xref: /freebsd/sys/kern/subr_sleepqueue.c (revision 480f4e946db51c7de558c4cd1ba3d88caeaceec8)
1 /*-
2  * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 /*
28  * Implementation of sleep queues used to hold queue of threads blocked on
29  * a wait channel.  Sleep queues different from turnstiles in that wait
30  * channels are not owned by anyone, so there is no priority propagation.
31  * Sleep queues can also provide a timeout and can also be interrupted by
32  * signals.  That said, there are several similarities between the turnstile
33  * and sleep queue implementations.  (Note: turnstiles were implemented
34  * first.)  For example, both use a hash table of the same size where each
35  * bucket is referred to as a "chain" that contains both a spin lock and
36  * a linked list of queues.  An individual queue is located by using a hash
37  * to pick a chain, locking the chain, and then walking the chain searching
38  * for the queue.  This means that a wait channel object does not need to
39  * embed it's queue head just as locks do not embed their turnstile queue
40  * head.  Threads also carry around a sleep queue that they lend to the
41  * wait channel when blocking.  Just as in turnstiles, the queue includes
42  * a free list of the sleep queues of other threads blocked on the same
43  * wait channel in the case of multiple waiters.
44  *
45  * Some additional functionality provided by sleep queues include the
46  * ability to set a timeout.  The timeout is managed using a per-thread
47  * callout that resumes a thread if it is asleep.  A thread may also
48  * catch signals while it is asleep (aka an interruptible sleep).  The
49  * signal code uses sleepq_abort() to interrupt a sleeping thread.  Finally,
50  * sleep queues also provide some extra assertions.  One is not allowed to
51  * mix the sleep/wakeup and cv APIs for a given wait channel.  Also, one
52  * must consistently use the same lock to synchronize with a wait channel,
53  * though this check is currently only a warning for sleep/wakeup due to
54  * pre-existing abuse of that API.  The same lock must also be held when
55  * awakening threads, though that is currently only enforced for condition
56  * variables.
57  */
58 
59 #include <sys/cdefs.h>
60 __FBSDID("$FreeBSD$");
61 
62 #include "opt_sleepqueue_profiling.h"
63 #include "opt_ddb.h"
64 #include "opt_sched.h"
65 #include "opt_stack.h"
66 
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/lock.h>
70 #include <sys/kernel.h>
71 #include <sys/ktr.h>
72 #include <sys/mutex.h>
73 #include <sys/proc.h>
74 #include <sys/sbuf.h>
75 #include <sys/sched.h>
76 #include <sys/sdt.h>
77 #include <sys/signalvar.h>
78 #include <sys/sleepqueue.h>
79 #include <sys/stack.h>
80 #include <sys/sysctl.h>
81 
82 #include <vm/uma.h>
83 
84 #ifdef DDB
85 #include <ddb/ddb.h>
86 #endif
87 
88 
89 /*
90  * Constants for the hash table of sleep queue chains.
91  * SC_TABLESIZE must be a power of two for SC_MASK to work properly.
92  */
93 #define	SC_TABLESIZE	256			/* Must be power of 2. */
94 #define	SC_MASK		(SC_TABLESIZE - 1)
95 #define	SC_SHIFT	8
96 #define	SC_HASH(wc)	((((uintptr_t)(wc) >> SC_SHIFT) ^ (uintptr_t)(wc)) & \
97 			    SC_MASK)
98 #define	SC_LOOKUP(wc)	&sleepq_chains[SC_HASH(wc)]
99 #define NR_SLEEPQS      2
100 /*
101  * There two different lists of sleep queues.  Both lists are connected
102  * via the sq_hash entries.  The first list is the sleep queue chain list
103  * that a sleep queue is on when it is attached to a wait channel.  The
104  * second list is the free list hung off of a sleep queue that is attached
105  * to a wait channel.
106  *
107  * Each sleep queue also contains the wait channel it is attached to, the
108  * list of threads blocked on that wait channel, flags specific to the
109  * wait channel, and the lock used to synchronize with a wait channel.
110  * The flags are used to catch mismatches between the various consumers
111  * of the sleep queue API (e.g. sleep/wakeup and condition variables).
112  * The lock pointer is only used when invariants are enabled for various
113  * debugging checks.
114  *
115  * Locking key:
116  *  c - sleep queue chain lock
117  */
118 struct sleepqueue {
119 	TAILQ_HEAD(, thread) sq_blocked[NR_SLEEPQS];	/* (c) Blocked threads. */
120 	u_int sq_blockedcnt[NR_SLEEPQS];	/* (c) N. of blocked threads. */
121 	LIST_ENTRY(sleepqueue) sq_hash;		/* (c) Chain and free list. */
122 	LIST_HEAD(, sleepqueue) sq_free;	/* (c) Free queues. */
123 	void	*sq_wchan;			/* (c) Wait channel. */
124 	int	sq_type;			/* (c) Queue type. */
125 #ifdef INVARIANTS
126 	struct lock_object *sq_lock;		/* (c) Associated lock. */
127 #endif
128 };
129 
130 struct sleepqueue_chain {
131 	LIST_HEAD(, sleepqueue) sc_queues;	/* List of sleep queues. */
132 	struct mtx sc_lock;			/* Spin lock for this chain. */
133 #ifdef SLEEPQUEUE_PROFILING
134 	u_int	sc_depth;			/* Length of sc_queues. */
135 	u_int	sc_max_depth;			/* Max length of sc_queues. */
136 #endif
137 };
138 
139 #ifdef SLEEPQUEUE_PROFILING
140 u_int sleepq_max_depth;
141 static SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling");
142 static SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0,
143     "sleepq chain stats");
144 SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth,
145     0, "maxmimum depth achieved of a single chain");
146 
147 static void	sleepq_profile(const char *wmesg);
148 static int	prof_enabled;
149 #endif
150 static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE];
151 static uma_zone_t sleepq_zone;
152 
153 /*
154  * Prototypes for non-exported routines.
