xref: /freebsd/sys/kern/subr_sleepqueue.c (revision 342af4d5efec74bb4bc11261fdd9991c53616f54)
1 /*-
2  * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 /*
28  * Implementation of sleep queues used to hold queue of threads blocked on
29  * a wait channel.  Sleep queues different from turnstiles in that wait
30  * channels are not owned by anyone, so there is no priority propagation.
31  * Sleep queues can also provide a timeout and can also be interrupted by
32  * signals.  That said, there are several similarities between the turnstile
33  * and sleep queue implementations.  (Note: turnstiles were implemented
34  * first.)  For example, both use a hash table of the same size where each
35  * bucket is referred to as a "chain" that contains both a spin lock and
36  * a linked list of queues.  An individual queue is located by using a hash
37  * to pick a chain, locking the chain, and then walking the chain searching
38  * for the queue.  This means that a wait channel object does not need to
39  * embed it's queue head just as locks do not embed their turnstile queue
40  * head.  Threads also carry around a sleep queue that they lend to the
41  * wait channel when blocking.  Just as in turnstiles, the queue includes
42  * a free list of the sleep queues of other threads blocked on the same
43  * wait channel in the case of multiple waiters.
44  *
45  * Some additional functionality provided by sleep queues include the
46  * ability to set a timeout.  The timeout is managed using a per-thread
47  * callout that resumes a thread if it is asleep.  A thread may also
48  * catch signals while it is asleep (aka an interruptible sleep).  The
49  * signal code uses sleepq_abort() to interrupt a sleeping thread.  Finally,
50  * sleep queues also provide some extra assertions.  One is not allowed to
51  * mix the sleep/wakeup and cv APIs for a given wait channel.  Also, one
52  * must consistently use the same lock to synchronize with a wait channel,
53  * though this check is currently only a warning for sleep/wakeup due to
54  * pre-existing abuse of that API.  The same lock must also be held when
55  * awakening threads, though that is currently only enforced for condition
56  * variables.
57  */
58 
59 #include <sys/cdefs.h>
60 __FBSDID("$FreeBSD$");
61 
62 #include "opt_sleepqueue_profiling.h"
63 #include "opt_ddb.h"
64 #include "opt_sched.h"
65 
66 #include <sys/param.h>
67 #include <sys/systm.h>
68 #include <sys/lock.h>
69 #include <sys/kernel.h>
70 #include <sys/ktr.h>
71 #include <sys/mutex.h>
72 #include <sys/proc.h>
73 #include <sys/sbuf.h>
74 #include <sys/sched.h>
75 #include <sys/sdt.h>
76 #include <sys/signalvar.h>
77 #include <sys/sleepqueue.h>
78 #include <sys/sysctl.h>
79 
80 #include <vm/uma.h>
81 
82 #ifdef DDB
83 #include <ddb/ddb.h>
84 #endif
85 
86 /*
87  * Constants for the hash table of sleep queue chains.
88  * SC_TABLESIZE must be a power of two for SC_MASK to work properly.
89  */
90 #define	SC_TABLESIZE	256			/* Must be power of 2. */
91 #define	SC_MASK		(SC_TABLESIZE - 1)
92 #define	SC_SHIFT	8
93 #define	SC_HASH(wc)	((((uintptr_t)(wc) >> SC_SHIFT) ^ (uintptr_t)(wc)) & \
94 			    SC_MASK)
95 #define	SC_LOOKUP(wc)	&sleepq_chains[SC_HASH(wc)]
96 #define NR_SLEEPQS      2
97 /*
98  * There two different lists of sleep queues.  Both lists are connected
99  * via the sq_hash entries.  The first list is the sleep queue chain list
100  * that a sleep queue is on when it is attached to a wait channel.  The
101  * second list is the free list hung off of a sleep queue that is attached
102  * to a wait channel.
103  *
104  * Each sleep queue also contains the wait channel it is attached to, the
105  * list of threads blocked on that wait channel, flags specific to the
106  * wait channel, and the lock used to synchronize with a wait channel.
107  * The flags are used to catch mismatches between the various consumers
108  * of the sleep queue API (e.g. sleep/wakeup and condition variables).
109  * The lock pointer is only used when invariants are enabled for various
110  * debugging checks.
111  *
112  * Locking key:
113  *  c - sleep queue chain lock
114  */
115 struct sleepqueue {
116 	TAILQ_HEAD(, thread) sq_blocked[NR_SLEEPQS];	/* (c) Blocked threads. */
117 	u_int sq_blockedcnt[NR_SLEEPQS];	/* (c) N. of blocked threads. */
118 	LIST_ENTRY(sleepqueue) sq_hash;		/* (c) Chain and free list. */
119 	LIST_HEAD(, sleepqueue) sq_free;	/* (c) Free queues. */
120 	void	*sq_wchan;			/* (c) Wait channel. */
121 	int	sq_type;			/* (c) Queue type. */
122 #ifdef INVARIANTS
123 	struct lock_object *sq_lock;		/* (c) Associated lock. */
124 #endif
125 };
126 
127 struct sleepqueue_chain {
128 	LIST_HEAD(, sleepqueue) sc_queues;	/* List of sleep queues. */
129 	struct mtx sc_lock;			/* Spin lock for this chain. */
130 #ifdef SLEEPQUEUE_PROFILING
131 	u_int	sc_depth;			/* Length of sc_queues. */
132 	u_int	sc_max_depth;			/* Max length of sc_queues. */
133 #endif
134 };
135 
136 #ifdef SLEEPQUEUE_PROFILING
137 u_int sleepq_max_depth;
138 static SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling");
139 static SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0,
140     "sleepq chain stats");
141 SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth,
142     0, "maxmimum depth achieved of a single chain");
143 
144 static void	sleepq_profile(const char *wmesg);
145 static int	prof_enabled;
146 #endif
147 static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE];
148 static uma_zone_t sleepq_zone;
149 
150 /*
151  * Prototypes for non-exported routines.
