup_swapper = setrunnable(td); 952 } else 953 td->td_flags |= TDF_TIMOFAIL; 954 thread_unlock(td); 955 if (wakeup_swapper) 956 kick_proc0(); 957 } 958 959 /* 960 * Resumes a specific thread from the sleep queue associated with a specific 961 * wait channel if it is on that queue. 962 */ 963 void 964 sleepq_remove(struct thread *td, void *wchan) 965 { 966 struct sleepqueue *sq; 967 int wakeup_swapper; 968 969 /* 970 * Look up the sleep queue for this wait channel, then re-check 971 * that the thread is asleep on that channel, if it is not, then 972 * bail. 973 */ 974 MPASS(wchan != NULL); 975 sleepq_lock(wchan); 976 sq = sleepq_lookup(wchan); 977 /* 978 * We can not lock the thread here as it may be sleeping on a 979 * different sleepq. However, holding the sleepq lock for this 980 * wchan can guarantee that we do not miss a wakeup for this 981 * channel. The asserts below will catch any false positives. 982 */ 983 if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) { 984 sleepq_release(wchan); 985 return; 986 } 987 /* Thread is asleep on sleep queue sq, so wake it up. */ 988 thread_lock(td); 989 MPASS(sq != NULL); 990 MPASS(td->td_wchan == wchan); 991 wakeup_swapper = sleepq_resume_thread(sq, td, 0); 992 thread_unlock(td); 993 sleepq_release(wchan); 994 if (wakeup_swapper) 995 kick_proc0(); 996 } 997 998 /* 999 * Abort a thread as if an interrupt had occurred. Only abort 1000 * interruptible waits (unfortunately it isn't safe to abort others). 1001 */ 1002 int 1003 sleepq_abort(struct thread *td, int intrval) 1004 { 1005 struct sleepqueue *sq; 1006 void *wchan; 1007 1008 THREAD_LOCK_ASSERT(td, MA_OWNED); 1009 MPASS(TD_ON_SLEEPQ(td)); 1010 MPASS(td->td_flags & TDF_SINTR); 1011 MPASS(intrval == EINTR || intrval == ERESTART); 1012 1013 /* 1014 * If the TDF_TIMEOUT flag is set, just leave. A 1015 * timeout is scheduled anyhow. 1016 */ 1017 if (td->td_flags & TDF_TIMEOUT) 1018 return (0); 1019 1020 CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)", 1021 (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name); 1022 td->td_intrval = intrval; 1023 td->td_flags |= TDF_SLEEPABORT; 1024 /* 1025 * If the thread has not slept yet it will find the signal in 1026 * sleepq_catch_signals() and call sleepq_resume_thread. Otherwise 1027 * we have to do it here. 1028 */ 1029 if (!TD_IS_SLEEPING(td)) 1030 return (0); 1031 wchan = td->td_wchan; 1032 MPASS(wchan != NULL); 1033 sq = sleepq_lookup(wchan); 1034 MPASS(sq != NULL); 1035 1036 /* Thread is asleep on sleep queue sq, so wake it up. */ 1037 return (sleepq_resume_thread(sq, td, 0)); 1038 } 1039 1040 /* 1041 * Prints the stacks of all threads presently sleeping on wchan/queue to 1042 * the sbuf sb. Sets count_stacks_printed to the number of stacks actually 1043 * printed. Typically, this will equal the number of threads sleeping on the 1044 * queue, but may be less if sb overflowed before all stacks were printed. 