155  */
156 static int	sleepq_catch_signals(void *wchan, int pri);
157 static int	sleepq_check_signals(void);
158 static int	sleepq_check_timeout(void);
159 #ifdef INVARIANTS
160 static void	sleepq_dtor(void *mem, int size, void *arg);
161 #endif
162 static int	sleepq_init(void *mem, int size, int flags);
163 static int	sleepq_resume_thread(struct sleepqueue *sq, struct thread *td,
164 		    int pri);
165 static void	sleepq_switch(void *wchan, int pri);
166 static void	sleepq_timeout(void *arg);
167 
168 SDT_PROBE_DECLARE(sched, , , sleep);
169 SDT_PROBE_DECLARE(sched, , , wakeup);
170 
171 /*
172  * Initialize SLEEPQUEUE_PROFILING specific sysctl nodes.
173  * Note that it must happen after sleepinit() has been fully executed, so
174  * it must happen after SI_SUB_KMEM SYSINIT() subsystem setup.
175  */
176 #ifdef SLEEPQUEUE_PROFILING
177 static void
178 init_sleepqueue_profiling(void)
179 {
180 	char chain_name[10];
181 	struct sysctl_oid *chain_oid;
182 	u_int i;
183 
184 	for (i = 0; i < SC_TABLESIZE; i++) {
185 		snprintf(chain_name, sizeof(chain_name), "%u", i);
186 		chain_oid = SYSCTL_ADD_NODE(NULL,
187 		    SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO,
188 		    chain_name, CTLFLAG_RD, NULL, "sleepq chain stats");
189 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
190 		    "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL);
191 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
192 		    "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0,
193 		    NULL);
194 	}
195 }
196 
197 SYSINIT(sleepqueue_profiling, SI_SUB_LOCK, SI_ORDER_ANY,
198     init_sleepqueue_profiling, NULL);
199 #endif
200 
201 /*
202  * Early initialization of sleep queues that is called from the sleepinit()
203  * SYSINIT.
204  */
205 void
206 init_sleepqueues(void)
207 {
208 	int i;
209 
210 	for (i = 0; i < SC_TABLESIZE; i++) {
211 		LIST_INIT(&sleepq_chains[i].sc_queues);
212 		mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL,
213 		    MTX_SPIN | MTX_RECURSE);
214 	}
215 	sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue),
216 #ifdef INVARIANTS
217 	    NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
218 #else
219 	    NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
220 #endif
221 
222 	thread0.td_sleepqueue = sleepq_alloc();
223 }
224 
225 /*
226  * Get a sleep queue for a new thread.
227  */
228 struct sleepqueue *
229 sleepq_alloc(void)
230 {
231 
232 	return (uma_zalloc(sleepq_zone, M_WAITOK));
233 }
234 
235 /*
236  * Free a sleep queue when a thread is destroyed.
237  */
238 void
239 sleepq_free(struct sleepqueue *sq)
240 {
241 
242 	uma_zfree(sleepq_zone, sq);
243 }
244 
245 /*
246  * Lock the sleep queue chain associated with the specified wait channel.
247  */
248 void
249 sleepq_lock(void *wchan)
250 {
251 	struct sleepqueue_chain *sc;
252 
253 	sc = SC_LOOKUP(wchan);
254 	mtx_lock_spin(&sc->sc_lock);
255 }
256 
257 /*
258  * Look up the sleep queue associated with a given wait channel in the hash
259  * table locking the associated sleep queue chain.  If no queue is found in
260  * the table, NULL is returned.
261  */
262 struct sleepqueue *
263 sleepq_lookup(void *wchan)
264 {
265 	struct sleepqueue_chain *sc;
266 	struct sleepqueue *sq;
267 
268 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
269 	sc = SC_LOOKUP(wchan);
270 	mtx_assert(&sc->sc_lock, MA_OWNED);
271 	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
272 		if (sq->sq_wchan == wchan)
273 			return (sq);
274 	return (NULL);
275 }
276 
277 /*
278  * Unlock the sleep queue chain associated with a given wait channel.
279  */
280 void
281 sleepq_release(void *wchan)
282 {
283 	struct sleepqueue_chain *sc;
284 
285 	sc = SC_LOOKUP(wchan);
286 	mtx_unlock_spin(&sc->sc_lock);
287 }
288 
289 /*
290  * Places the current thread on the sleep queue for the specified wait
291  * channel.  If INVARIANTS is enabled, then it associates the passed in
292  * lock with the sleepq to make sure it is held when that sleep queue is
293  * woken up.
294  */
295 void
296 sleepq_add(void *wchan, struct lock_object *lock, const char *wmesg, int flags,
297     int queue)
298 {
299 	struct sleepqueue_chain *sc;
300 	struct sleepqueue *sq;
301 	struct thread *td;
302 
303 	td = curthread;
304 	sc = SC_LOOKUP(wchan);
305 	mtx_assert(&sc->sc_lock, MA_OWNED);
306 	MPASS(td->td_sleepqueue != NULL);
307 	MPASS(wchan != NULL);
308 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
309 
310 	/* If this thread is not allowed to sleep, die a horrible death. */
311 	KASSERT(td->td_no_sleeping == 0,
312 	    ("%s: td %p to sleep on wchan %p with sleeping prohibited",
313 	    __func__, td, wchan));
314 
315 	/* Look up the sleep queue associated with the wait channel 'wchan'. */
316 	sq = sleepq_lookup(wchan);
317 
318 	/*
319 	 * If the wait channel does not already have a sleep queue, use
320 	 * this thread's sleep queue.  Otherwise, insert the current thread
321 	 * into the sleep queue already in use by this wait channel.
