1 /*- 2 * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the author nor the names of any co-contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 /* 31 * Implementation of sleep queues used to hold queue of threads blocked on 32 * a wait channel. Sleep queues different from turnstiles in that wait 33 * channels are not owned by anyone, so there is no priority propagation. 34 * Sleep queues can also provide a timeout and can also be interrupted by 35 * signals. That said, there are several similarities between the turnstile 36 * and sleep queue implementations. (Note: turnstiles were implemented 37 * first.) For example, both use a hash table of the same size where each 38 * bucket is referred to as a "chain" that contains both a spin lock and 39 * a linked list of queues. An individual queue is located by using a hash 40 * to pick a chain, locking the chain, and then walking the chain searching 41 * for the queue. This means that a wait channel object does not need to 42 * embed it's queue head just as locks do not embed their turnstile queue 43 * head. Threads also carry around a sleep queue that they lend to the 44 * wait channel when blocking. Just as in turnstiles, the queue includes 45 * a free list of the sleep queues of other threads blocked on the same 46 * wait channel in the case of multiple waiters. 47 * 48 * Some additional functionality provided by sleep queues include the 49 * ability to set a timeout. The timeout is managed using a per-thread 50 * callout that resumes a thread if it is asleep. A thread may also 51 * catch signals while it is asleep (aka an interruptible sleep). The 52 * signal code uses sleepq_abort() to interrupt a sleeping thread. Finally, 53 * sleep queues also provide some extra assertions. One is not allowed to 54 * mix the sleep/wakeup and cv APIs for a given wait channel. Also, one 55 * must consistently use the same lock to synchronize with a wait channel, 56 * though this check is currently only a warning for sleep/wakeup due to 57 * pre-existing abuse of that API. The same lock must also be held when 58 * awakening threads, though that is currently only enforced for condition 59 * variables. 60 */ 61 62 #include <sys/cdefs.h> 63 __FBSDID("$FreeBSD$"); 64 65 #include "opt_sleepqueue_profiling.h" 66 #include "opt_ddb.h" 67 #include "opt_sched.h" 68 69 #include <sys/param.h> 70 #include <sys/systm.h> 71 #include <sys/lock.h> 72 #include <sys/kernel.h> 73 #include <sys/ktr.h> 74 #include <sys/mutex.h> 75 #include <sys/proc.h> 76 #include <sys/sbuf.h> 77 #include <sys/sched.h> 78 #include <sys/signalvar.h> 79 #include <sys/sleepqueue.h> 80 #include <sys/sysctl.h> 81 82 #include <vm/uma.h> 83 84 #ifdef DDB 85 #include <ddb/ddb.h> 86 #endif 87 88 /* 89 * Constants for the hash table of sleep queue chains. These constants are 90 * the same ones that 4BSD (and possibly earlier versions of BSD) used. 91 * Basically, we ignore the lower 8 bits of the address since most wait 92 * channel pointers are aligned and only look at the next 7 bits for the 93 * hash. SC_TABLESIZE must be a power of two for SC_MASK to work properly. 94 */ 95 #define SC_TABLESIZE 128 /* Must be power of 2. */ 96 #define SC_MASK (SC_TABLESIZE - 1) 97 #define SC_SHIFT 8 98 #define SC_HASH(wc) (((uintptr_t)(wc) >> SC_SHIFT) & SC_MASK) 99 #define SC_LOOKUP(wc) &sleepq_chains[SC_HASH(wc)] 100 #define NR_SLEEPQS 2 101 /* 102 * There two different lists of sleep queues. Both lists are connected 103 * via the sq_hash entries. The first list is the sleep queue chain list 104 * that a sleep queue is on when it is attached to a wait channel. The 105 * second list is the free list hung off of a sleep queue that is attached 106 * to a wait channel. 107 * 108 * Each sleep queue also contains the wait channel it is attached to, the 109 * list of threads blocked on that wait channel, flags specific to the 110 * wait channel, and the lock used to synchronize with a wait channel. 111 * The flags are used to catch mismatches between the various consumers 112 * of the sleep queue API (e.g. sleep/wakeup and condition variables). 113 * The lock pointer is only used when invariants are enabled for various 114 * debugging checks. 