xref: /freebsd/sys/kern/subr_sleepqueue.c (revision 2ef9ff7dd34a78a7890ba4d6de64da34d9c10942)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 /*
29  * Implementation of sleep queues used to hold queue of threads blocked on
30  * a wait channel.  Sleep queues are different from turnstiles in that wait
31  * channels are not owned by anyone, so there is no priority propagation.
32  * Sleep queues can also provide a timeout and can also be interrupted by
33  * signals.  That said, there are several similarities between the turnstile
34  * and sleep queue implementations.  (Note: turnstiles were implemented
35  * first.)  For example, both use a hash table of the same size where each
36  * bucket is referred to as a "chain" that contains both a spin lock and
37  * a linked list of queues.  An individual queue is located by using a hash
38  * to pick a chain, locking the chain, and then walking the chain searching
39  * for the queue.  This means that a wait channel object does not need to
40  * embed its queue head just as locks do not embed their turnstile queue
41  * head.  Threads also carry around a sleep queue that they lend to the
42  * wait channel when blocking.  Just as in turnstiles, the queue includes
43  * a free list of the sleep queues of other threads blocked on the same
44  * wait channel in the case of multiple waiters.
45  *
46  * Some additional functionality provided by sleep queues include the
47  * ability to set a timeout.  The timeout is managed using a per-thread
48  * callout that resumes a thread if it is asleep.  A thread may also
49  * catch signals while it is asleep (aka an interruptible sleep).  The
50  * signal code uses sleepq_abort() to interrupt a sleeping thread.  Finally,
51  * sleep queues also provide some extra assertions.  One is not allowed to
52  * mix the sleep/wakeup and cv APIs for a given wait channel.  Also, one
53  * must consistently use the same lock to synchronize with a wait channel,
54  * though this check is currently only a warning for sleep/wakeup due to
55  * pre-existing abuse of that API.  The same lock must also be held when
56  * awakening threads, though that is currently only enforced for condition
57  * variables.
58  */
59 
60 #include <sys/cdefs.h>
61 __FBSDID("$FreeBSD$");
62 
63 #include "opt_sleepqueue_profiling.h"
64 #include "opt_ddb.h"
65 #include "opt_sched.h"
66 #include "opt_stack.h"
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/lock.h>
71 #include <sys/kernel.h>
72 #include <sys/ktr.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/sbuf.h>
76 #include <sys/sched.h>
77 #include <sys/sdt.h>
78 #include <sys/signalvar.h>
79 #include <sys/sleepqueue.h>
80 #include <sys/stack.h>
81 #include <sys/sysctl.h>
82 #include <sys/time.h>
83 
84 #include <machine/atomic.h>
85 
86 #include <vm/uma.h>
87 
88 #ifdef DDB
89 #include <ddb/ddb.h>
90 #endif
91 
92 
93 /*
94  * Constants for the hash table of sleep queue chains.
95  * SC_TABLESIZE must be a power of two for SC_MASK to work properly.
96  */
97 #ifndef SC_TABLESIZE
98 #define	SC_TABLESIZE	256
99 #endif
100 CTASSERT(powerof2(SC_TABLESIZE));
101 #define	SC_MASK		(SC_TABLESIZE - 1)
102 #define	SC_SHIFT	8
103 #define	SC_HASH(wc)	((((uintptr_t)(wc) >> SC_SHIFT) ^ (uintptr_t)(wc)) & \
104 			    SC_MASK)
105 #define	SC_LOOKUP(wc)	&sleepq_chains[SC_HASH(wc)]
106 #define NR_SLEEPQS      2
107 /*
108  * There are two different lists of sleep queues.  Both lists are connected
109  * via the sq_hash entries.  The first list is the sleep queue chain list
110  * that a sleep queue is on when it is attached to a wait channel.  The
111  * second list is the free list hung off of a sleep queue that is attached
112  * to a wait channel.
113  *
114  * Each sleep queue also contains the wait channel it is attached to, the
115  * list of threads blocked on that wait channel, flags specific to the
116  * wait channel, and the lock used to synchronize with a wait channel.
117  * The flags are used to catch mismatches between the various consumers
118  * of the sleep queue API (e.g. sleep/wakeup and condition variables).
119  * The lock pointer is only used when invariants are enabled for various
120  * debugging checks.