322 	 */
323 	if (sq == NULL) {
324 #ifdef INVARIANTS
325 		int i;
326 
327 		sq = td->td_sleepqueue;
328 		for (i = 0; i < NR_SLEEPQS; i++) {
329 			KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]),
330 			    ("thread's sleep queue %d is not empty", i));
331 			KASSERT(sq->sq_blockedcnt[i] == 0,
332 			    ("thread's sleep queue %d count mismatches", i));
333 		}
334 		KASSERT(LIST_EMPTY(&sq->sq_free),
335 		    ("thread's sleep queue has a non-empty free list"));
336 		KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer"));
337 		sq->sq_lock = lock;
338 #endif
339 #ifdef SLEEPQUEUE_PROFILING
340 		sc->sc_depth++;
341 		if (sc->sc_depth > sc->sc_max_depth) {
342 			sc->sc_max_depth = sc->sc_depth;
343 			if (sc->sc_max_depth > sleepq_max_depth)
344 				sleepq_max_depth = sc->sc_max_depth;
345 		}
346 #endif
347 		sq = td->td_sleepqueue;
348 		LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash);
349 		sq->sq_wchan = wchan;
350 		sq->sq_type = flags & SLEEPQ_TYPE;
351 	} else {
352 		MPASS(wchan == sq->sq_wchan);
353 		MPASS(lock == sq->sq_lock);
354 		MPASS((flags & SLEEPQ_TYPE) == sq->sq_type);
355 		LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash);
356 	}
357 	thread_lock(td);
358 	TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq);
359 	sq->sq_blockedcnt[queue]++;
360 	td->td_sleepqueue = NULL;
361 	td->td_sqqueue = queue;
362 	td->td_wchan = wchan;
363 	td->td_wmesg = wmesg;
364 	if (flags & SLEEPQ_INTERRUPTIBLE) {
365 		td->td_flags |= TDF_SINTR;
366 		td->td_flags &= ~TDF_SLEEPABORT;
367 	}
368 	thread_unlock(td);
369 }
370 
371 /*
372  * Sets a timeout that will remove the current thread from the specified
373  * sleep queue after timo ticks if the thread has not already been awakened.
374  */
375 void
376 sleepq_set_timeout_sbt(void *wchan, sbintime_t sbt, sbintime_t pr,
377     int flags)
378 {
379 	struct sleepqueue_chain *sc;
380 	struct thread *td;
381 
382 	td = curthread;
383 	sc = SC_LOOKUP(wchan);
384 	mtx_assert(&sc->sc_lock, MA_OWNED);
385 	MPASS(TD_ON_SLEEPQ(td));
386 	MPASS(td->td_sleepqueue == NULL);
387 	MPASS(wchan != NULL);
388 	callout_reset_sbt_on(&td->td_slpcallout, sbt, pr,
389 	    sleepq_timeout, td, PCPU_GET(cpuid), flags | C_DIRECT_EXEC);
390 }
391 
392 /*
393  * Return the number of actual sleepers for the specified queue.
394  */
395 u_int
396 sleepq_sleepcnt(void *wchan, int queue)
397 {
398 	struct sleepqueue *sq;
399 
400 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
401 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
402 	sq = sleepq_lookup(wchan);
403 	if (sq == NULL)
404 		return (0);
405 	return (sq->sq_blockedcnt[queue]);
406 }
407 
408 /*
409  * Marks the pending sleep of the current thread as interruptible and
410  * makes an initial check for pending signals before putting a thread
411  * to sleep. Enters and exits with the thread lock held.  Thread lock
412  * may have transitioned from the sleepq lock to a run lock.
413  */
414 static int
415 sleepq_catch_signals(void *wchan, int pri)
416 {
417 	struct sleepqueue_chain *sc;
418 	struct sleepqueue *sq;
419 	struct thread *td;
420 	struct proc *p;
421 	struct sigacts *ps;
422 	int sig, ret;
423 
424 	td = curthread;
425 	p = curproc;
426 	sc = SC_LOOKUP(wchan);
427 	mtx_assert(&sc->sc_lock, MA_OWNED);
428 	MPASS(wchan != NULL);
429 	if ((td->td_pflags & TDP_WAKEUP) != 0) {
430 		td->td_pflags &= ~TDP_WAKEUP;
431 		ret = EINTR;
432 		thread_lock(td);
433 		goto out;
434 	}
435 
436 	/*
437 	 * See if there are any pending signals for this thread.  If not
438 	 * we can switch immediately.  Otherwise do the signal processing
439 	 * directly.
440 	 */
441 	thread_lock(td);
442 	if ((td->td_flags & (TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK)) == 0) {
443 		sleepq_switch(wchan, pri);
444 		return (0);
445 	}
446 	thread_unlock(td);
447 	mtx_unlock_spin(&sc->sc_lock);
448 	CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)",
449 		(void *)td, (long)p->p_pid, td->td_name);
450 	PROC_LOCK(p);
451 	ps = p->p_sigacts;
452 	mtx_lock(&ps->ps_mtx);
453 	sig = cursig(td);
454 	if (sig == 0) {
455 		mtx_unlock(&ps->ps_mtx);
456 		ret = thread_suspend_check(1);
457 		MPASS(ret == 0 || ret == EINTR || ret == ERESTART);
458 	} else {
459 		if (SIGISMEMBER(ps->ps_sigintr, sig))
460 			ret = EINTR;
461 		else
462 			ret = ERESTART;
463 		mtx_unlock(&ps->ps_mtx);
464 	}
465 	/*
466 	 * Lock the per-process spinlock prior to dropping the PROC_LOCK
467 	 * to avoid a signal delivery race.  PROC_LOCK, PROC_SLOCK, and
468 	 * thread_lock() are currently held in tdsendsignal().
469 	 */
470 	PROC_SLOCK(p);
471 	mtx_lock_spin(&sc->sc_lock);
472 	PROC_UNLOCK(p);
473 	thread_lock(td);
474 	PROC_SUNLOCK(p);
475 	if (ret == 0) {
476 		sleepq_switch(wchan, pri);
477 		return (0);
478 	}
479 out:
480 	/*
481 	 * There were pending signals and this thread is still
482 	 * on the sleep queue, remove it from the sleep queue.
483 	 */
484 	if (TD_ON_SLEEPQ(td)) {
485 		sq = sleepq_lookup(wchan);
486 		if (sleepq_resume_thread(sq, td, 0)) {
487 #ifdef INVARIANTS
488 			/*
489 			 * This thread hasn't gone to sleep yet, so it
490 			 * should not be swapped out.
491 			 */
492 			panic("not waking up swapper");
493 #endif
494 		}
495 	}
496 	mtx_unlock_spin(&sc->sc_lock);
497 	MPASS(td->td_lock != &sc->sc_lock);
498 	return (ret);
499 }
500 
501 /*
502  * Switches to another thread if we are still asleep on a sleep queue.
503  * Returns with thread lock.
504  */
505 static void
506 sleepq_switch(void *wchan, int pri)
507 {
508 	struct sleepqueue_chain *sc;
509 	struct sleepqueue *sq;
510 	struct thread *td;
511 
512 	td = curthread;
513 	sc = SC_LOOKUP(wchan);
514 	mtx_assert(&sc->sc_lock, MA_OWNED);
515 	THREAD_LOCK_ASSERT(td, MA_OWNED);
516 
517 	/*
518 	 * If we have a sleep queue, then we've already been woken up, so
519 	 * just return.
