1 /*- 2 * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the author nor the names of any co-contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 /* 31 * Implementation of sleep queues used to hold queue of threads blocked on 32 * a wait channel. Sleep queues different from turnstiles in that wait 33 * channels are not owned by anyone, so there is no priority propagation. 34 * Sleep queues can also provide a timeout and can also be interrupted by 35 * signals. That said, there are several similarities between the turnstile 36 * and sleep queue implementations. (Note: turnstiles were implemented 37 * first.) For example, both use a hash table of the same size where each 38 * bucket is referred to as a "chain" that contains both a spin lock and 39 * a linked list of queues. An individual queue is located by using a hash 40 * to pick a chain, locking the chain, and then walking the chain searching 41 * for the queue. This means that a wait channel object does not need to 42 * embed it's queue head just as locks do not embed their turnstile queue 43 * head. Threads also carry around a sleep queue that they lend to the 44 * wait channel when blocking. Just as in turnstiles, the queue includes 45 * a free list of the sleep queues of other threads blocked on the same 46 * wait channel in the case of multiple waiters. 47 * 48 * Some additional functionality provided by sleep queues include the 49 * ability to set a timeout. The timeout is managed using a per-thread 50 * callout that resumes a thread if it is asleep. A thread may also 51 * catch signals while it is asleep (aka an interruptible sleep). The 52 * signal code uses sleepq_abort() to interrupt a sleeping thread. Finally, 53 * sleep queues also provide some extra assertions. One is not allowed to 54 * mix the sleep/wakeup and cv APIs for a given wait channel. Also, one 55 * must consistently use the same lock to synchronize with a wait channel, 56 * though this check is currently only a warning for sleep/wakeup due to 57 * pre-existing abuse of that API. The same lock must also be held when 58 * awakening threads, though that is currently only enforced for condition 59 * variables. 60 */ 61 62 #include <sys/cdefs.h> 63 __FBSDID("$FreeBSD$"); 64 65 #include "opt_sleepqueue_profiling.h" 66 #include "opt_ddb.h" 67 #include "opt_sched.h" 68 69 #include <sys/param.h> 70 #include <sys/systm.h> 71 #include <sys/lock.h> 72 #include <sys/kernel.h> 73 #include <sys/ktr.h> 74 #include <sys/mutex.h> 75 #include <sys/proc.h> 76 #include <sys/sbuf.h> 77 #include <sys/sched.h> 78 #include <sys/signalvar.h> 79 #include <sys/sleepqueue.h> 80 #include <sys/sysctl.h> 81 82 #include <vm/uma.h> 83 84 #ifdef DDB 85 #include <ddb/ddb.h> 86 #endif 87 88 /* 89 * Constants for the hash table of sleep queue chains. These constants are 90 * the same ones that 4BSD (and possibly earlier versions of BSD) used. 91 * Basically, we ignore the lower 8 bits of the address since most wait 92 * channel pointers are aligned and only look at the next 7 bits for the 93 * hash. SC_TABLESIZE must be a power of two for SC_MASK to work properly. 94 */ 95 #define SC_TABLESIZE 128 /* Must be power of 2. */ 96 #define SC_MASK (SC_TABLESIZE - 1) 97 #define SC_SHIFT 8 98 #define SC_HASH(wc) (((uintptr_t)(wc) >> SC_SHIFT) & SC_MASK) 99 #define SC_LOOKUP(wc) &sleepq_chains[SC_HASH(wc)] 100 #define NR_SLEEPQS 2 101 /* 102 * There two different lists of sleep queues. Both lists are connected 103 * via the sq_hash entries. The first list is the sleep queue chain list 104 * that a sleep queue is on when it is attached to a wait channel. The 105 * second list is the free list hung off of a sleep queue that is attached 106 * to a wait channel. 107 * 108 * Each sleep queue also contains the wait channel it is attached to, the 109 * list of threads blocked on that wait channel, flags specific to the 110 * wait channel, and the lock used to synchronize with a wait channel. 111 * The flags are used to catch mismatches between the various consumers 112 * of the sleep queue API (e.g. sleep/wakeup and condition variables). 113 * The lock pointer is only used when invariants are enabled for various 114 * debugging checks. 