121  *
122  * Locking key:
123  *  c - sleep queue chain lock
124  */
125 struct sleepqueue {
126 	TAILQ_HEAD(, thread) sq_blocked[NR_SLEEPQS];	/* (c) Blocked threads. */
127 	u_int sq_blockedcnt[NR_SLEEPQS];	/* (c) N. of blocked threads. */
128 	LIST_ENTRY(sleepqueue) sq_hash;		/* (c) Chain and free list. */
129 	LIST_HEAD(, sleepqueue) sq_free;	/* (c) Free queues. */
130 	void	*sq_wchan;			/* (c) Wait channel. */
131 	int	sq_type;			/* (c) Queue type. */
132 #ifdef INVARIANTS
133 	struct lock_object *sq_lock;		/* (c) Associated lock. */
134 #endif
135 };
136 
137 struct sleepqueue_chain {
138 	LIST_HEAD(, sleepqueue) sc_queues;	/* List of sleep queues. */
139 	struct mtx sc_lock;			/* Spin lock for this chain. */
140 #ifdef SLEEPQUEUE_PROFILING
141 	u_int	sc_depth;			/* Length of sc_queues. */
142 	u_int	sc_max_depth;			/* Max length of sc_queues. */
143 #endif
144 } __aligned(CACHE_LINE_SIZE);
145 
146 #ifdef SLEEPQUEUE_PROFILING
147 u_int sleepq_max_depth;
148 static SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling");
149 static SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0,
150     "sleepq chain stats");
151 SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth,
152     0, "maxmimum depth achieved of a single chain");
153 
154 static void	sleepq_profile(const char *wmesg);
155 static int	prof_enabled;
156 #endif
157 static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE];
158 static uma_zone_t sleepq_zone;
159 
160 /*
161  * Prototypes for non-exported routines.
162  */
163 static int	sleepq_catch_signals(void *wchan, int pri);
164 static int	sleepq_check_signals(void);
165 static int	sleepq_check_timeout(void);
166 #ifdef INVARIANTS
167 static void	sleepq_dtor(void *mem, int size, void *arg);
168 #endif
169 static int	sleepq_init(void *mem, int size, int flags);
170 static int	sleepq_resume_thread(struct sleepqueue *sq, struct thread *td,
171 		    int pri);
172 static void	sleepq_switch(void *wchan, int pri);
173 static void	sleepq_timeout(void *arg);
174 
175 SDT_PROBE_DECLARE(sched, , , sleep);
176 SDT_PROBE_DECLARE(sched, , , wakeup);
177 
178 /*
179  * Initialize SLEEPQUEUE_PROFILING specific sysctl nodes.
180  * Note that it must happen after sleepinit() has been fully executed, so
181  * it must happen after SI_SUB_KMEM SYSINIT() subsystem setup.
182  */
183 #ifdef SLEEPQUEUE_PROFILING
184 static void
185 init_sleepqueue_profiling(void)
186 {
187 	char chain_name[10];
188 	struct sysctl_oid *chain_oid;
189 	u_int i;
190 
191 	for (i = 0; i < SC_TABLESIZE; i++) {
192 		snprintf(chain_name, sizeof(chain_name), "%u", i);
193 		chain_oid = SYSCTL_ADD_NODE(NULL,
194 		    SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO,
195 		    chain_name, CTLFLAG_RD, NULL, "sleepq chain stats");
196 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
197 		    "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL);
198 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
199 		    "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0,
200 		    NULL);
201 	}
202 }
203 
204 SYSINIT(sleepqueue_profiling, SI_SUB_LOCK, SI_ORDER_ANY,
205     init_sleepqueue_profiling, NULL);
206 #endif
207 
208 /*
209  * Early initialization of sleep queues that is called from the sleepinit()
210  * SYSINIT.
211  */
212 void
213 init_sleepqueues(void)
214 {
215 	int i;
216 
217 	for (i = 0; i < SC_TABLESIZE; i++) {
218 		LIST_INIT(&sleepq_chains[i].sc_queues);
219 		mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL,
220 		    MTX_SPIN | MTX_RECURSE);
221 	}
222 	sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue),
223 #ifdef INVARIANTS
224 	    NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
225 #else
226 	    NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
227 #endif
228 
229 	thread0.td_sleepqueue = sleepq_alloc();
230 }
231 
232 /*
233  * Get a sleep queue for a new thread.