520 	 */
521 	if (td->td_sleepqueue != NULL) {
522 		mtx_unlock_spin(&sc->sc_lock);
523 		return;
524 	}
525 
526 	/*
527 	 * If TDF_TIMEOUT is set, then our sleep has been timed out
528 	 * already but we are still on the sleep queue, so dequeue the
529 	 * thread and return.
530 	 */
531 	if (td->td_flags & TDF_TIMEOUT) {
532 		MPASS(TD_ON_SLEEPQ(td));
533 		sq = sleepq_lookup(wchan);
534 		if (sleepq_resume_thread(sq, td, 0)) {
535 #ifdef INVARIANTS
536 			/*
537 			 * This thread hasn't gone to sleep yet, so it
538 			 * should not be swapped out.
539 			 */
540 			panic("not waking up swapper");
541 #endif
542 		}
543 		mtx_unlock_spin(&sc->sc_lock);
544 		return;
545 	}
546 #ifdef SLEEPQUEUE_PROFILING
547 	if (prof_enabled)
548 		sleepq_profile(td->td_wmesg);
549 #endif
550 	MPASS(td->td_sleepqueue == NULL);
551 	sched_sleep(td, pri);
552 	thread_lock_set(td, &sc->sc_lock);
553 	SDT_PROBE0(sched, , , sleep);
554 	TD_SET_SLEEPING(td);
555 	mi_switch(SW_VOL | SWT_SLEEPQ, NULL);
556 	KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
557 	CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)",
558 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
559 }
560 
561 /*
562  * Check to see if we timed out.
563  */
564 static int
565 sleepq_check_timeout(void)
566 {
567 	struct thread *td;
568 
569 	td = curthread;
570 	THREAD_LOCK_ASSERT(td, MA_OWNED);
571 
572 	/*
573 	 * If TDF_TIMEOUT is set, we timed out.
574 	 */
575 	if (td->td_flags & TDF_TIMEOUT) {
576 		td->td_flags &= ~TDF_TIMEOUT;
577 		return (EWOULDBLOCK);
578 	}
579 
580 	/*
581 	 * If TDF_TIMOFAIL is set, the timeout ran after we had
582 	 * already been woken up.
583 	 */
584 	if (td->td_flags & TDF_TIMOFAIL)
585 		td->td_flags &= ~TDF_TIMOFAIL;
586 
587 	/*
588 	 * If callout_stop() fails, then the timeout is running on
589 	 * another CPU, so synchronize with it to avoid having it
590 	 * accidentally wake up a subsequent sleep.
591 	 */
592 	else if (_callout_stop_safe(&td->td_slpcallout, CS_MIGRBLOCK, NULL)
593 	    == 0) {
594 		td->td_flags |= TDF_TIMEOUT;
595 		TD_SET_SLEEPING(td);
596 		mi_switch(SW_INVOL | SWT_SLEEPQTIMO, NULL);
597 	}
598 	return (0);
599 }
600 
601 /*
602  * Check to see if we were awoken by a signal.
603  */
604 static int
605 sleepq_check_signals(void)
606 {
607 	struct thread *td;
608 
609 	td = curthread;
610 	THREAD_LOCK_ASSERT(td, MA_OWNED);
611 
612 	/* We are no longer in an interruptible sleep. */
613 	if (td->td_flags & TDF_SINTR)
614 		td->td_flags &= ~TDF_SINTR;
615 
616 	if (td->td_flags & TDF_SLEEPABORT) {
617 		td->td_flags &= ~TDF_SLEEPABORT;
618 		return (td->td_intrval);
619 	}
620 
621 	return (0);
622 }
623 
624 /*
625  * Block the current thread until it is awakened from its sleep queue.
626  */
627 void
628 sleepq_wait(void *wchan, int pri)
629 {
630 	struct thread *td;
631 
632 	td = curthread;
633 	MPASS(!(td->td_flags & TDF_SINTR));
634 	thread_lock(td);
635 	sleepq_switch(wchan, pri);
636 	thread_unlock(td);
637 }
638 
639 /*
640  * Block the current thread until it is awakened from its sleep queue
641  * or it is interrupted by a signal.
642  */
643 int
644 sleepq_wait_sig(void *wchan, int pri)
645 {
646 	int rcatch;
647 	int rval;
648 
649 	rcatch = sleepq_catch_signals(wchan, pri);
650 	rval = sleepq_check_signals();
651 	thread_unlock(curthread);
652 	if (rcatch)
653 		return (rcatch);
654 	return (rval);
655 }
656 
657 /*
658  * Block the current thread until it is awakened from its sleep queue
659  * or it times out while waiting.
660  */
661 int
662 sleepq_timedwait(void *wchan, int pri)
663 {
664 	struct thread *td;
665 	int rval;
666 
667 	td = curthread;
668 	MPASS(!(td->td_flags & TDF_SINTR));
669 	thread_lock(td);
670 	sleepq_switch(wchan, pri);
671 	rval = sleepq_check_timeout();
672 	thread_unlock(td);
673 
674 	return (rval);
675 }
676 
677 /*
678  * Block the current thread until it is awakened from its sleep queue,
679  * it is interrupted by a signal, or it times out waiting to be awakened.
680  */
681 int
682 sleepq_timedwait_sig(void *wchan, int pri)
683 {
684 	int rcatch, rvalt, rvals;
685 
686 	rcatch = sleepq_catch_signals(wchan, pri);
687 	rvalt = sleepq_check_timeout();
688 	rvals = sleepq_check_signals();
689 	thread_unlock(curthread);
690 	if (rcatch)
691 		return (rcatch);
692 	if (rvals)
693 		return (rvals);
694 	return (rvalt);
695 }
696 
697 /*
698  * Returns the type of sleepqueue given a waitchannel.