115 * 116 * Locking key: 117 * c - sleep queue chain lock 118 */ 119 struct sleepqueue { 120 TAILQ_HEAD(, thread) sq_blocked[NR_SLEEPQS]; /* (c) Blocked threads. */ 121 LIST_ENTRY(sleepqueue) sq_hash; /* (c) Chain and free list. */ 122 LIST_HEAD(, sleepqueue) sq_free; /* (c) Free queues. */ 123 void *sq_wchan; /* (c) Wait channel. */ 124 #ifdef INVARIANTS 125 int sq_type; /* (c) Queue type. */ 126 struct lock_object *sq_lock; /* (c) Associated lock. */ 127 #endif 128 }; 129 130 struct sleepqueue_chain { 131 LIST_HEAD(, sleepqueue) sc_queues; /* List of sleep queues. */ 132 struct mtx sc_lock; /* Spin lock for this chain. */ 133 #ifdef SLEEPQUEUE_PROFILING 134 u_int sc_depth; /* Length of sc_queues. */ 135 u_int sc_max_depth; /* Max length of sc_queues. */ 136 #endif 137 }; 138 139 #ifdef SLEEPQUEUE_PROFILING 140 u_int sleepq_max_depth; 141 SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling"); 142 SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0, 143 "sleepq chain stats"); 144 SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth, 145 0, "maxmimum depth achieved of a single chain"); 146 147 static void sleepq_profile(const char *wmesg); 148 static int prof_enabled; 149 #endif 150 static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE]; 151 static uma_zone_t sleepq_zone; 152 153 /* 154 * Prototypes for non-exported routines. 155 */ 156 static int sleepq_catch_signals(void *wchan, int pri); 157 static int sleepq_check_signals(void); 158 static int sleepq_check_timeout(void); 159 #ifdef INVARIANTS 160 static void sleepq_dtor(void *mem, int size, void *arg); 161 #endif 162 static int sleepq_init(void *mem, int size, int flags); 163 static int sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, 164 int pri); 165 static void sleepq_switch(void *wchan, int pri); 166 static void sleepq_timeout(void *arg); 167 168 /* 169 * Early initialization of sleep queues that is called from the sleepinit() 170 * SYSINIT. 171 */ 172 void 173 init_sleepqueues(void) 174 { 175 #ifdef SLEEPQUEUE_PROFILING 176 struct sysctl_oid *chain_oid; 177 char chain_name[10]; 178 #endif 179 int i; 180 181 for (i = 0; i < SC_TABLESIZE; i++) { 182 LIST_INIT(&sleepq_chains[i].sc_queues); 183 mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL, 184 MTX_SPIN | MTX_RECURSE); 185 #ifdef SLEEPQUEUE_PROFILING 186 snprintf(chain_name, sizeof(chain_name), "%d", i); 187 chain_oid = SYSCTL_ADD_NODE(NULL, 188 SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO, 189 chain_name, CTLFLAG_RD, NULL, "sleepq chain stats"); 190 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO, 191 "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL); 192 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO, 193 "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0, 194 NULL); 195 #endif 196 } 197 sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue), 198 #ifdef INVARIANTS 199 NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0); 200 #else 201 NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0); 202 #endif 203 204 thread0.td_sleepqueue = sleepq_alloc(); 205 } 206 207 /* 208 * Get a sleep queue for a new thread. 209 */ 210 struct sleepqueue * 211 sleepq_alloc(void) 212 { 213 214 return (uma_zalloc(sleepq_zone, M_WAITOK)); 215 } 216 217 /* 218 * Free a sleep queue when a thread is destroyed. 219 */ 220 void 221 sleepq_free(struct sleepqueue *sq) 222 { 223 224 uma_zfree(sleepq_zone, sq); 225 } 226 227 /* 228 * Lock the sleep queue chain associated with the specified wait channel. 229 */ 230 void 231 sleepq_lock(void *wchan) 232 { 233 struct sleepqueue_chain *sc; 234 235 sc = SC_LOOKUP(wchan); 236 mtx_lock_spin(&sc->sc_lock); 237 } 238 239 /* 240 * Look up the sleep queue associated with a given wait channel in the hash 241 * table locking the associated sleep queue chain. If no queue is found in 242 * the table, NULL is returned. 243 */ 244 struct sleepqueue * 245 sleepq_lookup(void *wchan) 246 { 247 struct sleepqueue_chain *sc; 248 struct sleepqueue *sq; 249 250 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 251 sc = SC_LOOKUP(wchan); 252 mtx_assert(&sc->sc_lock, MA_OWNED); 253 LIST_FOREACH(sq, &sc->sc_queues, sq_hash) 254 if (sq->sq_wchan == wchan) 255 return (sq); 256 return (NULL); 257 } 258 259 /* 260 * Unlock the sleep queue chain associated with a given wait channel. 