115 * 116 * Locking key: 117 * c - sleep queue chain lock 118 */ 119 struct sleepqueue { 120 TAILQ_HEAD(, thread) sq_blocked[NR_SLEEPQS]; /* (c) Blocked threads. */ 121 LIST_ENTRY(sleepqueue) sq_hash; /* (c) Chain and free list. */ 122 LIST_HEAD(, sleepqueue) sq_free; /* (c) Free queues. */ 123 void *sq_wchan; /* (c) Wait channel. */ 124 #ifdef INVARIANTS 125 int sq_type; /* (c) Queue type. */ 126 struct lock_object *sq_lock; /* (c) Associated lock. */ 127 #endif 128 }; 129 130 struct sleepqueue_chain { 131 LIST_HEAD(, sleepqueue) sc_queues; /* List of sleep queues. */ 132 struct mtx sc_lock; /* Spin lock for this chain. */ 133 #ifdef SLEEPQUEUE_PROFILING 134 u_int sc_depth; /* Length of sc_queues. */ 135 u_int sc_max_depth; /* Max length of sc_queues. */ 136 #endif 137 }; 138 139 #ifdef SLEEPQUEUE_PROFILING 140 u_int sleepq_max_depth; 141 SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling"); 142 SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0, 143 "sleepq chain stats"); 144 SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth, 145 0, "maxmimum depth achieved of a single chain"); 146 147 static void sleepq_profile(const char *wmesg); 148 static int prof_enabled; 149 #endif 150 static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE]; 151 static uma_zone_t sleepq_zone; 152 153 /* 154 * Prototypes for non-exported routines. 155 */ 156 static int sleepq_catch_signals(void *wchan, int pri); 157 static int sleepq_check_signals(void); 158 static int sleepq_check_timeout(void); 159 #ifdef INVARIANTS 160 static void sleepq_dtor(void *mem, int size, void *arg); 161 #endif 162 static int sleepq_init(void *mem, int size, int flags); 163 static int sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, 164 int pri); 165 static void sleepq_switch(void *wchan, int pri); 166 static void sleepq_timeout(void *arg); 167 168 /* 169 * Early initialization of sleep queues that is called from the sleepinit() 170 * SYSINIT. 171 */ 172 void 173 init_sleepqueues(void) 174 { 175 #ifdef SLEEPQUEUE_PROFILING 176 struct sysctl_oid *chain_oid; 177 char chain_name[10]; 178 #endif 179 int i; 180 181 for (i = 0; i < SC_TABLESIZE; i++) { 182 LIST_INIT(&sleepq_chains[i].sc_queues); 183 mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL, 184 MTX_SPIN | MTX_RECURSE); 185 #ifdef SLEEPQUEUE_PROFILING 186 snprintf(chain_name, sizeof(chain_name), "%d", i); 187 chain_oid = SYSCTL_ADD_NODE(NULL, 188 SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO, 189 chain_name, CTLFLAG_RD, NULL, "sleepq chain stats"); 190 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO, 191 "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL); 192 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO, 193 "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0, 194 NULL); 195 #endif 196 } 197 sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue), 198 #ifdef INVARIANTS 199 NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0); 200 #else 201 NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0); 202 #endif 203 204 thread0.td_sleepqueue = sleepq_alloc(); 205 } 206 207 /* 208 * Get a sleep queue for a new thread. 209 */ 210 struct sleepqueue * 211 sleepq_alloc(void) 212 { 213 214 return (uma_zalloc(sleepq_zone, M_WAITOK)); 215 } 216 217 /* 218 * Free a sleep queue when a thread is destroyed. 219 */ 220 void 221 sleepq_free(struct sleepqueue *sq) 222 { 223 224 uma_zfree(sleepq_zone, sq); 225 } 226 227 /* 228 * Lock the sleep queue chain associated with the specified wait channel. 229 */ 230 void 231 sleepq_lock(void *wchan) 232 { 233 struct sleepqueue_chain *sc; 234 235 sc = SC_LOOKUP(wchan); 236 mtx_lock_spin(&sc->sc_lock); 237 } 238 239 /* 240 * Look up the sleep queue associated with a given wait channel in the hash 241 * table locking the associated sleep queue chain. If no queue is found in 242 * the table, NULL is returned. 243 */ 244 struct sleepqueue * 245 sleepq_lookup(void *wchan) 246 { 247 struct sleepqueue_chain *sc; 248 struct sleepqueue *sq; 249 250 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 251 sc = SC_LOOKUP(wchan); 252 mtx_assert(&sc->sc_lock, MA_OWNED); 253 LIST_FOREACH(sq, &sc->sc_queues, sq_hash) 254 if (sq->sq_wchan == wchan) 255 return (sq); 256 return (NULL); 257 } 258 259 /* 260 * Unlock the sleep queue chain associated with a given wait channel. 