699  */
700 int
701 sleepq_type(void *wchan)
702 {
703 	struct sleepqueue *sq;
704 	int type;
705 
706 	MPASS(wchan != NULL);
707 
708 	sleepq_lock(wchan);
709 	sq = sleepq_lookup(wchan);
710 	if (sq == NULL) {
711 		sleepq_release(wchan);
712 		return (-1);
713 	}
714 	type = sq->sq_type;
715 	sleepq_release(wchan);
716 	return (type);
717 }
718 
719 /*
720  * Removes a thread from a sleep queue and makes it
721  * runnable.
722  */
723 static int
724 sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri)
725 {
726 	struct sleepqueue_chain *sc;
727 
728 	MPASS(td != NULL);
729 	MPASS(sq->sq_wchan != NULL);
730 	MPASS(td->td_wchan == sq->sq_wchan);
731 	MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0);
732 	THREAD_LOCK_ASSERT(td, MA_OWNED);
733 	sc = SC_LOOKUP(sq->sq_wchan);
734 	mtx_assert(&sc->sc_lock, MA_OWNED);
735 
736 	SDT_PROBE2(sched, , , wakeup, td, td->td_proc);
737 
738 	/* Remove the thread from the queue. */
739 	sq->sq_blockedcnt[td->td_sqqueue]--;
740 	TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq);
741 
742 	/*
743 	 * Get a sleep queue for this thread.  If this is the last waiter,
744 	 * use the queue itself and take it out of the chain, otherwise,
745 	 * remove a queue from the free list.
746 	 */
747 	if (LIST_EMPTY(&sq->sq_free)) {
748 		td->td_sleepqueue = sq;
749 #ifdef INVARIANTS
750 		sq->sq_wchan = NULL;
751 #endif
752 #ifdef SLEEPQUEUE_PROFILING
753 		sc->sc_depth--;
754 #endif
755 	} else
756 		td->td_sleepqueue = LIST_FIRST(&sq->sq_free);
757 	LIST_REMOVE(td->td_sleepqueue, sq_hash);
758 
759 	td->td_wmesg = NULL;
760 	td->td_wchan = NULL;
761 	td->td_flags &= ~TDF_SINTR;
762 
763 	CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)",
764 	    (void *)td, (long)td->td_proc->p_pid, td->td_name);
765 
766 	/* Adjust priority if requested. */
767 	MPASS(pri == 0 || (pri >= PRI_MIN && pri <= PRI_MAX));
768 	if (pri != 0 && td->td_priority > pri &&
769 	    PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
770 		sched_prio(td, pri);
771 
772 	/*
773 	 * Note that thread td might not be sleeping if it is running
774 	 * sleepq_catch_signals() on another CPU or is blocked on its
775 	 * proc lock to check signals.  There's no need to mark the
776 	 * thread runnable in that case.
777 	 */
778 	if (TD_IS_SLEEPING(td)) {
779 		TD_CLR_SLEEPING(td);
780 		return (setrunnable(td));
781 	}
782 	return (0);
783 }
784 
785 #ifdef INVARIANTS
786 /*
787  * UMA zone item deallocator.
788  */
789 static void
790 sleepq_dtor(void *mem, int size, void *arg)
791 {
792 	struct sleepqueue *sq;
793 	int i;
794 
795 	sq = mem;
796 	for (i = 0; i < NR_SLEEPQS; i++) {
797 		MPASS(TAILQ_EMPTY(&sq->sq_blocked[i]));
798 		MPASS(sq->sq_blockedcnt[i] == 0);
799 	}
800 }
801 #endif
802 
803 /*
804  * UMA zone item initializer.
805  */
806 static int
807 sleepq_init(void *mem, int size, int flags)
808 {
809 	struct sleepqueue *sq;
810 	int i;
811 
812 	bzero(mem, size);
813 	sq = mem;
814 	for (i = 0; i < NR_SLEEPQS; i++) {
815 		TAILQ_INIT(&sq->sq_blocked[i]);
816 		sq->sq_blockedcnt[i] = 0;
817 	}
818 	LIST_INIT(&sq->sq_free);
819 	return (0);
820 }
821 
822 /*
823  * Find the highest priority thread sleeping on a wait channel and resume it.
824  */
825 int
826 sleepq_signal(void *wchan, int flags, int pri, int queue)
827 {
828 	struct sleepqueue *sq;
829 	struct thread *td, *besttd;
830 	int wakeup_swapper;
831 
832 	CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags);
833 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
834 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
835 	sq = sleepq_lookup(wchan);
836 	if (sq == NULL)
837 		return (0);
838 	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
839 	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
840 
841 	/*
842 	 * Find the highest priority thread on the queue.  If there is a
843 	 * tie, use the thread that first appears in the queue as it has
844 	 * been sleeping the longest since threads are always added to
845 	 * the tail of sleep queues.
846 	 */
847 	besttd = NULL;
848 	TAILQ_FOREACH(td, &sq->sq_blocked[queue], td_slpq) {
849 		if (besttd == NULL || td->td_priority < besttd->td_priority)
850 			besttd = td;
851 	}
852 	MPASS(besttd != NULL);
853 	thread_lock(besttd);
854 	wakeup_swapper = sleepq_resume_thread(sq, besttd, pri);
855 	thread_unlock(besttd);
856 	return (wakeup_swapper);
857 }
858 
859 /*
860  * Resume all threads sleeping on a specified wait channel.
861  */
862 int
863 sleepq_broadcast(void *wchan, int flags, int pri, int queue)
864 {
865 	struct sleepqueue *sq;
866 	struct thread *td, *tdn;
867 	int wakeup_swapper;
868 
869 	CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags);
870 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
871 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
872 	sq = sleepq_lookup(wchan);
873 	if (sq == NULL)
874 		return (0);
875 	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
876 	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
877 
878 	/* Resume all blocked threads on the sleep queue. */
879 	wakeup_swapper = 0;
880 	TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, tdn) {
881 		thread_lock(td);
882 		if (sleepq_resume_thread(sq, td, pri))
883 			wakeup_swapper = 1;
884 		thread_unlock(td);
885 	}
886 	return (wakeup_swapper);
887 }
888 
889 /*
890  * Time sleeping threads out.  When the timeout expires, the thread is
891  * removed from the sleep queue and made runnable if it is still asleep.