261 */ 262 void 263 sleepq_release(void *wchan) 264 { 265 struct sleepqueue_chain *sc; 266 267 sc = SC_LOOKUP(wchan); 268 mtx_unlock_spin(&sc->sc_lock); 269 } 270 271 /* 272 * Places the current thread on the sleep queue for the specified wait 273 * channel. If INVARIANTS is enabled, then it associates the passed in 274 * lock with the sleepq to make sure it is held when that sleep queue is 275 * woken up. 276 */ 277 void 278 sleepq_add(void *wchan, struct lock_object *lock, const char *wmesg, int flags, 279 int queue) 280 { 281 struct sleepqueue_chain *sc; 282 struct sleepqueue *sq; 283 struct thread *td; 284 285 td = curthread; 286 sc = SC_LOOKUP(wchan); 287 mtx_assert(&sc->sc_lock, MA_OWNED); 288 MPASS(td->td_sleepqueue != NULL); 289 MPASS(wchan != NULL); 290 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 291 292 /* If this thread is not allowed to sleep, die a horrible death. */ 293 KASSERT(!(td->td_pflags & TDP_NOSLEEPING), 294 ("Trying sleep, but thread marked as sleeping prohibited")); 295 296 /* Look up the sleep queue associated with the wait channel 'wchan'. */ 297 sq = sleepq_lookup(wchan); 298 299 /* 300 * If the wait channel does not already have a sleep queue, use 301 * this thread's sleep queue. Otherwise, insert the current thread 302 * into the sleep queue already in use by this wait channel. 303 */ 304 if (sq == NULL) { 305 #ifdef INVARIANTS 306 int i; 307 308 sq = td->td_sleepqueue; 309 for (i = 0; i < NR_SLEEPQS; i++) 310 KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]), 311 ("thread's sleep queue %d is not empty", i)); 312 KASSERT(LIST_EMPTY(&sq->sq_free), 313 ("thread's sleep queue has a non-empty free list")); 314 KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer")); 315 sq->sq_lock = lock; 316 sq->sq_type = flags & SLEEPQ_TYPE; 317 #endif 318 #ifdef SLEEPQUEUE_PROFILING 319 sc->sc_depth++; 320 if (sc->sc_depth > sc->sc_max_depth) { 321 sc->sc_max_depth = sc->sc_depth; 322 if (sc->sc_max_depth > sleepq_max_depth) 323 sleepq_max_depth = sc->sc_max_depth; 324 } 325 #endif 326 sq = td->td_sleepqueue; 327 LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash); 328 sq->sq_wchan = wchan; 329 } else { 330 MPASS(wchan == sq->sq_wchan); 331 MPASS(lock == sq->sq_lock); 332 MPASS((flags & SLEEPQ_TYPE) == sq->sq_type); 333 LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash); 334 } 335 thread_lock(td); 336 TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq); 337 td->td_sleepqueue = NULL; 338 td->td_sqqueue = queue; 339 td->td_wchan = wchan; 340 td->td_wmesg = wmesg; 341 if (flags & SLEEPQ_INTERRUPTIBLE) { 342 td->td_flags |= TDF_SINTR; 343 td->td_flags &= ~TDF_SLEEPABORT; 344 } 345 thread_unlock(td); 346 } 347 348 /* 349 * Sets a timeout that will remove the current thread from the specified 350 * sleep queue after timo ticks if the thread has not already been awakened. 351 */ 352 void 353 sleepq_set_timeout(void *wchan, int timo) 354 { 355 struct sleepqueue_chain *sc; 356 struct thread *td; 357 358 td = curthread; 359 sc = SC_LOOKUP(wchan); 360 mtx_assert(&sc->sc_lock, MA_OWNED); 361 MPASS(TD_ON_SLEEPQ(td)); 362 MPASS(td->td_sleepqueue == NULL); 363 MPASS(wchan != NULL); 364 callout_reset_curcpu(&td->td_slpcallout, timo, sleepq_timeout, td); 365 } 366 367 /* 368 * Marks the pending sleep of the current thread as interruptible and 369 * makes an initial check for pending signals before putting a thread 370 * to sleep. Enters and exits with the thread lock held. Thread lock 371 * may have transitioned from the sleepq lock to a run lock. 372 */ 373 static int 374 sleepq_catch_signals(void *wchan, int pri) 375 { 376 struct sleepqueue_chain *sc; 377 struct sleepqueue *sq; 378 struct thread *td; 379 struct proc *p; 380 struct sigacts *ps; 381 int sig, ret; 382 383 td = curthread; 384 p = curproc; 385 sc = SC_LOOKUP(wchan); 386 mtx_assert(&sc->sc_lock, MA_OWNED); 387 MPASS(wchan != NULL); 388 /* 389 * See if there are any pending signals for this thread. If not 390 * we can switch immediately. Otherwise do the signal processing 391 * directly. 