261 */ 262 void 263 sleepq_release(void *wchan) 264 { 265 struct sleepqueue_chain *sc; 266 267 sc = SC_LOOKUP(wchan); 268 mtx_unlock_spin(&sc->sc_lock); 269 } 270 271 /* 272 * Places the current thread on the sleep queue for the specified wait 273 * channel. If INVARIANTS is enabled, then it associates the passed in 274 * lock with the sleepq to make sure it is held when that sleep queue is 275 * woken up. 276 */ 277 void 278 sleepq_add(void *wchan, struct lock_object *lock, const char *wmesg, int flags, 279 int queue) 280 { 281 struct sleepqueue_chain *sc; 282 struct sleepqueue *sq; 283 struct thread *td; 284 285 td = curthread; 286 sc = SC_LOOKUP(wchan); 287 mtx_assert(&sc->sc_lock, MA_OWNED); 288 MPASS(td->td_sleepqueue != NULL); 289 MPASS(wchan != NULL); 290 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 291 292 /* If this thread is not allowed to sleep, die a horrible death. */ 293 KASSERT(!(td->td_pflags & TDP_NOSLEEPING), 294 ("Trying sleep, but thread marked as sleeping prohibited")); 295 296 /* Look up the sleep queue associated with the wait channel 'wchan'. */ 297 sq = sleepq_lookup(wchan); 298 299 /* 300 * If the wait channel does not already have a sleep queue, use 301 * this thread's sleep queue. Otherwise, insert the current thread 302 * into the sleep queue already in use by this wait channel. 303 */ 304 if (sq == NULL) { 305 #ifdef INVARIANTS 306 int i; 307 308 sq = td->td_sleepqueue; 309 for (i = 0; i < NR_SLEEPQS; i++) 310 KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]), 311 ("thread's sleep queue %d is not empty", i)); 312 KASSERT(LIST_EMPTY(&sq->sq_free), 313 ("thread's sleep queue has a non-empty free list")); 314 KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer")); 315 sq->sq_lock = lock; 316 sq->sq_type = flags & SLEEPQ_TYPE; 317 #endif 318 #ifdef SLEEPQUEUE_PROFILING 319 sc->sc_depth++; 320 if (sc->sc_depth > sc->sc_max_depth) { 321 sc->sc_max_depth = sc->sc_depth; 322 if (sc->sc_max_depth > sleepq_max_depth) 323 sleepq_max_depth = sc->sc_max_depth; 324 } 325 #endif 326 sq = td->td_sleepqueue; 327 LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash); 328 sq->sq_wchan = wchan; 329 } else { 330 MPASS(wchan == sq->sq_wchan); 331 MPASS(lock == sq->sq_lock); 332 MPASS((flags & SLEEPQ_TYPE) == sq->sq_type); 333 LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash); 334 } 335 thread_lock(td); 336 TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq); 337 td->td_sleepqueue = NULL; 338 td->td_sqqueue = queue; 339 td->td_wchan = wchan; 340 td->td_wmesg = wmesg; 341 if (flags & SLEEPQ_INTERRUPTIBLE) { 342 td->td_flags |= TDF_SINTR; 343 td->td_flags &= ~TDF_SLEEPABORT; 344 } 345 thread_unlock(td); 346 } 347 348 /* 349 * Sets a timeout that will remove the current thread from the specified 350 * sleep queue after timo ticks if the thread has not already been awakened. 351 */ 352 void 353 sleepq_set_timeout(void *wchan, int timo) 354 { 355 struct sleepqueue_chain *sc; 356 struct thread *td; 357 358 td = curthread; 359 sc = SC_LOOKUP(wchan); 360 mtx_assert(&sc->sc_lock, MA_OWNED); 361 MPASS(TD_ON_SLEEPQ(td)); 362 MPASS(td->td_sleepqueue == NULL); 363 MPASS(wchan != NULL); 364 callout_reset_curcpu(&td->td_slpcallout, timo, sleepq_timeout, td); 365 } 366 367 /* 368 * Marks the pending sleep of the current thread as interruptible and 369 * makes an initial check for pending signals before putting a thread 370 * to sleep. Enters and exits with the thread lock held. Thread lock 371 * may have transitioned from the sleepq lock to a run lock. 372 */ 373 static int 374 sleepq_catch_signals(void *wchan, int pri) 375 { 376 struct sleepqueue_chain *sc; 377 struct sleepqueue *sq; 378 struct thread *td; 379 struct proc *p; 380 struct sigacts *ps; 381 int sig, ret; 382 383 td = curthread; 384 p = curproc; 385 sc = SC_LOOKUP(wchan); 386 mtx_assert(&sc->sc_lock, MA_OWNED); 387 MPASS(wchan != NULL); 388 /* 389 * See if there are any pending signals for this thread. If not 390 * we can switch immediately. Otherwise do the signal processing 391 * directly. 