234  */
235 struct sleepqueue *
236 sleepq_alloc(void)
237 {
238 
239 	return (uma_zalloc(sleepq_zone, M_WAITOK));
240 }
241 
242 /*
243  * Free a sleep queue when a thread is destroyed.
244  */
245 void
246 sleepq_free(struct sleepqueue *sq)
247 {
248 
249 	uma_zfree(sleepq_zone, sq);
250 }
251 
252 /*
253  * Lock the sleep queue chain associated with the specified wait channel.
254  */
255 void
256 sleepq_lock(void *wchan)
257 {
258 	struct sleepqueue_chain *sc;
259 
260 	sc = SC_LOOKUP(wchan);
261 	mtx_lock_spin(&sc->sc_lock);
262 }
263 
264 /*
265  * Look up the sleep queue associated with a given wait channel in the hash
266  * table locking the associated sleep queue chain.  If no queue is found in
267  * the table, NULL is returned.
268  */
269 struct sleepqueue *
270 sleepq_lookup(void *wchan)
271 {
272 	struct sleepqueue_chain *sc;
273 	struct sleepqueue *sq;
274 
275 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
276 	sc = SC_LOOKUP(wchan);
277 	mtx_assert(&sc->sc_lock, MA_OWNED);
278 	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
279 		if (sq->sq_wchan == wchan)
280 			return (sq);
281 	return (NULL);
282 }
283 
284 /*
285  * Unlock the sleep queue chain associated with a given wait channel.
286  */
287 void
288 sleepq_release(void *wchan)
289 {
290 	struct sleepqueue_chain *sc;
291 
292 	sc = SC_LOOKUP(wchan);
293 	mtx_unlock_spin(&sc->sc_lock);
294 }
295 
296 /*
297  * Places the current thread on the sleep queue for the specified wait
298  * channel.  If INVARIANTS is enabled, then it associates the passed in
299  * lock with the sleepq to make sure it is held when that sleep queue is
300  * woken up.
301  */
302 void
303 sleepq_add(void *wchan, struct lock_object *lock, const char *wmesg, int flags,
304     int queue)
305 {
306 	struct sleepqueue_chain *sc;
307 	struct sleepqueue *sq;
308 	struct thread *td;
309 
310 	td = curthread;
311 	sc = SC_LOOKUP(wchan);
312 	mtx_assert(&sc->sc_lock, MA_OWNED);
313 	MPASS(td->td_sleepqueue != NULL);
314 	MPASS(wchan != NULL);
315 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
316 
317 	/* If this thread is not allowed to sleep, die a horrible death. */
318 	KASSERT(td->td_no_sleeping == 0,
319 	    ("%s: td %p to sleep on wchan %p with sleeping prohibited",
320 	    __func__, td, wchan));
321 
322 	/* Look up the sleep queue associated with the wait channel 'wchan'. */
323 	sq = sleepq_lookup(wchan);
324 
325 	/*
326 	 * If the wait channel does not already have a sleep queue, use
327 	 * this thread's sleep queue.  Otherwise, insert the current thread
328 	 * into the sleep queue already in use by this wait channel.
329 	 */
330 	if (sq == NULL) {
331 #ifdef INVARIANTS
332 		int i;
333 
334 		sq = td->td_sleepqueue;
335 		for (i = 0; i < NR_SLEEPQS; i++) {
336 			KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]),
337 			    ("thread's sleep queue %d is not empty", i));
338 			KASSERT(sq->sq_blockedcnt[i] == 0,
339 			    ("thread's sleep queue %d count mismatches", i));
340 		}
341 		KASSERT(LIST_EMPTY(&sq->sq_free),
342 		    ("thread's sleep queue has a non-empty free list"));
343 		KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer"));
344 		sq->sq_lock = lock;
345 #endif
346 #ifdef SLEEPQUEUE_PROFILING
347 		sc->sc_depth++;
348 		if (sc->sc_depth > sc->sc_max_depth) {
349 			sc->sc_max_depth = sc->sc_depth;
350 			if (sc->sc_max_depth > sleepq_max_depth)
351 				sleepq_max_depth = sc->sc_max_depth;
352 		}
353 #endif
354 		sq = td->td_sleepqueue;
355 		LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash);
356 		sq->sq_wchan = wchan;
357 		sq->sq_type = flags & SLEEPQ_TYPE;
358 	} else {
359 		MPASS(wchan == sq->sq_wchan);
360 		MPASS(lock == sq->sq_lock);
361 		MPASS((flags & SLEEPQ_TYPE) == sq->sq_type);
362 		LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash);
363 	}
364 	thread_lock(td);
365 	TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq);
366 	sq->sq_blockedcnt[queue]++;
367 	td->td_sleepqueue = NULL;
368 	td->td_sqqueue = queue;
369 	td->td_wchan = wchan;
370 	td->td_wmesg = wmesg;
371 	if (flags & SLEEPQ_INTERRUPTIBLE) {
372 		td->td_flags |= TDF_SINTR;
373 		td->td_flags &= ~TDF_SLEEPABORT;
374 	}
375 	thread_unlock(td);
376 }
377 
378 /*
379  * Sets a timeout that will remove the current thread from the specified
380  * sleep queue after timo ticks if the thread has not already been awakened.