392 */ 393 thread_lock(td); 394 if ((td->td_flags & (TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK)) == 0) { 395 sleepq_switch(wchan, pri); 396 return (0); 397 } 398 thread_unlock(td); 399 mtx_unlock_spin(&sc->sc_lock); 400 CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)", 401 (void *)td, (long)p->p_pid, td->td_name); 402 PROC_LOCK(p); 403 ps = p->p_sigacts; 404 mtx_lock(&ps->ps_mtx); 405 sig = cursig(td); 406 if (sig == 0) { 407 mtx_unlock(&ps->ps_mtx); 408 ret = thread_suspend_check(1); 409 MPASS(ret == 0 || ret == EINTR || ret == ERESTART); 410 } else { 411 if (SIGISMEMBER(ps->ps_sigintr, sig)) 412 ret = EINTR; 413 else 414 ret = ERESTART; 415 mtx_unlock(&ps->ps_mtx); 416 } 417 /* 418 * Lock the per-process spinlock prior to dropping the PROC_LOCK 419 * to avoid a signal delivery race. PROC_LOCK, PROC_SLOCK, and 420 * thread_lock() are currently held in tdsignal(). 421 */ 422 PROC_SLOCK(p); 423 mtx_lock_spin(&sc->sc_lock); 424 PROC_UNLOCK(p); 425 thread_lock(td); 426 PROC_SUNLOCK(p); 427 if (ret == 0) { 428 sleepq_switch(wchan, pri); 429 return (0); 430 } 431 /* 432 * There were pending signals and this thread is still 433 * on the sleep queue, remove it from the sleep queue. 434 */ 435 if (TD_ON_SLEEPQ(td)) { 436 sq = sleepq_lookup(wchan); 437 if (sleepq_resume_thread(sq, td, 0)) { 438 #ifdef INVARIANTS 439 /* 440 * This thread hasn't gone to sleep yet, so it 441 * should not be swapped out. 442 */ 443 panic("not waking up swapper"); 444 #endif 445 } 446 } 447 mtx_unlock_spin(&sc->sc_lock); 448 MPASS(td->td_lock != &sc->sc_lock); 449 return (ret); 450 } 451 452 /* 453 * Switches to another thread if we are still asleep on a sleep queue. 454 * Returns with thread lock. 455 */ 456 static void 457 sleepq_switch(void *wchan, int pri) 458 { 459 struct sleepqueue_chain *sc; 460 struct sleepqueue *sq; 461 struct thread *td; 462 463 td = curthread; 464 sc = SC_LOOKUP(wchan); 465 mtx_assert(&sc->sc_lock, MA_OWNED); 466 THREAD_LOCK_ASSERT(td, MA_OWNED); 467 468 /* 469 * If we have a sleep queue, then we've already been woken up, so 470 * just return. 471 */ 472 if (td->td_sleepqueue != NULL) { 473 mtx_unlock_spin(&sc->sc_lock); 474 return; 475 } 476 477 /* 478 * If TDF_TIMEOUT is set, then our sleep has been timed out 479 * already but we are still on the sleep queue, so dequeue the 480 * thread and return. 481 */ 482 if (td->td_flags & TDF_TIMEOUT) { 483 MPASS(TD_ON_SLEEPQ(td)); 484 sq = sleepq_lookup(wchan); 485 if (sleepq_resume_thread(sq, td, 0)) { 486 #ifdef INVARIANTS 487 /* 488 * This thread hasn't gone to sleep yet, so it 489 * should not be swapped out. 490 */ 491 panic("not waking up swapper"); 492 #endif 493 } 494 mtx_unlock_spin(&sc->sc_lock); 495 return; 496 } 497 #ifdef SLEEPQUEUE_PROFILING 498 if (prof_enabled) 499 sleepq_profile(td->td_wmesg); 500 #endif 501 MPASS(td->td_sleepqueue == NULL); 502 sched_sleep(td, pri); 503 thread_lock_set(td, &sc->sc_lock); 504 TD_SET_SLEEPING(td); 505 mi_switch(SW_VOL | SWT_SLEEPQ, NULL); 506 KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING")); 507 CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)", 508 (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name); 509 } 510 511 /* 512 * Check to see if we timed out. 513 */ 514 static int 515 sleepq_check_timeout(void) 516 { 517 struct thread *td; 518 519 td = curthread; 520 THREAD_LOCK_ASSERT(td, MA_OWNED); 521 522 /* 523 * If TDF_TIMEOUT is set, we timed out. 524 */ 525 if (td->td_flags & TDF_TIMEOUT) { 526 td->td_flags &= ~TDF_TIMEOUT; 527 return (EWOULDBLOCK); 528 } 529 530 /* 531 * If TDF_TIMOFAIL is set, the timeout ran after we had 532 * already been woken up. 533 */ 534 if (td->td_flags & TDF_TIMOFAIL) 535 td->td_flags &= ~TDF_TIMOFAIL; 536 537 /* 538 * If callout_stop() fails, then the timeout is running on 539 * another CPU, so synchronize with it to avoid having it 540 * accidentally wake up a subsequent sleep. 541 */ 542 else if (callout_stop(&td->td_slpcallout) == 0) { 543 td->td_flags |= TDF_TIMEOUT; 544 TD_SET_SLEEPING(td); 545 mi_switch(SW_INVOL | SWT_SLEEPQTIMO, NULL); 546 } 547 return (0); 548 } 549 550 /* 551 * Check to see if we were awoken by a signal. 