152  */
153 static int	sleepq_catch_signals(void *wchan, int pri);
154 static int	sleepq_check_signals(void);
155 static int	sleepq_check_timeout(void);
156 #ifdef INVARIANTS
157 static void	sleepq_dtor(void *mem, int size, void *arg);
158 #endif
159 static int	sleepq_init(void *mem, int size, int flags);
160 static int	sleepq_resume_thread(struct sleepqueue *sq, struct thread *td,
161 		    int pri);
162 static void	sleepq_switch(void *wchan, int pri);
163 static void	sleepq_timeout(void *arg);
164 
165 SDT_PROBE_DECLARE(sched, , , sleep);
166 SDT_PROBE_DECLARE(sched, , , wakeup);
167 
168 /*
169  * Initialize SLEEPQUEUE_PROFILING specific sysctl nodes.
170  * Note that it must happen after sleepinit() has been fully executed, so
171  * it must happen after SI_SUB_KMEM SYSINIT() subsystem setup.
172  */
173 #ifdef SLEEPQUEUE_PROFILING
174 static void
175 init_sleepqueue_profiling(void)
176 {
177 	char chain_name[10];
178 	struct sysctl_oid *chain_oid;
179 	u_int i;
180 
181 	for (i = 0; i < SC_TABLESIZE; i++) {
182 		snprintf(chain_name, sizeof(chain_name), "%u", i);
183 		chain_oid = SYSCTL_ADD_NODE(NULL,
184 		    SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO,
185 		    chain_name, CTLFLAG_RD, NULL, "sleepq chain stats");
186 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
187 		    "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL);
188 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
189 		    "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0,
190 		    NULL);
191 	}
192 }
193 
194 SYSINIT(sleepqueue_profiling, SI_SUB_LOCK, SI_ORDER_ANY,
195     init_sleepqueue_profiling, NULL);
196 #endif
197 
198 /*
199  * Early initialization of sleep queues that is called from the sleepinit()
200  * SYSINIT.
201  */
202 void
203 init_sleepqueues(void)
204 {
205 	int i;
206 
207 	for (i = 0; i < SC_TABLESIZE; i++) {
208 		LIST_INIT(&sleepq_chains[i].sc_queues);
209 		mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL,
210 		    MTX_SPIN | MTX_RECURSE);
211 	}
212 	sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue),
213 #ifdef INVARIANTS
214 	    NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
215 #else
216 	    NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
217 #endif
218 
219 	thread0.td_sleepqueue = sleepq_alloc();
220 }
221 
222 /*
223  * Get a sleep queue for a new thread.
224  */
225 struct sleepqueue *
226 sleepq_alloc(void)
227 {
228 
229 	return (uma_zalloc(sleepq_zone, M_WAITOK));
230 }
231 
232 /*
233  * Free a sleep queue when a thread is destroyed.
234  */
235 void
236 sleepq_free(struct sleepqueue *sq)
237 {
238 
239 	uma_zfree(sleepq_zone, sq);
240 }
241 
242 /*
243  * Lock the sleep queue chain associated with the specified wait channel.
244  */
245 void
246 sleepq_lock(void *wchan)
247 {
248 	struct sleepqueue_chain *sc;
249 
250 	sc = SC_LOOKUP(wchan);
251 	mtx_lock_spin(&sc->sc_lock);
252 }
253 
254 /*
255  * Look up the sleep queue associated with a given wait channel in the hash
256  * table locking the associated sleep queue chain.  If no queue is found in
257  * the table, NULL is returned.
258  */
259 struct sleepqueue *
260 sleepq_lookup(void *wchan)
261 {
262 	struct sleepqueue_chain *sc;
263 	struct sleepqueue *sq;
264 
265 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
266 	sc = SC_LOOKUP(wchan);
267 	mtx_assert(&sc->sc_lock, MA_OWNED);
268 	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
269 		if (sq->sq_wchan == wchan)
270 			return (sq);
271 	return (NULL);
272 }
273 
274 /*
275  * Unlock the sleep queue chain associated with a given wait channel.
276  */
277 void
278 sleepq_release(void *wchan)
279 {
280 	struct sleepqueue_chain *sc;
281 
282 	sc = SC_LOOKUP(wchan);
283 	mtx_unlock_spin(&sc->sc_lock);
284 }
285 
286 /*
287  * Places the current thread on the sleep queue for the specified wait
288  * channel.  If INVARIANTS is enabled, then it associates the passed in
289  * lock with the sleepq to make sure it is held when that sleep queue is
290  * woken up.
291  */
292 void
293 sleepq_add(void *wchan, struct lock_object *lock, const char *wmesg, int flags,
294     int queue)
295 {
296 	struct sleepqueue_chain *sc;
297 	struct sleepqueue *sq;
298 	struct thread *td;
299 
300 	td = curthread;
301 	sc = SC_LOOKUP(wchan);
302 	mtx_assert(&sc->sc_lock, MA_OWNED);
303 	MPASS(td->td_sleepqueue != NULL);
304 	MPASS(wchan != NULL);
305 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
306 
307 	/* If this thread is not allowed to sleep, die a horrible death. */
308 	KASSERT(td->td_no_sleeping == 0,
309 	    ("%s: td %p to sleep on wchan %p with sleeping prohibited",
310 	    __func__, td, wchan));
311 
312 	/* Look up the sleep queue associated with the wait channel 'wchan'. */
313 	sq = sleepq_lookup(wchan);
314 
315 	/*
316 	 * If the wait channel does not already have a sleep queue, use
317 	 * this thread's sleep queue.  Otherwise, insert the current thread
318 	 * into the sleep queue already in use by this wait channel.