381  */
382 void
383 sleepq_set_timeout_sbt(void *wchan, sbintime_t sbt, sbintime_t pr,
384     int flags)
385 {
386 	struct sleepqueue_chain *sc __unused;
387 	struct thread *td;
388 	sbintime_t pr1;
389 
390 	td = curthread;
391 	sc = SC_LOOKUP(wchan);
392 	mtx_assert(&sc->sc_lock, MA_OWNED);
393 	MPASS(TD_ON_SLEEPQ(td));
394 	MPASS(td->td_sleepqueue == NULL);
395 	MPASS(wchan != NULL);
396 	if (cold && td == &thread0)
397 		panic("timed sleep before timers are working");
398 	KASSERT(td->td_sleeptimo == 0, ("td %d %p td_sleeptimo %jx",
399 	    td->td_tid, td, (uintmax_t)td->td_sleeptimo));
400 	thread_lock(td);
401 	callout_when(sbt, pr, flags, &td->td_sleeptimo, &pr1);
402 	thread_unlock(td);
403 	callout_reset_sbt_on(&td->td_slpcallout, td->td_sleeptimo, pr1,
404 	    sleepq_timeout, td, PCPU_GET(cpuid), flags | C_PRECALC |
405 	    C_DIRECT_EXEC);
406 }
407 
408 /*
409  * Return the number of actual sleepers for the specified queue.
410  */
411 u_int
412 sleepq_sleepcnt(void *wchan, int queue)
413 {
414 	struct sleepqueue *sq;
415 
416 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
417 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
418 	sq = sleepq_lookup(wchan);
419 	if (sq == NULL)
420 		return (0);
421 	return (sq->sq_blockedcnt[queue]);
422 }
423 
424 /*
425  * Marks the pending sleep of the current thread as interruptible and
426  * makes an initial check for pending signals before putting a thread
427  * to sleep. Enters and exits with the thread lock held.  Thread lock
428  * may have transitioned from the sleepq lock to a run lock.
429  */
430 static int
431 sleepq_catch_signals(void *wchan, int pri)
432 {
433 	struct sleepqueue_chain *sc;
434 	struct sleepqueue *sq;
435 	struct thread *td;
436 	struct proc *p;
437 	struct sigacts *ps;
438 	int sig, ret;
439 
440 	ret = 0;
441 	td = curthread;
442 	p = curproc;
443 	sc = SC_LOOKUP(wchan);
444 	mtx_assert(&sc->sc_lock, MA_OWNED);
445 	MPASS(wchan != NULL);
446 	if ((td->td_pflags & TDP_WAKEUP) != 0) {
447 		td->td_pflags &= ~TDP_WAKEUP;
448 		ret = EINTR;
449 		thread_lock(td);
450 		goto out;
451 	}
452 
453 	/*
454 	 * See if there are any pending signals or suspension requests for this
455 	 * thread.  If not, we can switch immediately.
456 	 */
457 	thread_lock(td);
458 	if ((td->td_flags & (TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK)) != 0) {
459 		thread_unlock(td);
460 		mtx_unlock_spin(&sc->sc_lock);
461 		CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)",
462 			(void *)td, (long)p->p_pid, td->td_name);
463 		PROC_LOCK(p);
464 		/*
465 		 * Check for suspension first. Checking for signals and then
466 		 * suspending could result in a missed signal, since a signal
467 		 * can be delivered while this thread is suspended.