892  */
893 static void
894 sleepq_timeout(void *arg)
895 {
896 	struct sleepqueue_chain *sc;
897 	struct sleepqueue *sq;
898 	struct thread *td;
899 	void *wchan;
900 	int wakeup_swapper;
901 
902 	td = arg;
903 	wakeup_swapper = 0;
904 	CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)",
905 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
906 
907 	/*
908 	 * First, see if the thread is asleep and get the wait channel if
909 	 * it is.
910 	 */
911 	thread_lock(td);
912 	if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) {
913 		wchan = td->td_wchan;
914 		sc = SC_LOOKUP(wchan);
915 		THREAD_LOCKPTR_ASSERT(td, &sc->sc_lock);
916 		sq = sleepq_lookup(wchan);
917 		MPASS(sq != NULL);
918 		td->td_flags |= TDF_TIMEOUT;
919 		wakeup_swapper = sleepq_resume_thread(sq, td, 0);
920 		thread_unlock(td);
921 		if (wakeup_swapper)
922 			kick_proc0();
923 		return;
924 	}
925 
926 	/*
927 	 * If the thread is on the SLEEPQ but isn't sleeping yet, it
928 	 * can either be on another CPU in between sleepq_add() and
929 	 * one of the sleepq_*wait*() routines or it can be in
930 	 * sleepq_catch_signals().
931 	 */
932 	if (TD_ON_SLEEPQ(td)) {
933 		td->td_flags |= TDF_TIMEOUT;
934 		thread_unlock(td);
935 		return;
936 	}
937 
938 	/*
939 	 * Now check for the edge cases.  First, if TDF_TIMEOUT is set,
940 	 * then the other thread has already yielded to us, so clear
941 	 * the flag and resume it.  If TDF_TIMEOUT is not set, then the
942 	 * we know that the other thread is not on a sleep queue, but it
943 	 * hasn't resumed execution yet.  In that case, set TDF_TIMOFAIL
944 	 * to let it know that the timeout has already run and doesn't
945 	 * need to be canceled.
946 	 */
947 	if (td->td_flags & TDF_TIMEOUT) {
948 		MPASS(TD_IS_SLEEPING(td));
949 		td->td_flags &= ~TDF_TIMEOUT;
950 		TD_CLR_SLEEPING(td);
951 		wakeup_swapper = setrunnable(td);
952 	} else
953 		td->td_flags |= TDF_TIMOFAIL;
954 	thread_unlock(td);
955 	if (wakeup_swapper)
956 		kick_proc0();
957 }
958 
959 /*
960  * Resumes a specific thread from the sleep queue associated with a specific
961  * wait channel if it is on that queue.
962  */
963 void
964 sleepq_remove(struct thread *td, void *wchan)
965 {
966 	struct sleepqueue *sq;
967 	int wakeup_swapper;
968 
969 	/*
970 	 * Look up the sleep queue for this wait channel, then re-check
971 	 * that the thread is asleep on that channel, if it is not, then
972 	 * bail.
973 	 */
974 	MPASS(wchan != NULL);
975 	sleepq_lock(wchan);
976 	sq = sleepq_lookup(wchan);
977 	/*
978 	 * We can not lock the thread here as it may be sleeping on a
979 	 * different sleepq.  However, holding the sleepq lock for this
980 	 * wchan can guarantee that we do not miss a wakeup for this
981 	 * channel.  The asserts below will catch any false positives.
982 	 */
983 	if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) {
984 		sleepq_release(wchan);
985 		return;
986 	}
987 	/* Thread is asleep on sleep queue sq, so wake it up. */
988 	thread_lock(td);
989 	MPASS(sq != NULL);
990 	MPASS(td->td_wchan == wchan);
991 	wakeup_swapper = sleepq_resume_thread(sq, td, 0);
992 	thread_unlock(td);
993 	sleepq_release(wchan);
994 	if (wakeup_swapper)
995 		kick_proc0();
996 }
997 
998 /*
999  * Abort a thread as if an interrupt had occurred.  Only abort
1000  * interruptible waits (unfortunately it isn't safe to abort others).
1001  */
1002 int
1003 sleepq_abort(struct thread *td, int intrval)
1004 {
1005 	struct sleepqueue *sq;
1006 	void *wchan;
1007 
1008 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1009 	MPASS(TD_ON_SLEEPQ(td));
1010 	MPASS(td->td_flags & TDF_SINTR);
1011 	MPASS(intrval == EINTR || intrval == ERESTART);
1012 
1013 	/*
1014 	 * If the TDF_TIMEOUT flag is set, just leave. A
1015 	 * timeout is scheduled anyhow.
1016 	 */
1017 	if (td->td_flags & TDF_TIMEOUT)
1018 		return (0);
1019 
1020 	CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)",
1021 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
1022 	td->td_intrval = intrval;
1023 	td->td_flags |= TDF_SLEEPABORT;
1024 	/*
1025 	 * If the thread has not slept yet it will find the signal in
1026 	 * sleepq_catch_signals() and call sleepq_resume_thread.  Otherwise
1027 	 * we have to do it here.
1028 	 */
1029 	if (!TD_IS_SLEEPING(td))
1030 		return (0);
1031 	wchan = td->td_wchan;
1032 	MPASS(wchan != NULL);
1033 	sq = sleepq_lookup(wchan);
1034 	MPASS(sq != NULL);
1035 
1036 	/* Thread is asleep on sleep queue sq, so wake it up. */
1037 	return (sleepq_resume_thread(sq, td, 0));
1038 }
1039 
1040 /*
1041  * Prints the stacks of all threads presently sleeping on wchan/queue to
1042  * the sbuf sb.  Sets count_stacks_printed to the number of stacks actually
1043  * printed.  Typically, this will equal the number of threads sleeping on the
1044  * queue, but may be less if sb overflowed before all stacks were printed.