319 	 */
320 	if (sq == NULL) {
321 #ifdef INVARIANTS
322 		int i;
323 
324 		sq = td->td_sleepqueue;
325 		for (i = 0; i < NR_SLEEPQS; i++) {
326 			KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]),
327 			    ("thread's sleep queue %d is not empty", i));
328 			KASSERT(sq->sq_blockedcnt[i] == 0,
329 			    ("thread's sleep queue %d count mismatches", i));
330 		}
331 		KASSERT(LIST_EMPTY(&sq->sq_free),
332 		    ("thread's sleep queue has a non-empty free list"));
333 		KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer"));
334 		sq->sq_lock = lock;
335 #endif
336 #ifdef SLEEPQUEUE_PROFILING
337 		sc->sc_depth++;
338 		if (sc->sc_depth > sc->sc_max_depth) {
339 			sc->sc_max_depth = sc->sc_depth;
340 			if (sc->sc_max_depth > sleepq_max_depth)
341 				sleepq_max_depth = sc->sc_max_depth;
342 		}
343 #endif
344 		sq = td->td_sleepqueue;
345 		LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash);
346 		sq->sq_wchan = wchan;
347 		sq->sq_type = flags & SLEEPQ_TYPE;
348 	} else {
349 		MPASS(wchan == sq->sq_wchan);
350 		MPASS(lock == sq->sq_lock);
351 		MPASS((flags & SLEEPQ_TYPE) == sq->sq_type);
352 		LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash);
353 	}
354 	thread_lock(td);
355 	TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq);
356 	sq->sq_blockedcnt[queue]++;
357 	td->td_sleepqueue = NULL;
358 	td->td_sqqueue = queue;
359 	td->td_wchan = wchan;
360 	td->td_wmesg = wmesg;
361 	if (flags & SLEEPQ_INTERRUPTIBLE) {
362 		td->td_flags |= TDF_SINTR;
363 		td->td_flags &= ~TDF_SLEEPABORT;
364 	}
365 	thread_unlock(td);
366 }
367 
368 /*
369  * Sets a timeout that will remove the current thread from the specified
370  * sleep queue after timo ticks if the thread has not already been awakened.
371  */
372 void
373 sleepq_set_timeout_sbt(void *wchan, sbintime_t sbt, sbintime_t pr,
374     int flags)
375 {
376 	struct sleepqueue_chain *sc;
377 	struct thread *td;
378 
379 	td = curthread;
380 	sc = SC_LOOKUP(wchan);
381 	mtx_assert(&sc->sc_lock, MA_OWNED);
382 	MPASS(TD_ON_SLEEPQ(td));
383 	MPASS(td->td_sleepqueue == NULL);
384 	MPASS(wchan != NULL);
385 	callout_reset_sbt_on(&td->td_slpcallout, sbt, pr,
386 	    sleepq_timeout, td, PCPU_GET(cpuid), flags | C_DIRECT_EXEC);
387 }
388 
389 /*
390  * Return the number of actual sleepers for the specified queue.
391  */
392 u_int
393 sleepq_sleepcnt(void *wchan, int queue)
394 {
395 	struct sleepqueue *sq;
396 
397 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
398 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
399 	sq = sleepq_lookup(wchan);
400 	if (sq == NULL)
401 		return (0);
402 	return (sq->sq_blockedcnt[queue]);
403 }
404 
405 /*
406  * Marks the pending sleep of the current thread as interruptible and
407  * makes an initial check for pending signals before putting a thread
408  * to sleep. Enters and exits with the thread lock held.  Thread lock
409  * may have transitioned from the sleepq lock to a run lock.
410  */
411 static int
412 sleepq_catch_signals(void *wchan, int pri)
413 {
414 	struct sleepqueue_chain *sc;
415 	struct sleepqueue *sq;
416 	struct thread *td;
417 	struct proc *p;
418 	struct sigacts *ps;
419 	int sig, ret;
420 
421 	td = curthread;
422 	p = curproc;
423 	sc = SC_LOOKUP(wchan);
424 	mtx_assert(&sc->sc_lock, MA_OWNED);
425 	MPASS(wchan != NULL);
426 	if ((td->td_pflags & TDP_WAKEUP) != 0) {
427 		td->td_pflags &= ~TDP_WAKEUP;
428 		ret = EINTR;
429 		thread_lock(td);
430 		goto out;
431 	}
432 
433 	/*
434 	 * See if there are any pending signals for this thread.  If not
435 	 * we can switch immediately.  Otherwise do the signal processing
436 	 * directly.
437 	 */
438 	thread_lock(td);
439 	if ((td->td_flags & (TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK)) == 0) {
440 		sleepq_switch(wchan, pri);
441 		return (0);
442 	}
443 	thread_unlock(td);
444 	mtx_unlock_spin(&sc->sc_lock);
445 	CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)",
446 		(void *)td, (long)p->p_pid, td->td_name);
447 	PROC_LOCK(p);
448 	ps = p->p_sigacts;
449 	mtx_lock(&ps->ps_mtx);
450 	sig = cursig(td);
451 	if (sig == 0) {
452 		mtx_unlock(&ps->ps_mtx);
453 		ret = thread_suspend_check(1);
454 		MPASS(ret == 0 || ret == EINTR || ret == ERESTART);
455 	} else {
456 		if (SIGISMEMBER(ps->ps_sigintr, sig))
457 			ret = EINTR;
458 		else
459 			ret = ERESTART;
460 		mtx_unlock(&ps->ps_mtx);
461 	}
462 	/*
463 	 * Lock the per-process spinlock prior to dropping the PROC_LOCK
464 	 * to avoid a signal delivery race.  PROC_LOCK, PROC_SLOCK, and
465 	 * thread_lock() are currently held in tdsendsignal().