392 */ 393 thread_lock(td); 394 if ((td->td_flags & (TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK)) == 0) { 395 sleepq_switch(wchan, pri); 396 return (0); 397 } 398 thread_unlock(td); 399 mtx_unlock_spin(&sc->sc_lock); 400 CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)", 401 (void *)td, (long)p->p_pid, td->td_name); 402 PROC_LOCK(p); 403 ps = p->p_sigacts; 404 mtx_lock(&ps->ps_mtx); 405 sig = cursig(td); 406 if (sig == 0) { 407 mtx_unlock(&ps->ps_mtx); 408 ret = thread_suspend_check(1); 409 MPASS(ret == 0 || ret == EINTR || ret == ERESTART); 410 } else { 411 if (SIGISMEMBER(ps->ps_sigintr, sig)) 412 ret = EINTR; 413 else 414 ret = ERESTART; 415 mtx_unlock(&ps->ps_mtx); 416 } 417 /* 418 * Lock the per-process spinlock prior to dropping the PROC_LOCK 419 * to avoid a signal delivery race. PROC_LOCK, PROC_SLOCK, and 420 * thread_lock() are currently held in tdsignal(). 421 */ 422 PROC_SLOCK(p); 423 mtx_lock_spin(&sc->sc_lock); 424 PROC_UNLOCK(p); 425 thread_lock(td); 426 PROC_SUNLOCK(p); 427 /* 428 * There were pending signals and this thread is still 429 * on the sleep queue, remove it from the sleep queue. 430 */ 431 if (TD_ON_SLEEPQ(td)) { 432 sq = sleepq_lookup(wchan); 433 if (sleepq_resume_thread(sq, td, 0)) { 434 #ifdef INVARIANTS 435 /* 436 * This thread hasn't gone to sleep yet, so it 437 * should not be swapped out. 438 */ 439 panic("not waking up swapper"); 440 #endif 441 } 442 } 443 mtx_unlock_spin(&sc->sc_lock); 444 MPASS(td->td_lock != &sc->sc_lock); 445 return (ret); 446 } 447 448 /* 449 * Switches to another thread if we are still asleep on a sleep queue. 450 * Returns with thread lock. 451 */ 452 static void 453 sleepq_switch(void *wchan, int pri) 454 { 455 struct sleepqueue_chain *sc; 456 struct sleepqueue *sq; 457 struct thread *td; 458 459 td = curthread; 460 sc = SC_LOOKUP(wchan); 461 mtx_assert(&sc->sc_lock, MA_OWNED); 462 THREAD_LOCK_ASSERT(td, MA_OWNED); 463 464 /* 465 * If we have a sleep queue, then we've already been woken up, so 466 * just return. 467 */ 468 if (td->td_sleepqueue != NULL) { 469 mtx_unlock_spin(&sc->sc_lock); 470 return; 471 } 472 473 /* 474 * If TDF_TIMEOUT is set, then our sleep has been timed out 475 * already but we are still on the sleep queue, so dequeue the 476 * thread and return. 477 */ 478 if (td->td_flags & TDF_TIMEOUT) { 479 MPASS(TD_ON_SLEEPQ(td)); 480 sq = sleepq_lookup(wchan); 481 if (sleepq_resume_thread(sq, td, 0)) { 482 #ifdef INVARIANTS 483 /* 484 * This thread hasn't gone to sleep yet, so it 485 * should not be swapped out. 486 */ 487 panic("not waking up swapper"); 488 #endif 489 } 490 mtx_unlock_spin(&sc->sc_lock); 491 return; 492 } 493 #ifdef SLEEPQUEUE_PROFILING 494 if (prof_enabled) 495 sleepq_profile(td->td_wmesg); 496 #endif 497 MPASS(td->td_sleepqueue == NULL); 498 sched_sleep(td, pri); 499 thread_lock_set(td, &sc->sc_lock); 500 TD_SET_SLEEPING(td); 501 mi_switch(SW_VOL | SWT_SLEEPQ, NULL); 502 KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING")); 503 CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)", 504 (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name); 505 } 506 507 /* 508 * Check to see if we timed out. 509 */ 510 static int 511 sleepq_check_timeout(void) 512 { 513 struct thread *td; 514 515 td = curthread; 516 THREAD_LOCK_ASSERT(td, MA_OWNED); 517 518 /* 519 * If TDF_TIMEOUT is set, we timed out. 520 */ 521 if (td->td_flags & TDF_TIMEOUT) { 522 td->td_flags &= ~TDF_TIMEOUT; 523 return (EWOULDBLOCK); 524 } 525 526 /* 527 * If TDF_TIMOFAIL is set, the timeout ran after we had 528 * already been woken up. 529 */ 530 if (td->td_flags & TDF_TIMOFAIL) 531 td->td_flags &= ~TDF_TIMOFAIL; 532 533 /* 534 * If callout_stop() fails, then the timeout is running on 535 * another CPU, so synchronize with it to avoid having it 536 * accidentally wake up a subsequent sleep. 537 */ 538 else if (callout_stop(&td->td_slpcallout) == 0) { 539 td->td_flags |= TDF_TIMEOUT; 540 TD_SET_SLEEPING(td); 541 mi_switch(SW_INVOL | SWT_SLEEPQTIMO, NULL); 542 } 543 return (0); 544 } 545 546 /* 547 * Check to see if we were awoken by a signal. 