552 */ 553 static int 554 sleepq_check_signals(void) 555 { 556 struct thread *td; 557 558 td = curthread; 559 THREAD_LOCK_ASSERT(td, MA_OWNED); 560 561 /* We are no longer in an interruptible sleep. */ 562 if (td->td_flags & TDF_SINTR) 563 td->td_flags &= ~TDF_SINTR; 564 565 if (td->td_flags & TDF_SLEEPABORT) { 566 td->td_flags &= ~TDF_SLEEPABORT; 567 return (td->td_intrval); 568 } 569 570 return (0); 571 } 572 573 /* 574 * Block the current thread until it is awakened from its sleep queue. 575 */ 576 void 577 sleepq_wait(void *wchan, int pri) 578 { 579 struct thread *td; 580 581 td = curthread; 582 MPASS(!(td->td_flags & TDF_SINTR)); 583 thread_lock(td); 584 sleepq_switch(wchan, pri); 585 thread_unlock(td); 586 } 587 588 /* 589 * Block the current thread until it is awakened from its sleep queue 590 * or it is interrupted by a signal. 591 */ 592 int 593 sleepq_wait_sig(void *wchan, int pri) 594 { 595 int rcatch; 596 int rval; 597 598 rcatch = sleepq_catch_signals(wchan, pri); 599 rval = sleepq_check_signals(); 600 thread_unlock(curthread); 601 if (rcatch) 602 return (rcatch); 603 return (rval); 604 } 605 606 /* 607 * Block the current thread until it is awakened from its sleep queue 608 * or it times out while waiting. 609 */ 610 int 611 sleepq_timedwait(void *wchan, int pri) 612 { 613 struct thread *td; 614 int rval; 615 616 td = curthread; 617 MPASS(!(td->td_flags & TDF_SINTR)); 618 thread_lock(td); 619 sleepq_switch(wchan, pri); 620 rval = sleepq_check_timeout(); 621 thread_unlock(td); 622 623 return (rval); 624 } 625 626 /* 627 * Block the current thread until it is awakened from its sleep queue, 628 * it is interrupted by a signal, or it times out waiting to be awakened. 629 */ 630 int 631 sleepq_timedwait_sig(void *wchan, int pri) 632 { 633 int rcatch, rvalt, rvals; 634 635 rcatch = sleepq_catch_signals(wchan, pri); 636 rvalt = sleepq_check_timeout(); 637 rvals = sleepq_check_signals(); 638 thread_unlock(curthread); 639 if (rcatch) 640 return (rcatch); 641 if (rvals) 642 return (rvals); 643 return (rvalt); 644 } 645 646 /* 647 * Removes a thread from a sleep queue and makes it 648 * runnable. 649 */ 650 static int 651 sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri) 652 { 653 struct sleepqueue_chain *sc; 654 655 MPASS(td != NULL); 656 MPASS(sq->sq_wchan != NULL); 657 MPASS(td->td_wchan == sq->sq_wchan); 658 MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0); 659 THREAD_LOCK_ASSERT(td, MA_OWNED); 660 sc = SC_LOOKUP(sq->sq_wchan); 661 mtx_assert(&sc->sc_lock, MA_OWNED); 662 663 /* Remove the thread from the queue. */ 664 TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq); 665 666 /* 667 * Get a sleep queue for this thread. If this is the last waiter, 668 * use the queue itself and take it out of the chain, otherwise, 669 * remove a queue from the free list. 670 */ 671 if (LIST_EMPTY(&sq->sq_free)) { 672 td->td_sleepqueue = sq; 673 #ifdef INVARIANTS 674 sq->sq_wchan = NULL; 675 #endif 676 #ifdef SLEEPQUEUE_PROFILING 677 sc->sc_depth--; 678 #endif 679 } else 680 td->td_sleepqueue = LIST_FIRST(&sq->sq_free); 681 LIST_REMOVE(td->td_sleepqueue, sq_hash); 682 683 td->td_wmesg = NULL; 684 td->td_wchan = NULL; 685 td->td_flags &= ~TDF_SINTR; 686 687 CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)", 688 (void *)td, (long)td->td_proc->p_pid, td->td_name); 689 690 /* Adjust priority if requested. */ 691 MPASS(pri == 0 || (pri >= PRI_MIN && pri <= PRI_MAX)); 692 if (pri != 0 && td->td_priority > pri) 693 sched_prio(td, pri); 694 695 /* 696 * Note that thread td might not be sleeping if it is running 697 * sleepq_catch_signals() on another CPU or is blocked on its 698 * proc lock to check signals. There's no need to mark the 699 * thread runnable in that case. 700 */ 701 if (TD_IS_SLEEPING(td)) { 702 TD_CLR_SLEEPING(td); 703 return (setrunnable(td)); 704 } 705 return (0); 706 } 707 708 #ifdef INVARIANTS 709 /* 710 * UMA zone item deallocator. 711 */ 712 static void 713 sleepq_dtor(void *mem, int size, void *arg) 714 { 715 struct sleepqueue *sq; 716 int i; 717 718 sq = mem; 719 for (i = 0; i < NR_SLEEPQS; i++) 720 MPASS(TAILQ_EMPTY(&sq->sq_blocked[i])); 721 } 722 #endif 723 724 /* 725 * UMA zone item initializer. 