466 	 */
467 	PROC_SLOCK(p);
468 	mtx_lock_spin(&sc->sc_lock);
469 	PROC_UNLOCK(p);
470 	thread_lock(td);
471 	PROC_SUNLOCK(p);
472 	if (ret == 0) {
473 		sleepq_switch(wchan, pri);
474 		return (0);
475 	}
476 out:
477 	/*
478 	 * There were pending signals and this thread is still
479 	 * on the sleep queue, remove it from the sleep queue.
480 	 */
481 	if (TD_ON_SLEEPQ(td)) {
482 		sq = sleepq_lookup(wchan);
483 		if (sleepq_resume_thread(sq, td, 0)) {
484 #ifdef INVARIANTS
485 			/*
486 			 * This thread hasn't gone to sleep yet, so it
487 			 * should not be swapped out.
488 			 */
489 			panic("not waking up swapper");
490 #endif
491 		}
492 	}
493 	mtx_unlock_spin(&sc->sc_lock);
494 	MPASS(td->td_lock != &sc->sc_lock);
495 	return (ret);
496 }
497 
498 /*
499  * Switches to another thread if we are still asleep on a sleep queue.
500  * Returns with thread lock.
501  */
502 static void
503 sleepq_switch(void *wchan, int pri)
504 {
505 	struct sleepqueue_chain *sc;
506 	struct sleepqueue *sq;
507 	struct thread *td;
508 
509 	td = curthread;
510 	sc = SC_LOOKUP(wchan);
511 	mtx_assert(&sc->sc_lock, MA_OWNED);
512 	THREAD_LOCK_ASSERT(td, MA_OWNED);
513 
514 	/*
515 	 * If we have a sleep queue, then we've already been woken up, so
516 	 * just return.
517 	 */
518 	if (td->td_sleepqueue != NULL) {
519 		mtx_unlock_spin(&sc->sc_lock);
520 		return;
521 	}
522 
523 	/*
524 	 * If TDF_TIMEOUT is set, then our sleep has been timed out
525 	 * already but we are still on the sleep queue, so dequeue the
526 	 * thread and return.
527 	 */
528 	if (td->td_flags & TDF_TIMEOUT) {
529 		MPASS(TD_ON_SLEEPQ(td));
530 		sq = sleepq_lookup(wchan);
531 		if (sleepq_resume_thread(sq, td, 0)) {
532 #ifdef INVARIANTS
533 			/*
534 			 * This thread hasn't gone to sleep yet, so it
535 			 * should not be swapped out.
536 			 */
537 			panic("not waking up swapper");
538 #endif
539 		}
540 		mtx_unlock_spin(&sc->sc_lock);
541 		return;
542 	}
543 #ifdef SLEEPQUEUE_PROFILING
544 	if (prof_enabled)
545 		sleepq_profile(td->td_wmesg);
546 #endif
547 	MPASS(td->td_sleepqueue == NULL);
548 	sched_sleep(td, pri);
549 	thread_lock_set(td, &sc->sc_lock);
550 	SDT_PROBE0(sched, , , sleep);
551 	TD_SET_SLEEPING(td);
552 	mi_switch(SW_VOL | SWT_SLEEPQ, NULL);
553 	KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
554 	CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)",
555 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
556 }
557 
558 /*
559  * Check to see if we timed out.
560  */
561 static int
562 sleepq_check_timeout(void)
563 {
564 	struct thread *td;
565 
566 	td = curthread;
567 	THREAD_LOCK_ASSERT(td, MA_OWNED);
568 
569 	/*
570 	 * If TDF_TIMEOUT is set, we timed out.
571 	 */
572 	if (td->td_flags & TDF_TIMEOUT) {
573 		td->td_flags &= ~TDF_TIMEOUT;
574 		return (EWOULDBLOCK);
575 	}
576 
577 	/*
578 	 * If TDF_TIMOFAIL is set, the timeout ran after we had
579 	 * already been woken up.
580 	 */
581 	if (td->td_flags & TDF_TIMOFAIL)
582 		td->td_flags &= ~TDF_TIMOFAIL;
583 
584 	/*
585 	 * If callout_stop() fails, then the timeout is running on
586 	 * another CPU, so synchronize with it to avoid having it
587 	 * accidentally wake up a subsequent sleep.
588 	 */
589 	else if (_callout_stop_safe(&td->td_slpcallout, CS_MIGRBLOCK, NULL)
590 	    == 0) {
591 		td->td_flags |= TDF_TIMEOUT;
592 		TD_SET_SLEEPING(td);
593 		mi_switch(SW_INVOL | SWT_SLEEPQTIMO, NULL);
594 	}
595 	return (0);
596 }
597 
598 /*
599  * Check to see if we were awoken by a signal.
600  */
601 static int
602 sleepq_check_signals(void)
603 {
604 	struct thread *td;
605 
606 	td = curthread;
607 	THREAD_LOCK_ASSERT(td, MA_OWNED);
608 
609 	/* We are no longer in an interruptible sleep. */
610 	if (td->td_flags & TDF_SINTR)
611 		td->td_flags &= ~TDF_SINTR;
612 
613 	if (td->td_flags & TDF_SLEEPABORT) {
614 		td->td_flags &= ~TDF_SLEEPABORT;
615 		return (td->td_intrval);
616 	}
617 
618 	return (0);
619 }
620 
621 /*
622  * Block the current thread until it is awakened from its sleep queue.