548 */ 549 static int 550 sleepq_check_signals(void) 551 { 552 struct thread *td; 553 554 td = curthread; 555 THREAD_LOCK_ASSERT(td, MA_OWNED); 556 557 /* We are no longer in an interruptible sleep. */ 558 if (td->td_flags & TDF_SINTR) 559 td->td_flags &= ~TDF_SINTR; 560 561 if (td->td_flags & TDF_SLEEPABORT) { 562 td->td_flags &= ~TDF_SLEEPABORT; 563 return (td->td_intrval); 564 } 565 566 return (0); 567 } 568 569 /* 570 * Block the current thread until it is awakened from its sleep queue. 571 */ 572 void 573 sleepq_wait(void *wchan, int pri) 574 { 575 struct thread *td; 576 577 td = curthread; 578 MPASS(!(td->td_flags & TDF_SINTR)); 579 thread_lock(td); 580 sleepq_switch(wchan, pri); 581 thread_unlock(td); 582 } 583 584 /* 585 * Block the current thread until it is awakened from its sleep queue 586 * or it is interrupted by a signal. 587 */ 588 int 589 sleepq_wait_sig(void *wchan, int pri) 590 { 591 int rcatch; 592 int rval; 593 594 rcatch = sleepq_catch_signals(wchan, pri); 595 rval = sleepq_check_signals(); 596 thread_unlock(curthread); 597 if (rcatch) 598 return (rcatch); 599 return (rval); 600 } 601 602 /* 603 * Block the current thread until it is awakened from its sleep queue 604 * or it times out while waiting. 605 */ 606 int 607 sleepq_timedwait(void *wchan, int pri) 608 { 609 struct thread *td; 610 int rval; 611 612 td = curthread; 613 MPASS(!(td->td_flags & TDF_SINTR)); 614 thread_lock(td); 615 sleepq_switch(wchan, pri); 616 rval = sleepq_check_timeout(); 617 thread_unlock(td); 618 619 return (rval); 620 } 621 622 /* 623 * Block the current thread until it is awakened from its sleep queue, 624 * it is interrupted by a signal, or it times out waiting to be awakened. 625 */ 626 int 627 sleepq_timedwait_sig(void *wchan, int pri) 628 { 629 int rcatch, rvalt, rvals; 630 631 rcatch = sleepq_catch_signals(wchan, pri); 632 rvalt = sleepq_check_timeout(); 633 rvals = sleepq_check_signals(); 634 thread_unlock(curthread); 635 if (rcatch) 636 return (rcatch); 637 if (rvals) 638 return (rvals); 639 return (rvalt); 640 } 641 642 /* 643 * Removes a thread from a sleep queue and makes it 644 * runnable. 645 */ 646 static int 647 sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri) 648 { 649 struct sleepqueue_chain *sc; 650 651 MPASS(td != NULL); 652 MPASS(sq->sq_wchan != NULL); 653 MPASS(td->td_wchan == sq->sq_wchan); 654 MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0); 655 THREAD_LOCK_ASSERT(td, MA_OWNED); 656 sc = SC_LOOKUP(sq->sq_wchan); 657 mtx_assert(&sc->sc_lock, MA_OWNED); 658 659 /* Remove the thread from the queue. */ 660 TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq); 661 662 /* 663 * Get a sleep queue for this thread. If this is the last waiter, 664 * use the queue itself and take it out of the chain, otherwise, 665 * remove a queue from the free list. 666 */ 667 if (LIST_EMPTY(&sq->sq_free)) { 668 td->td_sleepqueue = sq; 669 #ifdef INVARIANTS 670 sq->sq_wchan = NULL; 671 #endif 672 #ifdef SLEEPQUEUE_PROFILING 673 sc->sc_depth--; 674 #endif 675 } else 676 td->td_sleepqueue = LIST_FIRST(&sq->sq_free); 677 LIST_REMOVE(td->td_sleepqueue, sq_hash); 678 679 td->td_wmesg = NULL; 680 td->td_wchan = NULL; 681 td->td_flags &= ~TDF_SINTR; 682 683 CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)", 684 (void *)td, (long)td->td_proc->p_pid, td->td_name); 685 686 /* Adjust priority if requested. */ 687 MPASS(pri == 0 || (pri >= PRI_MIN && pri <= PRI_MAX)); 688 if (pri != 0 && td->td_priority > pri) 689 sched_prio(td, pri); 690 691 /* 692 * Note that thread td might not be sleeping if it is running 693 * sleepq_catch_signals() on another CPU or is blocked on its 694 * proc lock to check signals. There's no need to mark the 695 * thread runnable in that case. 696 */ 697 if (TD_IS_SLEEPING(td)) { 698 TD_CLR_SLEEPING(td); 699 return (setrunnable(td)); 700 } 701 return (0); 702 } 703 704 #ifdef INVARIANTS 705 /* 706 * UMA zone item deallocator. 707 */ 708 static void 709 sleepq_dtor(void *mem, int size, void *arg) 710 { 711 struct sleepqueue *sq; 712 int i; 713 714 sq = mem; 715 for (i = 0; i < NR_SLEEPQS; i++) 716 MPASS(TAILQ_EMPTY(&sq->sq_blocked[i])); 717 } 718 #endif 719 720 /* 721 * UMA zone item initializer. 