1045 */ 1046 #ifdef STACK 1047 int 1048 sleepq_sbuf_print_stacks(struct sbuf *sb, void *wchan, int queue, 1049 int *count_stacks_printed) 1050 { 1051 struct thread *td, *td_next; 1052 struct sleepqueue *sq; 1053 struct stack **st; 1054 struct sbuf **td_infos; 1055 int i, stack_idx, error, stacks_to_allocate; 1056 bool finished, partial_print; 1057 1058 error = 0; 1059 finished = false; 1060 partial_print = false; 1061 1062 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 1063 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 1064 1065 stacks_to_allocate = 10; 1066 for (i = 0; i < 3 && !finished ; i++) { 1067 /* We cannot malloc while holding the queue's spinlock, so 1068 * we do our mallocs now, and hope it is enough. If it 1069 * isn't, we will free these, drop the lock, malloc more, 1070 * and try again, up to a point. After that point we will 1071 * give up and report ENOMEM. We also cannot write to sb 1072 * during this time since the client may have set the 1073 * SBUF_AUTOEXTEND flag on their sbuf, which could cause a 1074 * malloc as we print to it. So we defer actually printing 1075 * to sb until after we drop the spinlock. 1076 */ 1077 1078 /* Where we will store the stacks. */ 1079 st = malloc(sizeof(struct stack *) * stacks_to_allocate, 1080 M_TEMP, M_WAITOK); 1081 for (stack_idx = 0; stack_idx < stacks_to_allocate; 1082 stack_idx++) 1083 st[stack_idx] = stack_create(); 1084 1085 /* Where we will store the td name, tid, etc. */ 1086 td_infos = malloc(sizeof(struct sbuf *) * stacks_to_allocate, 1087 M_TEMP, M_WAITOK); 1088 for (stack_idx = 0; stack_idx < stacks_to_allocate; 1089 stack_idx++) 1090 td_infos[stack_idx] = sbuf_new(NULL, NULL, 1091 MAXCOMLEN + sizeof(struct thread *) * 2 + 40, 1092 SBUF_FIXEDLEN); 1093 1094 sleepq_lock(wchan); 1095 sq = sleepq_lookup(wchan); 1096 if (sq == NULL) { 1097 /* This sleepq does not exist; exit and return ENOENT. */ 1098 error = ENOENT; 1099 finished = true; 1100 sleepq_release(wchan); 1101 goto loop_end; 1102 } 1103 1104 stack_idx = 0; 1105 /* Save thread info */ 1106 TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, 1107 td_next) { 1108 if (stack_idx >= stacks_to_allocate) 1109 goto loop_end; 1110 1111 /* Note the td_lock is equal to the sleepq_lock here. */ 1112 stack_save_td(st[stack_idx], td); 1113 1114 sbuf_printf(td_infos[stack_idx], "%d: %s %p", 1115 td->td_tid, td->td_name, td); 1116 1117 ++stack_idx; 1118 } 1119 1120 finished = true; 1121 sleepq_release(wchan); 1122 1123 /* Print the stacks */ 1124 for (i = 0; i < stack_idx; i++) { 1125 sbuf_finish(td_infos[i]); 1126 sbuf_printf(sb, "--- thread %s: ---\n", sbuf_data(td_infos[i])); 1127 stack_sbuf_print(sb, st[i]); 1128 sbuf_printf(sb, "\n"); 1129 1130 error = sbuf_error(sb); 1131 if (error == 0) 1132 *count_stacks_printed = stack_idx; 1133 } 1134 1135 loop_end: 1136 if (!finished) 1137 sleepq_release(wchan); 1138 for (stack_idx = 0; stack_idx < stacks_to_allocate; 1139 stack_idx++) 1140 stack_destroy(st[stack_idx]); 1141 for (stack_idx = 0; stack_idx < stacks_to_allocate; 1142 stack_idx++) 1143 