623  */
624 void
625 sleepq_wait(void *wchan, int pri)
626 {
627 	struct thread *td;
628 
629 	td = curthread;
630 	MPASS(!(td->td_flags & TDF_SINTR));
631 	thread_lock(td);
632 	sleepq_switch(wchan, pri);
633 	thread_unlock(td);
634 }
635 
636 /*
637  * Block the current thread until it is awakened from its sleep queue
638  * or it is interrupted by a signal.
639  */
640 int
641 sleepq_wait_sig(void *wchan, int pri)
642 {
643 	int rcatch;
644 	int rval;
645 
646 	rcatch = sleepq_catch_signals(wchan, pri);
647 	rval = sleepq_check_signals();
648 	thread_unlock(curthread);
649 	if (rcatch)
650 		return (rcatch);
651 	return (rval);
652 }
653 
654 /*
655  * Block the current thread until it is awakened from its sleep queue
656  * or it times out while waiting.
657  */
658 int
659 sleepq_timedwait(void *wchan, int pri)
660 {
661 	struct thread *td;
662 	int rval;
663 
664 	td = curthread;
665 	MPASS(!(td->td_flags & TDF_SINTR));
666 	thread_lock(td);
667 	sleepq_switch(wchan, pri);
668 	rval = sleepq_check_timeout();
669 	thread_unlock(td);
670 
671 	return (rval);
672 }
673 
674 /*
675  * Block the current thread until it is awakened from its sleep queue,
676  * it is interrupted by a signal, or it times out waiting to be awakened.
677  */
678 int
679 sleepq_timedwait_sig(void *wchan, int pri)
680 {
681 	int rcatch, rvalt, rvals;
682 
683 	rcatch = sleepq_catch_signals(wchan, pri);
684 	rvalt = sleepq_check_timeout();
685 	rvals = sleepq_check_signals();
686 	thread_unlock(curthread);
687 	if (rcatch)
688 		return (rcatch);
689 	if (rvals)
690 		return (rvals);
691 	return (rvalt);
692 }
693 
694 /*
695  * Returns the type of sleepqueue given a waitchannel.
696  */
697 int
698 sleepq_type(void *wchan)
699 {
700 	struct sleepqueue *sq;
701 	int type;
702 
703 	MPASS(wchan != NULL);
704 
705 	sleepq_lock(wchan);
706 	sq = sleepq_lookup(wchan);
707 	if (sq == NULL) {
708 		sleepq_release(wchan);
709 		return (-1);
710 	}
711 	type = sq->sq_type;
712 	sleepq_release(wchan);
713 	return (type);
714 }
715 
716 /*
717  * Removes a thread from a sleep queue and makes it
718  * runnable.
719  */
720 static int
721 sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri)
722 {
723 	struct sleepqueue_chain *sc;
724 
725 	MPASS(td != NULL);
726 	MPASS(sq->sq_wchan != NULL);
727 	MPASS(td->td_wchan == sq->sq_wchan);
728 	MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0);
729 	THREAD_LOCK_ASSERT(td, MA_OWNED);
730 	sc = SC_LOOKUP(sq->sq_wchan);
731 	mtx_assert(&sc->sc_lock, MA_OWNED);
732 
733 	SDT_PROBE2(sched, , , wakeup, td, td->td_proc);
734 
735 	/* Remove the thread from the queue. */
736 	sq->sq_blockedcnt[td->td_sqqueue]--;
737 	TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq);
738 
739 	/*
740 	 * Get a sleep queue for this thread.  If this is the last waiter,
741 	 * use the queue itself and take it out of the chain, otherwise,
742 	 * remove a queue from the free list.
743 	 */
744 	if (LIST_EMPTY(&sq->sq_free)) {
745 		td->td_sleepqueue = sq;
746 #ifdef INVARIANTS
747 		sq->sq_wchan = NULL;
748 #endif
749 #ifdef SLEEPQUEUE_PROFILING
750 		sc->sc_depth--;
751 #endif
752 	} else
753 		td->td_sleepqueue = LIST_FIRST(&sq->sq_free);
754 	LIST_REMOVE(td->td_sleepqueue, sq_hash);
755 
756 	td->td_wmesg = NULL;
757 	td->td_wchan = NULL;
758 	td->td_flags &= ~TDF_SINTR;
759 
760 	CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)",
761 	    (void *)td, (long)td->td_proc->p_pid, td->td_name);
762 
763 	/* Adjust priority if requested. */
764 	MPASS(pri == 0 || (pri >= PRI_MIN && pri <= PRI_MAX));
765 	if (pri != 0 && td->td_priority > pri &&
766 	    PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
767 		sched_prio(td, pri);
768 
769 	/*
770 	 * Note that thread td might not be sleeping if it is running
771 	 * sleepq_catch_signals() on another CPU or is blocked on its
772 	 * proc lock to check signals.  There's no need to mark the
773 	 * thread runnable in that case.
774 	 */
775 	if (TD_IS_SLEEPING(td)) {
776 		TD_CLR_SLEEPING(td);
777 		return (setrunnable(td));
778 	}
779 	return (0);
780 }
781 
782 #ifdef INVARIANTS
783 /*
784  * UMA zone item deallocator.
785  */
786 static void
787 sleepq_dtor(void *mem, int size, void *arg)
788 {
789 	struct sleepqueue *sq;
790 	int i;
791 
792 	sq = mem;
793 	for (i = 0; i < NR_SLEEPQS; i++) {
794 		MPASS(TAILQ_EMPTY(&sq->sq_blocked[i]));
795 		MPASS(sq->sq_blockedcnt[i] == 0);
796 	}
797 }
798 #endif
799 
800 /*
801  * UMA zone item initializer.