722 */ 723 static int 724 sleepq_init(void *mem, int size, int flags) 725 { 726 struct sleepqueue *sq; 727 int i; 728 729 bzero(mem, size); 730 sq = mem; 731 for (i = 0; i < NR_SLEEPQS; i++) 732 TAILQ_INIT(&sq->sq_blocked[i]); 733 LIST_INIT(&sq->sq_free); 734 return (0); 735 } 736 737 /* 738 * Find the highest priority thread sleeping on a wait channel and resume it. 739 */ 740 int 741 sleepq_signal(void *wchan, int flags, int pri, int queue) 742 { 743 struct sleepqueue *sq; 744 struct thread *td, *besttd; 745 int wakeup_swapper; 746 747 CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags); 748 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 749 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 750 sq = sleepq_lookup(wchan); 751 if (sq == NULL) 752 return (0); 753 KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE), 754 ("%s: mismatch between sleep/wakeup and cv_*", __func__)); 755 756 /* 757 * Find the highest priority thread on the queue. If there is a 758 * tie, use the thread that first appears in the queue as it has 759 * been sleeping the longest since threads are always added to 760 * the tail of sleep queues. 761 */ 762 besttd = NULL; 763 TAILQ_FOREACH(td, &sq->sq_blocked[queue], td_slpq) { 764 if (besttd == NULL || td->td_priority < besttd->td_priority) 765 besttd = td; 766 } 767 MPASS(besttd != NULL); 768 thread_lock(besttd); 769 wakeup_swapper = sleepq_resume_thread(sq, besttd, pri); 770 thread_unlock(besttd); 771 return (wakeup_swapper); 772 } 773 774 /* 775 * Resume all threads sleeping on a specified wait channel. 776 */ 777 int 778 sleepq_broadcast(void *wchan, int flags, int pri, int queue) 779 { 780 struct sleepqueue *sq; 781 struct thread *td, *tdn; 782 int wakeup_swapper; 783 784 CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags); 785 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 786 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 787 sq = sleepq_lookup(wchan); 788 if (sq == NULL) 789 return (0); 790 KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE), 791 ("%s: mismatch between sleep/wakeup and cv_*", __func__)); 792 793 /* Resume all blocked threads on the sleep queue. */ 794 wakeup_swapper = 0; 795 TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, tdn) { 796 thread_lock(td); 797 if (sleepq_resume_thread(sq, td, pri)) 798 wakeup_swapper = 1; 799 thread_unlock(td); 800 } 801 return (wakeup_swapper); 802 } 803 804 /* 805 * Time sleeping threads out. When the timeout expires, the thread is 806 * removed from the sleep queue and made runnable if it is still asleep. 807 */ 808 static void 809 sleepq_timeout(void *arg) 810 { 811 struct sleepqueue_chain *sc; 812 struct sleepqueue *sq; 813 struct thread *td; 814 void *wchan; 815 int wakeup_swapper; 816 817 td = arg; 818 wakeup_swapper = 0; 819 CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)", 820 (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name); 821 822 /* 823 * First, see if the thread is asleep and get the wait channel if 824 * it is. 825 */ 826 thread_lock(td); 827 if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) { 828 wchan = td->td_wchan; 829 sc = SC_LOOKUP(wchan); 830 THREAD_LOCKPTR_ASSERT(td, &sc->sc_lock); 831 sq = sleepq_lookup(wchan); 832 MPASS(sq != NULL); 833 td->td_flags |= TDF_TIMEOUT; 834 wakeup_swapper = sleepq_resume_thread(sq, td, 0); 835 thread_unlock(td); 836 if (wakeup_swapper) 837 kick_proc0(); 838 return; 839 } 840 841 /* 842 * If the thread is on the SLEEPQ but isn't sleeping yet, it 843 * can either be on another CPU in between sleepq_add() and 844 * one of the sleepq_*wait*() routines or it can be in 845 * sleepq_catch_signals(). 846 */ 847 if (TD_ON_SLEEPQ(td)) { 848 td->td_flags |= TDF_TIMEOUT; 849 thread_unlock(td); 850 return; 851 } 852 853 /* 854 * Now check for the edge cases. First, if TDF_TIMEOUT is set, 855 * then the other thread has already yielded to us, so clear 856 * the flag and resume it. If TDF_TIMEOUT is not set, then the 857 * we know that the other thread is not on a sleep queue, but it 858 * hasn't resumed execution yet. In that case, set TDF_TIMOFAIL 859 * to let it know that the timeout has already run and doesn't 860 * need to be canceled. 