sbuf_delete(td_infos[stack_idx]); 1144 free(st, M_TEMP); 1145 free(td_infos, M_TEMP); 1146 stacks_to_allocate *= 10; 1147 } 1148 1149 if (!finished && error == 0) 1150 error = ENOMEM; 1151 1152 return (error); 1153 } 1154 #endif 1155 1156 #ifdef SLEEPQUEUE_PROFILING 1157 #define SLEEPQ_PROF_LOCATIONS 1024 1158 #define SLEEPQ_SBUFSIZE 512 1159 struct sleepq_prof { 1160 LIST_ENTRY(sleepq_prof) sp_link; 1161 const char *sp_wmesg; 1162 long sp_count; 1163 }; 1164 1165 LIST_HEAD(sqphead, sleepq_prof); 1166 1167 struct sqphead sleepq_prof_free; 1168 struct sqphead sleepq_hash[SC_TABLESIZE]; 1169 static struct sleepq_prof sleepq_profent[SLEEPQ_PROF_LOCATIONS]; 1170 static struct mtx sleepq_prof_lock; 1171 MTX_SYSINIT(sleepq_prof_lock, &sleepq_prof_lock, "sleepq_prof", MTX_SPIN); 1172 1173 static void 1174 sleepq_profile(const char *wmesg) 1175 { 1176 struct sleepq_prof *sp; 1177 1178 mtx_lock_spin(&sleepq_prof_lock); 1179 if (prof_enabled == 0) 1180 goto unlock; 1181 LIST_FOREACH(sp, &sleepq_hash[SC_HASH(wmesg)], sp_link) 1182 if (sp->sp_wmesg == wmesg) 1183 goto done; 1184 sp = LIST_FIRST(&sleepq_prof_free); 1185 if (sp == NULL) 1186 goto unlock; 1187 sp->sp_wmesg = wmesg; 1188 LIST_REMOVE(sp, sp_link); 1189 LIST_INSERT_HEAD(&sleepq_hash[SC_HASH(wmesg)], sp, sp_link); 1190 done: 1191 sp->sp_count++; 1192 unlock: 1193 mtx_unlock_spin(&sleepq_prof_lock); 1194 return; 1195 } 1196 1197 static void 1198 sleepq_prof_reset(void) 1199 { 1200 struct sleepq_prof *sp; 1201 int enabled; 1202 int i; 1203 1204 mtx_lock_spin(&sleepq_prof_lock); 1205 enabled = prof_enabled; 1206 prof_enabled = 0; 1207 for (i = 0; i < SC_TABLESIZE; i++) 1208 LIST_INIT(&sleepq_hash[i]); 1209 LIST_INIT(&sleepq_prof_free); 1210 for (i = 0; i < SLEEPQ_PROF_LOCATIONS; i++) { 1211 sp = &sleepq_profent[i]; 1212 sp->sp_wmesg = NULL; 1213 sp->sp_count = 0; 1214 LIST_INSERT_HEAD(&sleepq_prof_free, sp, sp_link); 1215 } 1216 prof_enabled = enabled; 1217 mtx_unlock_spin(&sleepq_prof_lock); 1218 } 1219 1220 static int 1221 enable_sleepq_prof(SYSCTL_HANDLER_ARGS) 1222 { 1223 int error, v; 1224 1225 v = prof_enabled; 1226 error = sysctl_handle_int(oidp, &v, v, req); 1227 if (error) 1228 return (error); 1229 if (req->newptr == NULL) 1230 return (error); 1231 if (v == prof_enabled) 1232 return (0); 1233 if (v == 1) 1234 sleepq_prof_reset(); 1235 mtx_lock_spin(&sleepq_prof_lock); 1236 prof_enabled = !!v; 1237 mtx_unlock_spin(&sleepq_prof_lock); 1238 1239 return (0); 1240 } 1241 1242 static int 1243 reset_sleepq_prof_stats(SYSCTL_HANDLER_ARGS) 1244 { 1245 int error, v; 1246 1247 v = 0; 1248 error = sysctl_handle_int(oidp, &v, 0, req); 1249 if (error) 1250 return (error); 1251 if (req->newptr == NULL) 1252 return (error); 1253 if (v == 0) 1254 return (0); 1255 sleepq_prof_reset(); 1256 1257 return (0); 1258 } 1259 1260 static int 1261 dump_sleepq_prof_stats(SYSCTL_HANDLER_ARGS) 1262 { 1263 struct sleepq_prof *sp; 1264 struct sbuf *sb; 1265 int enabled; 1266 int error; 1267 int i; 1268 1269 error = sysctl_wire_old_buffer(req, 