802  */
803 static int
804 sleepq_init(void *mem, int size, int flags)
805 {
806 	struct sleepqueue *sq;
807 	int i;
808 
809 	bzero(mem, size);
810 	sq = mem;
811 	for (i = 0; i < NR_SLEEPQS; i++) {
812 		TAILQ_INIT(&sq->sq_blocked[i]);
813 		sq->sq_blockedcnt[i] = 0;
814 	}
815 	LIST_INIT(&sq->sq_free);
816 	return (0);
817 }
818 
819 /*
820  * Find the highest priority thread sleeping on a wait channel and resume it.
821  */
822 int
823 sleepq_signal(void *wchan, int flags, int pri, int queue)
824 {
825 	struct sleepqueue *sq;
826 	struct thread *td, *besttd;
827 	int wakeup_swapper;
828 
829 	CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags);
830 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
831 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
832 	sq = sleepq_lookup(wchan);
833 	if (sq == NULL)
834 		return (0);
835 	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
836 	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
837 
838 	/*
839 	 * Find the highest priority thread on the queue.  If there is a
840 	 * tie, use the thread that first appears in the queue as it has
841 	 * been sleeping the longest since threads are always added to
842 	 * the tail of sleep queues.
843 	 */
844 	besttd = NULL;
845 	TAILQ_FOREACH(td, &sq->sq_blocked[queue], td_slpq) {
846 		if (besttd == NULL || td->td_priority < besttd->td_priority)
847 			besttd = td;
848 	}
849 	MPASS(besttd != NULL);
850 	thread_lock(besttd);
851 	wakeup_swapper = sleepq_resume_thread(sq, besttd, pri);
852 	thread_unlock(besttd);
853 	return (wakeup_swapper);
854 }
855 
856 /*
857  * Resume all threads sleeping on a specified wait channel.
858  */
859 int
860 sleepq_broadcast(void *wchan, int flags, int pri, int queue)
861 {
862 	struct sleepqueue *sq;
863 	struct thread *td, *tdn;
864 	int wakeup_swapper;
865 
866 	CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags);
867 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
868 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
869 	sq = sleepq_lookup(wchan);
870 	if (sq == NULL)
871 		return (0);
872 	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
873 	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
874 
875 	/* Resume all blocked threads on the sleep queue. */
876 	wakeup_swapper = 0;
877 	TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, tdn) {
878 		thread_lock(td);
879 		if (sleepq_resume_thread(sq, td, pri))
880 			wakeup_swapper = 1;
881 		thread_unlock(td);
882 	}
883 	return (wakeup_swapper);
884 }
885 
886 /*
887  * Time sleeping threads out.  When the timeout expires, the thread is
888  * removed from the sleep queue and made runnable if it is still asleep.
889  */
890 static void
891 sleepq_timeout(void *arg)
892 {
893 	struct sleepqueue_chain *sc;
894 	struct sleepqueue *sq;
895 	struct thread *td;
896 	void *wchan;
897 	int wakeup_swapper;
898 
899 	td = arg;
900 	wakeup_swapper = 0;
901 	CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)",
902 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
903 
904 	/*
905 	 * First, see if the thread is asleep and get the wait channel if
906 	 * it is.
907 	 */
908 	thread_lock(td);
909 	if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) {
910 		wchan = td->td_wchan;
911 		sc = SC_LOOKUP(wchan);
912 		THREAD_LOCKPTR_ASSERT(td, &sc->sc_lock);
913 		sq = sleepq_lookup(wchan);
914 		MPASS(sq != NULL);
915 		td->td_flags |= TDF_TIMEOUT;
916 		wakeup_swapper = sleepq_resume_thread(sq, td, 0);
917 		thread_unlock(td);
918 		if (wakeup_swapper)
919 			kick_proc0();
920 		return;
921 	}
922 
923 	/*
924 	 * If the thread is on the SLEEPQ but isn't sleeping yet, it
925 	 * can either be on another CPU in between sleepq_add() and
926 	 * one of the sleepq_*wait*() routines or it can be in
927 	 * sleepq_catch_signals().
928 	 */
929 	if (TD_ON_SLEEPQ(td)) {
930 		td->td_flags |= TDF_TIMEOUT;
931 		thread_unlock(td);
932 		return;
933 	}
934 
935 	/*
936 	 * Now check for the edge cases.  First, if TDF_TIMEOUT is set,
937 	 * then the other thread has already yielded to us, so clear
938 	 * the flag and resume it.  If TDF_TIMEOUT is not set, then the
939 	 * we know that the other thread is not on a sleep queue, but it
940 	 * hasn't resumed execution yet.  In that case, set TDF_TIMOFAIL
941 	 * to let it know that the timeout has already run and doesn't
942 	 * need to be canceled.
943 	 */
944 	if (td->td_flags & TDF_TIMEOUT) {
945 		MPASS(TD_IS_SLEEPING(td));
946 		td->td_flags &= ~TDF_TIMEOUT;
947 		TD_CLR_SLEEPING(td);
948 		wakeup_swapper = setrunnable(td);
949 	} else
950 		td->td_flags |= TDF_TIMOFAIL;
951 	thread_unlock(td);
952 	if (wakeup_swapper)
953 		kick_proc0();
954 }
955 
956 /*
957  * Resumes a specific thread from the sleep queue associated with a specific
958  * wait channel if it is on that queue.
959  */
960 void
961 sleepq_remove(struct thread *td, void *wchan)
962 {
963 	struct sleepqueue *sq;
964 	int wakeup_swapper;
965 
966 	/*
967 	 * Look up the sleep queue for this wait channel, then re-check
968 	 * that the thread is asleep on that channel, if it is not, then
969 	 * bail.