468 		 */
469 		if ((td->td_flags & TDF_NEEDSUSPCHK) != 0) {
470 			ret = thread_suspend_check(1);
471 			MPASS(ret == 0 || ret == EINTR || ret == ERESTART);
472 			if (ret != 0) {
473 				PROC_UNLOCK(p);
474 				mtx_lock_spin(&sc->sc_lock);
475 				thread_lock(td);
476 				goto out;
477 			}
478 		}
479 		if ((td->td_flags & TDF_NEEDSIGCHK) != 0) {
480 			ps = p->p_sigacts;
481 			mtx_lock(&ps->ps_mtx);
482 			sig = cursig(td);
483 			if (sig == -1) {
484 				mtx_unlock(&ps->ps_mtx);
485 				KASSERT((td->td_flags & TDF_SBDRY) != 0,
486 				    ("lost TDF_SBDRY"));
487 				KASSERT(TD_SBDRY_INTR(td),
488 				    ("lost TDF_SERESTART of TDF_SEINTR"));
489 				KASSERT((td->td_flags &
490 				    (TDF_SEINTR | TDF_SERESTART)) !=
491 				    (TDF_SEINTR | TDF_SERESTART),
492 				    ("both TDF_SEINTR and TDF_SERESTART"));
493 				ret = TD_SBDRY_ERRNO(td);
494 			} else if (sig != 0) {
495 				ret = SIGISMEMBER(ps->ps_sigintr, sig) ?
496 				    EINTR : ERESTART;
497 				mtx_unlock(&ps->ps_mtx);
498 			} else {
499 				mtx_unlock(&ps->ps_mtx);
500 			}
501 		}
502 		/*
503 		 * Lock the per-process spinlock prior to dropping the PROC_LOCK
504 		 * to avoid a signal delivery race.  PROC_LOCK, PROC_SLOCK, and
505 		 * thread_lock() are currently held in tdsendsignal().
506 		 */
507 		PROC_SLOCK(p);
508 		mtx_lock_spin(&sc->sc_lock);
509 		PROC_UNLOCK(p);
510 		thread_lock(td);
511 		PROC_SUNLOCK(p);
512 	}
513 	if (ret == 0) {
514 		sleepq_switch(wchan, pri);
515 		return (0);
516 	}
517 out:
518 	/*
519 	 * There were pending signals and this thread is still
520 	 * on the sleep queue, remove it from the sleep queue.
521 	 */
522 	if (TD_ON_SLEEPQ(td)) {
523 		sq = sleepq_lookup(wchan);
524 		if (sleepq_resume_thread(sq, td, 0)) {
525 #ifdef INVARIANTS
526 			/*
527 			 * This thread hasn't gone to sleep yet, so it
528 			 * should not be swapped out.
529 			 */
530 			panic("not waking up swapper");
531 #endif
532 		}
533 	}
534 	mtx_unlock_spin(&sc->sc_lock);
535 	MPASS(td->td_lock != &sc->sc_lock);
536 	return (ret);
537 }
538 
539 /*
540  * Switches to another thread if we are still asleep on a sleep queue.
541  * Returns with thread lock.
542  */
543 static void
544 sleepq_switch(void *wchan, int pri)
545 {
546 	struct sleepqueue_chain *sc;
547 	struct sleepqueue *sq;
548 	struct thread *td;
549 	bool rtc_changed;
550 
551 	td = curthread;
552 	sc = SC_LOOKUP(wchan);
553 	mtx_assert(&sc->sc_lock, MA_OWNED);
554 	THREAD_LOCK_ASSERT(td, MA_OWNED);
555 
556 	/*
557 	 * If we have a sleep queue, then we've already been woken up, so
558 	 * just return.
559 	 */
560 	if (td->td_sleepqueue != NULL) {
561 		mtx_unlock_spin(&sc->sc_lock);
562 		return;
563 	}
564 
565 	/*
566 	 * If TDF_TIMEOUT is set, then our sleep has been timed out
567 	 * already but we are still on the sleep queue, so dequeue the
568 	 * thread and return.