0); 1270 if (error != 0) 1271 return (error); 1272 sb = sbuf_new_for_sysctl(NULL, NULL, SLEEPQ_SBUFSIZE, req); 1273 sbuf_printf(sb, "\nwmesg\tcount\n"); 1274 enabled = prof_enabled; 1275 mtx_lock_spin(&sleepq_prof_lock); 1276 prof_enabled = 0; 1277 mtx_unlock_spin(&sleepq_prof_lock); 1278 for (i = 0; i < SC_TABLESIZE; i++) { 1279 LIST_FOREACH(sp, &sleepq_hash[i], sp_link) { 1280 sbuf_printf(sb, "%s\t%ld\n", 1281 sp->sp_wmesg, sp->sp_count); 1282 } 1283 } 1284 mtx_lock_spin(&sleepq_prof_lock); 1285 prof_enabled = enabled; 1286 mtx_unlock_spin(&sleepq_prof_lock); 1287 1288 error = sbuf_finish(sb); 1289 sbuf_delete(sb); 1290 return (error); 1291 } 1292 1293 SYSCTL_PROC(_debug_sleepq, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD, 1294 NULL, 0, dump_sleepq_prof_stats, "A", "Sleepqueue profiling statistics"); 1295 SYSCTL_PROC(_debug_sleepq, OID_AUTO, reset, CTLTYPE_INT | CTLFLAG_RW, 1296 NULL, 0, reset_sleepq_prof_stats, "I", 1297 "Reset sleepqueue profiling statistics"); 1298 SYSCTL_PROC(_debug_sleepq, OID_AUTO, enable, CTLTYPE_INT | CTLFLAG_RW, 1299 NULL, 0, enable_sleepq_prof, "I", "Enable sleepqueue profiling"); 1300 #endif 1301 1302 #ifdef DDB 1303 DB_SHOW_COMMAND(sleepq, db_show_sleepqueue) 1304 { 1305 struct sleepqueue_chain *sc; 1306 struct sleepqueue *sq; 1307 #ifdef INVARIANTS 1308 struct lock_object *lock; 1309 #endif 1310 struct thread *td; 1311 void *wchan; 1312 int i; 1313 1314 if (!have_addr) 1315 return; 1316 1317 /* 1318 * First, see if there is an active sleep queue for the wait channel 1319 * indicated by the address. 1320 */ 1321 wchan = (void *)addr; 1322 sc = SC_LOOKUP(wchan); 1323 LIST_FOREACH(sq, &sc->sc_queues, sq_hash) 1324 if (sq->sq_wchan == wchan) 1325 goto found; 1326 1327 /* 1328 * Second, see if there is an active sleep queue at the address 1329 * indicated. 1330 */ 1331 for (i = 0; i < SC_TABLESIZE; i++) 1332 LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) { 1333 if (sq == (struct sleepqueue *)addr) 1334 goto found; 1335 } 1336 1337 db_printf("Unable to locate a sleep queue via %p\n", (void *)addr); 1338 return; 1339 found: 1340 db_printf("Wait channel: %p\n", sq->sq_wchan); 1341 db_printf("Queue type: %d\n", sq->sq_type); 1342 #ifdef INVARIANTS 1343 if (sq->sq_lock) { 1344 lock = sq->sq_lock; 1345 db_printf("Associated Interlock: %p - (%s) %s\n", lock, 1346 LOCK_CLASS(lock)->lc_name, lock->lo_name); 1347 } 1348 #endif 1349 db_printf("Blocked threads:\n"); 1350 for (i = 0; i < NR_SLEEPQS; i++) { 1351 db_printf("\nQueue[%d]:\n", i); 1352 if (TAILQ_EMPTY(&sq->sq_blocked[i])) 1353 db_printf("\tempty\n"); 1354 else 1355 TAILQ_FOREACH(td, &sq->sq_blocked[0], 1356 td_slpq) { 1357 db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td, 1358 td->td_tid, td->td_proc->p_pid, 1359 td->td_name); 1360 } 1361 db_printf("(expected: %u)\n", sq->sq_blockedcnt[i]); 1362 } 1363 } 1364 1365 /* Alias 'show sleepqueue' to 'show sleepq'. */ 1366 DB_SHOW_ALIAS(sleepqueue, db_show_sleepqueue); 1367 #endif 1368