970 	 */
971 	MPASS(wchan != NULL);
972 	sleepq_lock(wchan);
973 	sq = sleepq_lookup(wchan);
974 	/*
975 	 * We can not lock the thread here as it may be sleeping on a
976 	 * different sleepq.  However, holding the sleepq lock for this
977 	 * wchan can guarantee that we do not miss a wakeup for this
978 	 * channel.  The asserts below will catch any false positives.
979 	 */
980 	if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) {
981 		sleepq_release(wchan);
982 		return;
983 	}
984 	/* Thread is asleep on sleep queue sq, so wake it up. */
985 	thread_lock(td);
986 	MPASS(sq != NULL);
987 	MPASS(td->td_wchan == wchan);
988 	wakeup_swapper = sleepq_resume_thread(sq, td, 0);
989 	thread_unlock(td);
990 	sleepq_release(wchan);
991 	if (wakeup_swapper)
992 		kick_proc0();
993 }
994 
995 /*
996  * Abort a thread as if an interrupt had occurred.  Only abort
997  * interruptible waits (unfortunately it isn't safe to abort others).
998  */
999 int
1000 sleepq_abort(struct thread *td, int intrval)
1001 {
1002 	struct sleepqueue *sq;
1003 	void *wchan;
1004 
1005 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1006 	MPASS(TD_ON_SLEEPQ(td));
1007 	MPASS(td->td_flags & TDF_SINTR);
1008 	MPASS(intrval == EINTR || intrval == ERESTART);
1009 
1010 	/*
1011 	 * If the TDF_TIMEOUT flag is set, just leave. A
1012 	 * timeout is scheduled anyhow.
1013 	 */
1014 	if (td->td_flags & TDF_TIMEOUT)
1015 		return (0);
1016 
1017 	CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)",
1018 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
1019 	td->td_intrval = intrval;
1020 	td->td_flags |= TDF_SLEEPABORT;
1021 	/*
1022 	 * If the thread has not slept yet it will find the signal in
1023 	 * sleepq_catch_signals() and call sleepq_resume_thread.  Otherwise
1024 	 * we have to do it here.
1025 	 */
1026 	if (!TD_IS_SLEEPING(td))
1027 		return (0);
1028 	wchan = td->td_wchan;
1029 	MPASS(wchan != NULL);
1030 	sq = sleepq_lookup(wchan);
1031 	MPASS(sq != NULL);
1032 
1033 	/* Thread is asleep on sleep queue sq, so wake it up. */
1034 	return (sleepq_resume_thread(sq, td, 0));
1035 }
1036 
1037 #ifdef SLEEPQUEUE_PROFILING
1038 #define	SLEEPQ_PROF_LOCATIONS	1024
1039 #define	SLEEPQ_SBUFSIZE		512
1040 struct sleepq_prof {
1041 	LIST_ENTRY(sleepq_prof) sp_link;
1042 	const char	*sp_wmesg;
1043 	long		sp_count;
1044 };
1045 
1046 LIST_HEAD(sqphead, sleepq_prof);
1047 
1048 struct sqphead sleepq_prof_free;
1049 struct sqphead sleepq_hash[SC_TABLESIZE];
1050 static struct sleepq_prof sleepq_profent[SLEEPQ_PROF_LOCATIONS];
1051 static struct mtx sleepq_prof_lock;
1052 MTX_SYSINIT(sleepq_prof_lock, &sleepq_prof_lock, "sleepq_prof", MTX_SPIN);
1053 
1054 static void
1055 sleepq_profile(const char *wmesg)
1056 {
1057 	struct sleepq_prof *sp;
1058 
1059 	mtx_lock_spin(&sleepq_prof_lock);
1060 	if (prof_enabled == 0)
1061 		goto unlock;
1062 	LIST_FOREACH(sp, &sleepq_hash[SC_HASH(wmesg)], sp_link)
1063 		if (sp->sp_wmesg == wmesg)
1064 			goto done;
1065 	sp = LIST_FIRST(&sleepq_prof_free);
1066 	if (sp == NULL)
1067 		goto unlock;
1068 	sp->sp_wmesg = wmesg;
1069 	LIST_REMOVE(sp, sp_link);
1070 	LIST_INSERT_HEAD(&sleepq_hash[SC_HASH(wmesg)], sp, sp_link);
1071 done:
1072 	sp->sp_count++;
1073 unlock:
1074 	mtx_unlock_spin(&sleepq_prof_lock);
1075 	return;
1076 }
1077 
1078 static void
1079 sleepq_prof_reset(void)
1080 {
1081 	struct sleepq_prof *sp;
1082 	int enabled;
1083 	int i;
1084 
1085 	mtx_lock_spin(&sleepq_prof_lock);
1086 	enabled = prof_enabled;
1087 	prof_enabled = 0;
1088 	for (i = 0; i < SC_TABLESIZE; i++)
1089 		LIST_INIT(&sleepq_hash[i]);
1090 	LIST_INIT(&sleepq_prof_free);
1091 	for (i = 0; i < SLEEPQ_PROF_LOCATIONS; i++) {
1092 		sp = &sleepq_profent[i];
1093 		sp->sp_wmesg = NULL;
1094 		sp->sp_count = 0;
1095 		LIST_INSERT_HEAD(&sleepq_prof_free, sp, sp_link);
1096 	}
1097 	prof_enabled = enabled;
1098 	mtx_unlock_spin(&sleepq_prof_lock);
1099 }
1100 
1101 static int
1102 enable_sleepq_prof(SYSCTL_HANDLER_ARGS)
1103 {
1104 	int error, v;
1105 
1106 	v = prof_enabled;
1107 	error = sysctl_handle_int(oidp, &v, v, req);