726 */ 727 static int 728 sleepq_init(void *mem, int size, int flags) 729 { 730 struct sleepqueue *sq; 731 int i; 732 733 bzero(mem, size); 734 sq = mem; 735 for (i = 0; i < NR_SLEEPQS; i++) 736 TAILQ_INIT(&sq->sq_blocked[i]); 737 LIST_INIT(&sq->sq_free); 738 return (0); 739 } 740 741 /* 742 * Find the highest priority thread sleeping on a wait channel and resume it. 743 */ 744 int 745 sleepq_signal(void *wchan, int flags, int pri, int queue) 746 { 747 struct sleepqueue *sq; 748 struct thread *td, *besttd; 749 int wakeup_swapper; 750 751 CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags); 752 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 753 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 754 sq = sleepq_lookup(wchan); 755 if (sq == NULL) 756 return (0); 757 KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE), 758 ("%s: mismatch between sleep/wakeup and cv_*", __func__)); 759 760 /* 761 * Find the highest priority thread on the queue. If there is a 762 * tie, use the thread that first appears in the queue as it has 763 * been sleeping the longest since threads are always added to 764 * the tail of sleep queues. 765 */ 766 besttd = NULL; 767 TAILQ_FOREACH(td, &sq->sq_blocked[queue], td_slpq) { 768 if (besttd == NULL || td->td_priority < besttd->td_priority) 769 besttd = td; 770 } 771 MPASS(besttd != NULL); 772 thread_lock(besttd); 773 wakeup_swapper = sleepq_resume_thread(sq, besttd, pri); 774 thread_unlock(besttd); 775 return (wakeup_swapper); 776 } 777 778 /* 779 * Resume all threads sleeping on a specified wait channel. 780 */ 781 int 782 sleepq_broadcast(void *wchan, int flags, int pri, int queue) 783 { 784 struct sleepqueue *sq; 785 struct thread *td, *tdn; 786 int wakeup_swapper; 787 788 CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags); 789 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 790 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 791 sq = sleepq_lookup(wchan); 792 if (sq == NULL) 793 return (0); 794 KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE), 795 ("%s: mismatch between sleep/wakeup and cv_*", __func__)); 796 797 /* Resume all blocked threads on the sleep queue. */ 798 wakeup_swapper = 0; 799 TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, tdn) { 800 thread_lock(td); 801 if (sleepq_resume_thread(sq, td, pri)) 802 wakeup_swapper = 1; 803 thread_unlock(td); 804 } 805 return (wakeup_swapper); 806 } 807 808 /* 809 * Time sleeping threads out. When the timeout expires, the thread is 810 * removed from the sleep queue and made runnable if it is still asleep. 811 */ 812 static void 813 sleepq_timeout(void *arg) 814 { 815 struct sleepqueue_chain *sc; 816 struct sleepqueue *sq; 817 struct thread *td; 818 void *wchan; 819 int wakeup_swapper; 820 821 td = arg; 822 wakeup_swapper = 0; 823 CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)", 824 (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name); 825 826 /* 827 * First, see if the thread is asleep and get the wait channel if 828 * it is. 829 */ 830 thread_lock(td); 831 if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) { 832 wchan = td->td_wchan; 833 sc = SC_LOOKUP(wchan); 834 THREAD_LOCKPTR_ASSERT(td, &sc->sc_lock); 835 sq = sleepq_lookup(wchan); 836 MPASS(sq != NULL); 837 td->td_flags |= TDF_TIMEOUT; 838 wakeup_swapper = sleepq_resume_thread(sq, td, 0); 839 thread_unlock(td); 840 if (wakeup_swapper) 841 kick_proc0(); 842 return; 843 } 844 845 /* 846 * If the thread is on the SLEEPQ but isn't sleeping yet, it 847 * can either be on another CPU in between sleepq_add() and 848 * one of the sleepq_*wait*() routines or it can be in 849 * sleepq_catch_signals(). 850 */ 851 if (TD_ON_SLEEPQ(td)) { 852 td->td_flags |= TDF_TIMEOUT; 853 thread_unlock(td); 854 return; 855 } 856 857 /* 858 * Now check for the edge cases. First, if TDF_TIMEOUT is set, 859 * then the other thread has already yielded to us, so clear 860 * the flag and resume it. If TDF_TIMEOUT is not set, then the 861 * we know that the other thread is not on a sleep queue, but it 862 * hasn't resumed execution yet. In that case, set TDF_TIMOFAIL 863 * to let it know that the timeout has already run and doesn't 864 * need to be canceled. 