861 */ 862 if (td->td_flags & TDF_TIMEOUT) { 863 MPASS(TD_IS_SLEEPING(td)); 864 td->td_flags &= ~TDF_TIMEOUT; 865 TD_CLR_SLEEPING(td); 866 wakeup_swapper = setrunnable(td); 867 } else 868 td->td_flags |= TDF_TIMOFAIL; 869 thread_unlock(td); 870 if (wakeup_swapper) 871 kick_proc0(); 872 } 873 874 /* 875 * Resumes a specific thread from the sleep queue associated with a specific 876 * wait channel if it is on that queue. 877 */ 878 void 879 sleepq_remove(struct thread *td, void *wchan) 880 { 881 struct sleepqueue *sq; 882 int wakeup_swapper; 883 884 /* 885 * Look up the sleep queue for this wait channel, then re-check 886 * that the thread is asleep on that channel, if it is not, then 887 * bail. 888 */ 889 MPASS(wchan != NULL); 890 sleepq_lock(wchan); 891 sq = sleepq_lookup(wchan); 892 /* 893 * We can not lock the thread here as it may be sleeping on a 894 * different sleepq. However, holding the sleepq lock for this 895 * wchan can guarantee that we do not miss a wakeup for this 896 * channel. The asserts below will catch any false positives. 897 */ 898 if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) { 899 sleepq_release(wchan); 900 return; 901 } 902 /* Thread is asleep on sleep queue sq, so wake it up. */ 903 thread_lock(td); 904 MPASS(sq != NULL); 905 MPASS(td->td_wchan == wchan); 906 wakeup_swapper = sleepq_resume_thread(sq, td, 0); 907 thread_unlock(td); 908 sleepq_release(wchan); 909 if (wakeup_swapper) 910 kick_proc0(); 911 } 912 913 /* 914 * Abort a thread as if an interrupt had occurred. Only abort 915 * interruptible waits (unfortunately it isn't safe to abort others). 916 */ 917 int 918 sleepq_abort(struct thread *td, int intrval) 919 { 920 struct sleepqueue *sq; 921 void *wchan; 922 923 THREAD_LOCK_ASSERT(td, MA_OWNED); 924 MPASS(TD_ON_SLEEPQ(td)); 925 MPASS(td->td_flags & TDF_SINTR); 926 MPASS(intrval == EINTR || intrval == ERESTART); 927 928 /* 929 * If the TDF_TIMEOUT flag is set, just leave. A 930 * timeout is scheduled anyhow. 931 */ 932 if (td->td_flags & TDF_TIMEOUT) 933 return (0); 934 935 CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)", 936 (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name); 937 td->td_intrval = intrval; 938 td->td_flags |= TDF_SLEEPABORT; 939 /* 940 * If the thread has not slept yet it will find the signal in 941 * sleepq_catch_signals() and call sleepq_resume_thread. Otherwise 942 * we have to do it here. 943 */ 944 if (!TD_IS_SLEEPING(td)) 945 return (0); 946 wchan = td->td_wchan; 947 MPASS(wchan != NULL); 948 sq = sleepq_lookup(wchan); 949 MPASS(sq != NULL); 950 951 /* Thread is asleep on sleep queue sq, so wake it up. */ 952 return (sleepq_resume_thread(sq, td, 0)); 953 } 954 955 #ifdef SLEEPQUEUE_PROFILING 956 #define SLEEPQ_PROF_LOCATIONS 1024 957 #define SLEEPQ_SBUFSIZE (40 * 512) 958 struct sleepq_prof { 959 LIST_ENTRY(sleepq_prof) sp_link; 960 const char *sp_wmesg; 961 long sp_count; 962 }; 963 964 LIST_HEAD(sqphead, sleepq_prof); 965 966 struct sqphead sleepq_prof_free; 967 struct sqphead sleepq_hash[SC_TABLESIZE]; 968 static struct sleepq_prof sleepq_profent[SLEEPQ_PROF_LOCATIONS]; 969 static struct mtx sleepq_prof_lock; 970 MTX_SYSINIT(sleepq_prof_lock, &sleepq_prof_lock, "sleepq_prof", MTX_SPIN); 971 972 static void 973 sleepq_profile(const char *wmesg) 974 { 975 struct sleepq_prof *sp; 976 977 mtx_lock_spin(&sleepq_prof_lock); 978 if (prof_enabled == 0) 979 goto unlock; 980 LIST_FOREACH(sp, &sleepq_hash[SC_HASH(wmesg)], sp_link) 981 if (sp->sp_wmesg == wmesg) 982 goto done; 983 sp = LIST_FIRST(&sleepq_prof_free); 984 if (sp == NULL) 985 goto unlock; 986 sp->sp_wmesg = wmesg; 987 LIST_REMOVE(sp, sp_link); 988 LIST_INSERT_HEAD(&sleepq_hash[SC_HASH(wmesg)], sp, sp_link); 989 done: 990 sp->sp_count++; 991 unlock: 992 mtx_unlock_spin(&sleepq_prof_lock); 993 return; 994 } 995 996 static void 997 sleepq_prof_reset(void) 998 { 999 struct sleepq_prof *sp; 1000 int enabled; 1001 int i; 1002 1003 mtx_lock_spin(&sleepq_prof_lock); 1004 enabled = prof_enabled; 1005 prof_enabled = 0; 1006 for (i = 0; i < SC_TABLESIZE; i++) 1007 LIST_INIT(&sleepq_hash[i]); 1008 LIST_INIT(&sleepq_prof_free); 1009 for (i = 0; i < SLEEPQ_PROF_LOCATIONS; i++) { 1010 sp = &sleepq_profent[i]; 1011 sp->sp_wmesg = NULL; 1012 sp->sp_count = 0; 1013 LIST_INSERT_HEAD(&sleepq_prof_free, sp, sp_link); 