1108 	if (error)
1109 		return (error);
1110 	if (req->newptr == NULL)
1111 		return (error);
1112 	if (v == prof_enabled)
1113 		return (0);
1114 	if (v == 1)
1115 		sleepq_prof_reset();
1116 	mtx_lock_spin(&sleepq_prof_lock);
1117 	prof_enabled = !!v;
1118 	mtx_unlock_spin(&sleepq_prof_lock);
1119 
1120 	return (0);
1121 }
1122 
1123 static int
1124 reset_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1125 {
1126 	int error, v;
1127 
1128 	v = 0;
1129 	error = sysctl_handle_int(oidp, &v, 0, req);
1130 	if (error)
1131 		return (error);
1132 	if (req->newptr == NULL)
1133 		return (error);
1134 	if (v == 0)
1135 		return (0);
1136 	sleepq_prof_reset();
1137 
1138 	return (0);
1139 }
1140 
1141 static int
1142 dump_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1143 {
1144 	struct sleepq_prof *sp;
1145 	struct sbuf *sb;
1146 	int enabled;
1147 	int error;
1148 	int i;
1149 
1150 	error = sysctl_wire_old_buffer(req, 0);
1151 	if (error != 0)
1152 		return (error);
1153 	sb = sbuf_new_for_sysctl(NULL, NULL, SLEEPQ_SBUFSIZE, req);
1154 	sbuf_printf(sb, "\nwmesg\tcount\n");
1155 	enabled = prof_enabled;
1156 	mtx_lock_spin(&sleepq_prof_lock);
1157 	prof_enabled = 0;
1158 	mtx_unlock_spin(&sleepq_prof_lock);
1159 	for (i = 0; i < SC_TABLESIZE; i++) {
1160 		LIST_FOREACH(sp, &sleepq_hash[i], sp_link) {
1161 			sbuf_printf(sb, "%s\t%ld\n",
1162 			    sp->sp_wmesg, sp->sp_count);
1163 		}
1164 	}
1165 	mtx_lock_spin(&sleepq_prof_lock);
1166 	prof_enabled = enabled;
1167 	mtx_unlock_spin(&sleepq_prof_lock);
1168 
1169 	error = sbuf_finish(sb);
1170 	sbuf_delete(sb);
1171 	return (error);
1172 }
1173 
1174 SYSCTL_PROC(_debug_sleepq, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD,
1175     NULL, 0, dump_sleepq_prof_stats, "A", "Sleepqueue profiling statistics");
1176 SYSCTL_PROC(_debug_sleepq, OID_AUTO, reset, CTLTYPE_INT | CTLFLAG_RW,
1177     NULL, 0, reset_sleepq_prof_stats, "I",
1178     "Reset sleepqueue profiling statistics");
1179 SYSCTL_PROC(_debug_sleepq, OID_AUTO, enable, CTLTYPE_INT | CTLFLAG_RW,
1180     NULL, 0, enable_sleepq_prof, "I", "Enable sleepqueue profiling");
1181 #endif
1182 
1183 #ifdef DDB
1184 DB_SHOW_COMMAND(sleepq, db_show_sleepqueue)
1185 {
1186 	struct sleepqueue_chain *sc;
1187 	struct sleepqueue *sq;
1188 #ifdef INVARIANTS
1189 	struct lock_object *lock;
1190 #endif
1191 	struct thread *td;
1192 	void *wchan;
1193 	int i;
1194 
1195 	if (!have_addr)
1196 		return;
1197 
1198 	/*
1199 	 * First, see if there is an active sleep queue for the wait channel
1200 	 * indicated by the address.
1201 	 */
1202 	wchan = (void *)addr;
1203 	sc = SC_LOOKUP(wchan);
1204 	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
1205 		if (sq->sq_wchan == wchan)
1206 			goto found;
1207 
1208 	/*
1209 	 * Second, see if there is an active sleep queue at the address
1210 	 * indicated.
1211 	 */
1212 	for (i = 0; i < SC_TABLESIZE; i++)
1213 		LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) {
1214 			if (sq == (struct sleepqueue *)addr)
1215 				goto found;
1216 		}
1217 
1218 	db_printf("Unable to locate a sleep queue via %p\n", (void *)addr);
1219 	return;
1220 found:
1221 	db_printf("Wait channel: %p\n", sq->sq_wchan);
1222 	db_printf("Queue type: %d\n", sq->sq_type);
1223 #ifdef INVARIANTS
1224 	if (sq->sq_lock) {
1225 		lock = sq->sq_lock;
1226 		db_printf("Associated Interlock: %p - (%s) %s\n", lock,
1227 		    LOCK_CLASS(lock)->lc_name, lock->lo_name);
1228 	}
1229 #endif
1230 	db_printf("Blocked threads:\n");
1231 	for (i = 0; i < NR_SLEEPQS; i++) {
1232 		db_printf("\nQueue[%d]:\n", i);
1233 		if (TAILQ_EMPTY(&sq->sq_blocked[i]))
1234 			db_printf("\tempty\n");
1235 		else
1236 			TAILQ_FOREACH(td, &sq->sq_blocked[0],
1237 				      td_slpq) {
1238 				db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td,
1239 					  td->td_tid, td->td_proc->p_pid,
1240 					  td->td_name);
1241 			}
1242 		db_printf("(expected: %u)\n", sq->sq_blockedcnt[i]);
1243 	}
1244 }
1245 
1246 /* Alias 'show sleepqueue' to 'show sleepq'. */
1247 DB_SHOW_ALIAS(sleepqueue, db_show_sleepqueue);
1248 #endif
1249