865 */ 866 if (td->td_flags & TDF_TIMEOUT) { 867 MPASS(TD_IS_SLEEPING(td)); 868 td->td_flags &= ~TDF_TIMEOUT; 869 TD_CLR_SLEEPING(td); 870 wakeup_swapper = setrunnable(td); 871 } else 872 td->td_flags |= TDF_TIMOFAIL; 873 thread_unlock(td); 874 if (wakeup_swapper) 875 kick_proc0(); 876 } 877 878 /* 879 * Resumes a specific thread from the sleep queue associated with a specific 880 * wait channel if it is on that queue. 881 */ 882 void 883 sleepq_remove(struct thread *td, void *wchan) 884 { 885 struct sleepqueue *sq; 886 int wakeup_swapper; 887 888 /* 889 * Look up the sleep queue for this wait channel, then re-check 890 * that the thread is asleep on that channel, if it is not, then 891 * bail. 892 */ 893 MPASS(wchan != NULL); 894 sleepq_lock(wchan); 895 sq = sleepq_lookup(wchan); 896 /* 897 * We can not lock the thread here as it may be sleeping on a 898 * different sleepq. However, holding the sleepq lock for this 899 * wchan can guarantee that we do not miss a wakeup for this 900 * channel. The asserts below will catch any false positives. 901 */ 902 if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) { 903 sleepq_release(wchan); 904 return; 905 } 906 /* Thread is asleep on sleep queue sq, so wake it up. */ 907 thread_lock(td); 908 MPASS(sq != NULL); 909 MPASS(td->td_wchan == wchan); 910 wakeup_swapper = sleepq_resume_thread(sq, td, 0); 911 thread_unlock(td); 912 sleepq_release(wchan); 913 if (wakeup_swapper) 914 kick_proc0(); 915 } 916 917 /* 918 * Abort a thread as if an interrupt had occurred. Only abort 919 * interruptible waits (unfortunately it isn't safe to abort others). 920 */ 921 int 922 sleepq_abort(struct thread *td, int intrval) 923 { 924 struct sleepqueue *sq; 925 void *wchan; 926 927 THREAD_LOCK_ASSERT(td, MA_OWNED); 928 MPASS(TD_ON_SLEEPQ(td)); 929 MPASS(td->td_flags & TDF_SINTR); 930 MPASS(intrval == EINTR || intrval == ERESTART); 931 932 /* 933 * If the TDF_TIMEOUT flag is set, just leave. A 934 * timeout is scheduled anyhow. 935 */ 936 if (td->td_flags & TDF_TIMEOUT) 937 return (0); 938 939 CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)", 940 (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name); 941 td->td_intrval = intrval; 942 td->td_flags |= TDF_SLEEPABORT; 943 /* 944 * If the thread has not slept yet it will find the signal in 945 * sleepq_catch_signals() and call sleepq_resume_thread. Otherwise 946 * we have to do it here. 947 */ 948 if (!TD_IS_SLEEPING(td)) 949 return (0); 950 wchan = td->td_wchan; 951 MPASS(wchan != NULL); 952 sq = sleepq_lookup(wchan); 953 MPASS(sq != NULL); 954 955 /* Thread is asleep on sleep queue sq, so wake it up. */ 956 return (sleepq_resume_thread(sq, td, 0)); 957 } 958 959 #ifdef SLEEPQUEUE_PROFILING 960 #define SLEEPQ_PROF_LOCATIONS 1024 961 #define SLEEPQ_SBUFSIZE (40 * 512) 962 struct sleepq_prof { 963 LIST_ENTRY(sleepq_prof) sp_link; 964 const char *sp_wmesg; 965 long sp_count; 966 }; 967 968 LIST_HEAD(sqphead, sleepq_prof); 969 970 struct sqphead sleepq_prof_free; 971 struct sqphead sleepq_hash[SC_TABLESIZE]; 972 static struct sleepq_prof sleepq_profent[SLEEPQ_PROF_LOCATIONS]; 973 static struct mtx sleepq_prof_lock; 974 MTX_SYSINIT(sleepq_prof_lock, &sleepq_prof_lock, "sleepq_prof", MTX_SPIN); 975 976 static void 977 sleepq_profile(const char *wmesg) 978 { 979 struct sleepq_prof *sp; 980 981 mtx_lock_spin(&sleepq_prof_lock); 982 if (prof_enabled == 0) 983 goto unlock; 984 LIST_FOREACH(sp, &sleepq_hash[SC_HASH(wmesg)], sp_link) 985 if (sp->sp_wmesg == wmesg) 986 goto done; 987 sp = LIST_FIRST(&sleepq_prof_free); 988 if (sp == NULL) 989 goto unlock; 990 sp->sp_wmesg = wmesg; 991 LIST_REMOVE(sp, sp_link); 992 LIST_INSERT_HEAD(&sleepq_hash[SC_HASH(wmesg)], sp, sp_link); 993 done: 994 sp->sp_count++; 995 unlock: 996 mtx_unlock_spin(&sleepq_prof_lock); 997 return; 998 } 999 1000 static void 1001 sleepq_prof_reset(void) 1002 { 1003 struct sleepq_prof *sp; 1004 int enabled; 1005 int i; 1006 1007 mtx_lock_spin(&sleepq_prof_lock); 1008 enabled = prof_enabled; 1009 prof_enabled = 0; 1010 for (i = 0; i < SC_TABLESIZE; i++) 1011 LIST_INIT(&sleepq_hash[i]); 1012 LIST_INIT(&sleepq_prof_free); 1013 for (i = 0; i < SLEEPQ_PROF_LOCATIONS; i++) { 1014 sp = &sleepq_profent[i]; 1015 sp->sp_wmesg = NULL; 1016 sp->sp_count = 0; 1017 LIST_INSERT_HEAD(&sleepq_prof_free, sp, sp_link); 