1014 } 1015 prof_enabled = enabled; 1016 mtx_unlock_spin(&sleepq_prof_lock); 1017 } 1018 1019 static int 1020 enable_sleepq_prof(SYSCTL_HANDLER_ARGS) 1021 { 1022 int error, v; 1023 1024 v = prof_enabled; 1025 error = sysctl_handle_int(oidp, &v, v, req); 1026 if (error) 1027 return (error); 1028 if (req->newptr == NULL) 1029 return (error); 1030 if (v == prof_enabled) 1031 return (0); 1032 if (v == 1) 1033 sleepq_prof_reset(); 1034 mtx_lock_spin(&sleepq_prof_lock); 1035 prof_enabled = !!v; 1036 mtx_unlock_spin(&sleepq_prof_lock); 1037 1038 return (0); 1039 } 1040 1041 static int 1042 reset_sleepq_prof_stats(SYSCTL_HANDLER_ARGS) 1043 { 1044 int error, v; 1045 1046 v = 0; 1047 error = sysctl_handle_int(oidp, &v, 0, req); 1048 if (error) 1049 return (error); 1050 if (req->newptr == NULL) 1051 return (error); 1052 if (v == 0) 1053 return (0); 1054 sleepq_prof_reset(); 1055 1056 return (0); 1057 } 1058 1059 static int 1060 dump_sleepq_prof_stats(SYSCTL_HANDLER_ARGS) 1061 { 1062 static int multiplier = 1; 1063 struct sleepq_prof *sp; 1064 struct sbuf *sb; 1065 int enabled; 1066 int error; 1067 int i; 1068 1069 retry_sbufops: 1070 sb = sbuf_new(NULL, NULL, SLEEPQ_SBUFSIZE * multiplier, SBUF_FIXEDLEN); 1071 sbuf_printf(sb, "\nwmesg\tcount\n"); 1072 enabled = prof_enabled; 1073 mtx_lock_spin(&sleepq_prof_lock); 1074 prof_enabled = 0; 1075 mtx_unlock_spin(&sleepq_prof_lock); 1076 for (i = 0; i < SC_TABLESIZE; i++) { 1077 LIST_FOREACH(sp, &sleepq_hash[i], sp_link) { 1078 sbuf_printf(sb, "%s\t%ld\n", 1079 sp->sp_wmesg, sp->sp_count); 1080 if (sbuf_overflowed(sb)) { 1081 sbuf_delete(sb); 1082 multiplier++; 1083 goto retry_sbufops; 1084 } 1085 } 1086 } 1087 mtx_lock_spin(&sleepq_prof_lock); 1088 prof_enabled = enabled; 1089 mtx_unlock_spin(&sleepq_prof_lock); 1090 1091 sbuf_finish(sb); 1092 error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1); 1093 sbuf_delete(sb); 1094 return (error); 1095 } 1096 1097 SYSCTL_PROC(_debug_sleepq, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD, 1098 NULL, 0, dump_sleepq_prof_stats, "A", "Sleepqueue profiling statistics"); 1099 SYSCTL_PROC(_debug_sleepq, OID_AUTO, reset, CTLTYPE_INT | CTLFLAG_RW, 1100 NULL, 0, reset_sleepq_prof_stats, "I", 1101 "Reset sleepqueue profiling statistics"); 1102 SYSCTL_PROC(_debug_sleepq, OID_AUTO, enable, CTLTYPE_INT | CTLFLAG_RW, 1103 NULL, 0, enable_sleepq_prof, "I", "Enable sleepqueue profiling"); 1104 #endif 1105 1106 #ifdef DDB 1107 DB_SHOW_COMMAND(sleepq, db_show_sleepqueue) 1108 { 1109 struct sleepqueue_chain *sc; 1110 struct sleepqueue *sq; 1111 #ifdef INVARIANTS 1112 struct lock_object *lock; 1113 #endif 1114 struct thread *td; 1115 void *wchan; 1116 int i; 1117 1118 if (!have_addr) 1119 return; 1120 1121 /* 1122 * First, see if there is an active sleep queue for the wait channel 1123 * indicated by the address. 1124 */ 1125 wchan = (void *)addr; 1126 sc = SC_LOOKUP(wchan); 1127 LIST_FOREACH(sq, &sc->sc_queues, sq_hash) 1128 if (sq->sq_wchan == wchan) 1129 goto found; 1130 1131 /* 1132 * Second, see if there is an active sleep queue at the address 1133 * indicated. 1134 */ 1135 for (i = 0; i < SC_TABLESIZE; i++) 1136 LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) { 1137 if (sq == (struct sleepqueue *)addr) 1138 goto found; 1139 } 1140 1141 db_printf("Unable to locate a sleep queue via %p\n", (void *)addr); 1142 return; 1143 found: 1144 db_printf("Wait channel: %p\n", sq->sq_wchan); 1145 #ifdef INVARIANTS 1146 db_printf("Queue type: %d\n", sq->sq_type); 1147 if (sq->sq_lock) { 1148 lock = sq->sq_lock; 1149 db_printf("Associated Interlock: %p - (%s) %s\n", lock, 1150 LOCK_CLASS(lock)->lc_name, lock->lo_name); 1151 } 1152 #endif 1153 db_printf("Blocked threads:\n"); 1154 for (i = 0; i < NR_SLEEPQS; i++) { 1155 db_printf("\nQueue[%d]:\n", i); 1156 if (TAILQ_EMPTY(&sq->sq_blocked[i])) 1157 db_printf("\tempty\n"); 1158 else 1159 TAILQ_FOREACH(td, &sq->sq_blocked[0], 1160 td_slpq) { 1161 db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td, 1162 td->td_tid, td->td_proc->p_pid, 1163 td->td_name); 1164 } 1165 } 1166 } 1167 1168 /* Alias 'show sleepqueue' to 'show sleepq'. */ 1169 DB_SHOW_ALIAS(sleepqueue, db_show_sleepqueue); 1170 #endif 1171