1045  */
1046 #ifdef STACK
1047 int
1048 sleepq_sbuf_print_stacks(struct sbuf *sb, void *wchan, int queue,
1049     int *count_stacks_printed)
1050 {
1051 	struct thread *td, *td_next;
1052 	struct sleepqueue *sq;
1053 	struct stack **st;
1054 	struct sbuf **td_infos;
1055 	int i, stack_idx, error, stacks_to_allocate;
1056 	bool finished, partial_print;
1057 
1058 	error = 0;
1059 	finished = false;
1060 	partial_print = false;
1061 
1062 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
1063 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
1064 
1065 	stacks_to_allocate = 10;
1066 	for (i = 0; i < 3 && !finished ; i++) {
1067 		/* We cannot malloc while holding the queue's spinlock, so
1068 		 * we do our mallocs now, and hope it is enough.  If it
1069 		 * isn't, we will free these, drop the lock, malloc more,
1070 		 * and try again, up to a point.  After that point we will
1071 		 * give up and report ENOMEM. We also cannot write to sb
1072 		 * during this time since the client may have set the
1073 		 * SBUF_AUTOEXTEND flag on their sbuf, which could cause a
1074 		 * malloc as we print to it.  So we defer actually printing
1075 		 * to sb until after we drop the spinlock.
1076 		 */
1077 
1078 		/* Where we will store the stacks. */
1079 		st = malloc(sizeof(struct stack *) * stacks_to_allocate,
1080 		    M_TEMP, M_WAITOK);
1081 		for (stack_idx = 0; stack_idx < stacks_to_allocate;
1082 		    stack_idx++)
1083 			st[stack_idx] = stack_create();
1084 
1085 		/* Where we will store the td name, tid, etc. */
1086 		td_infos = malloc(sizeof(struct sbuf *) * stacks_to_allocate,
1087 		    M_TEMP, M_WAITOK);
1088 		for (stack_idx = 0; stack_idx < stacks_to_allocate;
1089 		    stack_idx++)
1090 			td_infos[stack_idx] = sbuf_new(NULL, NULL,
1091 			    MAXCOMLEN + sizeof(struct thread *) * 2 + 40,
1092 			    SBUF_FIXEDLEN);
1093 
1094 		sleepq_lock(wchan);
1095 		sq = sleepq_lookup(wchan);
1096 		if (sq == NULL) {
1097 			/* This sleepq does not exist; exit and return ENOENT. */
1098 			error = ENOENT;
1099 			finished = true;
1100 			sleepq_release(wchan);
1101 			goto loop_end;
1102 		}
1103 
1104 		stack_idx = 0;
1105 		/* Save thread info */
1106 		TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq,
1107 		    td_next) {
1108 			if (stack_idx >= stacks_to_allocate)
1109 				goto loop_end;
1110 
1111 			/* Note the td_lock is equal to the sleepq_lock here. */
1112 			stack_save_td(st[stack_idx], td);
1113 
1114 			sbuf_printf(td_infos[stack_idx], "%d: %s %p",
1115 			    td->td_tid, td->td_name, td);
1116 
1117 			++stack_idx;
1118 		}
1119 
1120 		finished = true;
1121 		sleepq_release(wchan);
1122 
1123 		/* Print the stacks */
1124 		for (i = 0; i < stack_idx; i++) {
1125 			sbuf_finish(td_infos[i]);
1126 			sbuf_printf(sb, "--- thread %s: ---\n", sbuf_data(td_infos[i]));
1127 			stack_sbuf_print(sb, st[i]);
1128 			sbuf_printf(sb, "\n");
1129 
1130 			error = sbuf_error(sb);
1131 			if (error == 0)
1132 				*count_stacks_printed = stack_idx;
1133 		}
1134 
1135 loop_end:
1136 		if (!finished)
1137 			sleepq_release(wchan);
1138 		for (stack_idx = 0; stack_idx < stacks_to_allocate;
1139 		    stack_idx++)
1140 			stack_destroy(st[stack_idx]);
1141 		for (stack_idx = 0; stack_idx < stacks_to_allocate;
1142 		    stack_idx++)
1143 			sbuf_delete(td_infos[stack_idx]);
1144 		free(st, M_TEMP);
1145 		free(td_infos, M_TEMP);
1146 		stacks_to_allocate *= 10;
1147 	}
1148 
1149 	if (!finished && error == 0)
1150 		error = ENOMEM;
1151 
1152 	return (error);
1153 }
1154 #endif
1155 
1156 #ifdef SLEEPQUEUE_PROFILING
1157 #define	SLEEPQ_PROF_LOCATIONS	1024
1158 #define	SLEEPQ_SBUFSIZE		512
1159 struct sleepq_prof {
1160 	LIST_ENTRY(sleepq_prof) sp_link;
1161 	const char	*sp_wmesg;
1162 	long		sp_count;
1163 };
1164 
1165 LIST_HEAD(sqphead, sleepq_prof);
1166 
1167 struct sqphead sleepq_prof_free;
1168 struct sqphead sleepq_hash[SC_TABLESIZE];
1169 static struct sleepq_prof sleepq_profent[SLEEPQ_PROF_LOCATIONS];
1170 static struct mtx sleepq_prof_lock;
1171 MTX_SYSINIT(sleepq_prof_lock, &sleepq_prof_lock, "sleepq_prof", MTX_SPIN);
1172 
1173 static void
1174 sleepq_profile(const char *wmesg)
1175 {
1176 	struct sleepq_prof *sp;
1177 
1178 	mtx_lock_spin(&sleepq_prof_lock);
1179 	if (prof_enabled == 0)
1180 		goto unlock;
1181 	LIST_FOREACH(sp, &sleepq_hash[SC_HASH(wmesg)], sp_link)
1182 		if (sp->sp_wmesg == wmesg)
1183 			goto done;
1184 	sp = LIST_FIRST(&sleepq_prof_free);
1185 	if (sp == NULL)
1186 		goto unlock;
1187 	sp->sp_wmesg = wmesg;
1188 	LIST_REMOVE(sp, sp_link);
1189 	LIST_INSERT_HEAD(&sleepq_hash[SC_HASH(wmesg)], sp, sp_link);
1190 done:
1191 	sp->sp_count++;
1192 unlock:
1193 	mtx_unlock_spin(&sleepq_prof_lock);
1194 	return;
1195 }
1196 
1197 static void
1198 sleepq_prof_reset(void)
1199 {