1018 } 1019 prof_enabled = enabled; 1020 mtx_unlock_spin(&sleepq_prof_lock); 1021 } 1022 1023 static int 1024 enable_sleepq_prof(SYSCTL_HANDLER_ARGS) 1025 { 1026 int error, v; 1027 1028 v = prof_enabled; 1029 error = sysctl_handle_int(oidp, &v, v, req); 1030 if (error) 1031 return (error); 1032 if (req->newptr == NULL) 1033 return (error); 1034 if (v == prof_enabled) 1035 return (0); 1036 if (v == 1) 1037 sleepq_prof_reset(); 1038 mtx_lock_spin(&sleepq_prof_lock); 1039 prof_enabled = !!v; 1040 mtx_unlock_spin(&sleepq_prof_lock); 1041 1042 return (0); 1043 } 1044 1045 static int 1046 reset_sleepq_prof_stats(SYSCTL_HANDLER_ARGS) 1047 { 1048 int error, v; 1049 1050 v = 0; 1051 error = sysctl_handle_int(oidp, &v, 0, req); 1052 if (error) 1053 return (error); 1054 if (req->newptr == NULL) 1055 return (error); 1056 if (v == 0) 1057 return (0); 1058 sleepq_prof_reset(); 1059 1060 return (0); 1061 } 1062 1063 static int 1064 dump_sleepq_prof_stats(SYSCTL_HANDLER_ARGS) 1065 { 1066 static int multiplier = 1; 1067 struct sleepq_prof *sp; 1068 struct sbuf *sb; 1069 int enabled; 1070 int error; 1071 int i; 1072 1073 retry_sbufops: 1074 sb = sbuf_new(NULL, NULL, SLEEPQ_SBUFSIZE * multiplier, SBUF_FIXEDLEN); 1075 sbuf_printf(sb, "\nwmesg\tcount\n"); 1076 enabled = prof_enabled; 1077 mtx_lock_spin(&sleepq_prof_lock); 1078 prof_enabled = 0; 1079 mtx_unlock_spin(&sleepq_prof_lock); 1080 for (i = 0; i < SC_TABLESIZE; i++) { 1081 LIST_FOREACH(sp, &sleepq_hash[i], sp_link) { 1082 sbuf_printf(sb, "%s\t%ld\n", 1083 sp->sp_wmesg, sp->sp_count); 1084 if (sbuf_overflowed(sb)) { 1085 sbuf_delete(sb); 1086 multiplier++; 1087 goto retry_sbufops; 1088 } 1089 } 1090 } 1091 mtx_lock_spin(&sleepq_prof_lock); 1092 prof_enabled = enabled; 1093 mtx_unlock_spin(&sleepq_prof_lock); 1094 1095 sbuf_finish(sb); 1096 error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1); 1097 sbuf_delete(sb); 1098 return (error); 1099 } 1100 1101 SYSCTL_PROC(_debug_sleepq, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD, 1102 NULL, 0, dump_sleepq_prof_stats, "A", "Sleepqueue profiling statistics"); 1103 SYSCTL_PROC(_debug_sleepq, OID_AUTO, reset, CTLTYPE_INT | CTLFLAG_RW, 1104 NULL, 0, reset_sleepq_prof_stats, "I", 1105 "Reset sleepqueue profiling statistics"); 1106 SYSCTL_PROC(_debug_sleepq, OID_AUTO, enable, CTLTYPE_INT | CTLFLAG_RW, 1107 NULL, 0, enable_sleepq_prof, "I", "Enable sleepqueue profiling"); 1108 #endif 1109 1110 #ifdef DDB 1111 DB_SHOW_COMMAND(sleepq, db_show_sleepqueue) 1112 { 1113 struct sleepqueue_chain *sc; 1114 struct sleepqueue *sq; 1115 #ifdef INVARIANTS 1116 struct lock_object *lock; 1117 #endif 1118 struct thread *td; 1119 void *wchan; 1120 int i; 1121 1122 if (!have_addr) 1123 return; 1124 1125 /* 1126 * First, see if there is an active sleep queue for the wait channel 1127 * indicated by the address. 1128 */ 1129 wchan = (void *)addr; 1130 sc = SC_LOOKUP(wchan); 1131 LIST_FOREACH(sq, &sc->sc_queues, sq_hash) 1132 if (sq->sq_wchan == wchan) 1133 goto found; 1134 1135 /* 1136 * Second, see if there is an active sleep queue at the address 1137 * indicated. 1138 */ 1139 for (i = 0; i < SC_TABLESIZE; i++) 1140 LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) { 1141 if (sq == (struct sleepqueue *)addr) 1142 goto found; 1143 } 1144 1145 db_printf("Unable to locate a sleep queue via %p\n", (void *)addr); 1146 return; 1147 found: 1148 db_printf("Wait channel: %p\n", sq->sq_wchan); 1149 #ifdef INVARIANTS 1150 db_printf("Queue type: %d\n", sq->sq_type); 1151 if (sq->sq_lock) { 1152 lock = sq->sq_lock; 1153 db_printf("Associated Interlock: %p - (%s) %s\n", lock, 1154 LOCK_CLASS(lock)->lc_name, lock->lo_name); 1155 } 1156 #endif 1157 db_printf("Blocked threads:\n"); 1158 for (i = 0; i < NR_SLEEPQS; i++) { 1159 db_printf("\nQueue[%d]:\n", i); 1160 if (TAILQ_EMPTY(&sq->sq_blocked[i])) 1161 db_printf("\tempty\n"); 1162 else 1163 TAILQ_FOREACH(td, &sq->sq_blocked[0], 1164 td_slpq) { 1165 db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td, 1166 td->td_tid, td->td_proc->p_pid, 1167 td->td_name); 1168 } 1169 } 1170 } 1171 1172 /* Alias 'show sleepqueue' to 'show sleepq'. */ 1173 DB_SHOW_ALIAS(sleepqueue, db_show_sleepqueue); 1174 #endif 1175