1200 	struct sleepq_prof *sp;
1201 	int enabled;
1202 	int i;
1203 
1204 	mtx_lock_spin(&sleepq_prof_lock);
1205 	enabled = prof_enabled;
1206 	prof_enabled = 0;
1207 	for (i = 0; i < SC_TABLESIZE; i++)
1208 		LIST_INIT(&sleepq_hash[i]);
1209 	LIST_INIT(&sleepq_prof_free);
1210 	for (i = 0; i < SLEEPQ_PROF_LOCATIONS; i++) {
1211 		sp = &sleepq_profent[i];
1212 		sp->sp_wmesg = NULL;
1213 		sp->sp_count = 0;
1214 		LIST_INSERT_HEAD(&sleepq_prof_free, sp, sp_link);
1215 	}
1216 	prof_enabled = enabled;
1217 	mtx_unlock_spin(&sleepq_prof_lock);
1218 }
1219 
1220 static int
1221 enable_sleepq_prof(SYSCTL_HANDLER_ARGS)
1222 {
1223 	int error, v;
1224 
1225 	v = prof_enabled;
1226 	error = sysctl_handle_int(oidp, &v, v, req);
1227 	if (error)
1228 		return (error);
1229 	if (req->newptr == NULL)
1230 		return (error);
1231 	if (v == prof_enabled)
1232 		return (0);
1233 	if (v == 1)
1234 		sleepq_prof_reset();
1235 	mtx_lock_spin(&sleepq_prof_lock);
1236 	prof_enabled = !!v;
1237 	mtx_unlock_spin(&sleepq_prof_lock);
1238 
1239 	return (0);
1240 }
1241 
1242 static int
1243 reset_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1244 {
1245 	int error, v;
1246 
1247 	v = 0;
1248 	error = sysctl_handle_int(oidp, &v, 0, req);
1249 	if (error)
1250 		return (error);
1251 	if (req->newptr == NULL)
1252 		return (error);
1253 	if (v == 0)
1254 		return (0);
1255 	sleepq_prof_reset();
1256 
1257 	return (0);
1258 }
1259 
1260 static int
1261 dump_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1262 {
1263 	struct sleepq_prof *sp;
1264 	struct sbuf *sb;
1265 	int enabled;
1266 	int error;
1267 	int i;
1268 
1269 	error = sysctl_wire_old_buffer(req, 0);
1270 	if (error != 0)
1271 		return (error);
1272 	sb = sbuf_new_for_sysctl(NULL, NULL, SLEEPQ_SBUFSIZE, req);
1273 	sbuf_printf(sb, "\nwmesg\tcount\n");
1274 	enabled = prof_enabled;
1275 	mtx_lock_spin(&sleepq_prof_lock);
1276 	prof_enabled = 0;
1277 	mtx_unlock_spin(&sleepq_prof_lock);
1278 	for (i = 0; i < SC_TABLESIZE; i++) {
1279 		LIST_FOREACH(sp, &sleepq_hash[i], sp_link) {
1280 			sbuf_printf(sb, "%s\t%ld\n",
1281 			    sp->sp_wmesg, sp->sp_count);
1282 		}
1283 	}
1284 	mtx_lock_spin(&sleepq_prof_lock);
1285 	prof_enabled = enabled;
1286 	mtx_unlock_spin(&sleepq_prof_lock);
1287 
1288 	error = sbuf_finish(sb);
1289 	sbuf_delete(sb);
1290 	return (error);
1291 }
1292 
1293 SYSCTL_PROC(_debug_sleepq, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD,
1294     NULL, 0, dump_sleepq_prof_stats, "A", "Sleepqueue profiling statistics");
1295 SYSCTL_PROC(_debug_sleepq, OID_AUTO, reset, CTLTYPE_INT | CTLFLAG_RW,
1296     NULL, 0, reset_sleepq_prof_stats, "I",
1297     "Reset sleepqueue profiling statistics");
1298 SYSCTL_PROC(_debug_sleepq, OID_AUTO, enable, CTLTYPE_INT | CTLFLAG_RW,
1299     NULL, 0, enable_sleepq_prof, "I", "Enable sleepqueue profiling");
1300 #endif
1301 
1302 #ifdef DDB
1303 DB_SHOW_COMMAND(sleepq, db_show_sleepqueue)
1304 {
1305 	struct sleepqueue_chain *sc;
1306 	struct sleepqueue *sq;
1307 #ifdef INVARIANTS
1308 	struct lock_object *lock;
1309 #endif
1310 	struct thread *td;
1311 	void *wchan;
1312 	int i;
1313 
1314 	if (!have_addr)
1315 		return;
1316 
1317 	/*
1318 	 * First, see if there is an active sleep queue for the wait channel
1319 	 * indicated by the address.
1320 	 */
1321 	wchan = (void *)addr;
1322 	sc = SC_LOOKUP(wchan);
1323 	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
1324 		if (sq->sq_wchan == wchan)
1325 			goto found;
1326 
1327 	/*
1328 	 * Second, see if there is an active sleep queue at the address
1329 	 * indicated.
1330 	 */
1331 	for (i = 0; i < SC_TABLESIZE; i++)
1332 		LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) {
1333 			if (sq == (struct sleepqueue *)addr)
1334 				goto found;
1335 		}
1336 
1337 	db_printf("Unable to locate a sleep queue via %p\n", (void *)addr);
1338 	return;
1339 found:
1340 	db_printf("Wait channel: %p\n", sq->sq_wchan);
1341 	db_printf("Queue type: %d\n", sq->sq_type);
1342 #ifdef INVARIANTS
1343 	if (sq->sq_lock) {
1344 		lock = sq->sq_lock;
1345 		db_printf("Associated Interlock: %p - (%s) %s\n", lock,
1346 		    LOCK_CLASS(lock)->lc_name, lock->lo_name);
1347 	}
1348 #endif
1349 	db_printf("Blocked threads:\n");
1350 	for (i = 0; i < NR_SLEEPQS; i++) {
1351 		db_printf("\nQueue[%d]:\n", i);
1352 		if (TAILQ_EMPTY(&sq->sq_blocked[i]))
1353 			db_printf("\tempty\n");
1354 		else
1355 			TAILQ_FOREACH(td, &sq->sq_blocked[0],
1356 				      td_slpq) {
1357 				db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td,
1358 					  td->td_tid, td->td_proc->p_pid,
1359 					  td->td_name);
1360 			}
1361 		db_printf("(expected: %u)\n", sq->sq_blockedcnt[i]);
1362 	}
1363 }
1364 
1365 /* Alias 'show sleepqueue' to 'show sleepq'. */
1366 DB_SHOW_ALIAS(sleepqueue, db_show_sleepqueue);
1367 #endif
1368