569 	 *
570 	 * Do the same if the real-time clock has been adjusted since this
571 	 * thread calculated its timeout based on that clock.  This handles
572 	 * the following race:
573 	 * - The Ts thread needs to sleep until an absolute real-clock time.
574 	 *   It copies the global rtc_generation into curthread->td_rtcgen,
575 	 *   reads the RTC, and calculates a sleep duration based on that time.
576 	 *   See umtxq_sleep() for an example.
577 	 * - The Tc thread adjusts the RTC, bumps rtc_generation, and wakes
578 	 *   threads that are sleeping until an absolute real-clock time.
579 	 *   See tc_setclock() and the POSIX specification of clock_settime().
580 	 * - Ts reaches the code below.  It holds the sleepqueue chain lock,
581 	 *   so Tc has finished waking, so this thread must test td_rtcgen.
582 	 * (The declaration of td_rtcgen refers to this comment.)
583 	 */
584 	rtc_changed = td->td_rtcgen != 0 && td->td_rtcgen != rtc_generation;
585 	if ((td->td_flags & TDF_TIMEOUT) || rtc_changed) {
586 		if (rtc_changed) {
587 			td->td_rtcgen = 0;
588 		}
589 		MPASS(TD_ON_SLEEPQ(td));
590 		sq = sleepq_lookup(wchan);
591 		if (sleepq_resume_thread(sq, td, 0)) {
592 #ifdef INVARIANTS
593 			/*
594 			 * This thread hasn't gone to sleep yet, so it
595 			 * should not be swapped out.
596 			 */
597 			panic("not waking up swapper");
598 #endif
599 		}
600 		mtx_unlock_spin(&sc->sc_lock);
601 		return;
602 	}
603 #ifdef SLEEPQUEUE_PROFILING
604 	if (prof_enabled)
605 		sleepq_profile(td->td_wmesg);
606 #endif
607 	MPASS(td->td_sleepqueue == NULL);
608 	sched_sleep(td, pri);
609 	thread_lock_set(td, &sc->sc_lock);
610 	SDT_PROBE0(sched, , , sleep);
611 	TD_SET_SLEEPING(td);
612 	mi_switch(SW_VOL | SWT_SLEEPQ, NULL);
613 	KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
614 	CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)",
615 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
616 }
617 
618 /*
619  * Check to see if we timed out.
620  */
621 static int
622 sleepq_check_timeout(void)
623 {
624 	struct thread *td;
625 	int res;
626 
627 	td = curthread;
628 	THREAD_LOCK_ASSERT(td, MA_OWNED);
629 
630 	/*
631 	 * If TDF_TIMEOUT is set, we timed out.  But recheck
632 	 * td_sleeptimo anyway.
633 	 */
634 	res = 0;
635 	if (td->td_sleeptimo != 0) {
636 		if (td->td_sleeptimo <= sbinuptime())
637 			res = EWOULDBLOCK;
638 		td->td_sleeptimo = 0;
639 	}
640 	if (td->td_flags & TDF_TIMEOUT)
641 		td->td_flags &= ~TDF_TIMEOUT;
642 	else
643 		/*
644 		 * We ignore the situation where timeout subsystem was
645 		 * unable to stop our callout.  The struct thread is
646 		 * type-stable, the callout will use the correct
647 		 * memory when running.  The checks of the
648 		 * td_sleeptimo value in this function and in
649 		 * sleepq_timeout() ensure that the thread does not
650 		 * get spurious wakeups, even if the callout was reset
651 		 * or thread reused.
652 		 */
653 		callout_stop(&td->td_slpcallout);
654 	return (res);
655 }
656 
657 /*
658  * Check to see if we were awoken by a signal.
659  */
660 static int
661 sleepq_check_signals(void)
662 {
663 	struct thread *td;
664 
665 	td = curthread;
666 	THREAD_LOCK_ASSERT(td, MA_OWNED);
667 
668 	/* We are no longer in an interruptible sleep. */
669 	if (td->td_flags & TDF_SINTR)
670 		td->td_flags &= ~TDF_SINTR;
671 
672 	if (td->td_flags & TDF_SLEEPABORT) {
673 		td->td_flags &= ~TDF_SLEEPABORT;
674 		return (td->td_intrval);
675 	}
676 
677 	return (0);
678 }
679 
680 /*
681  * Block the current thread until it is awakened from its sleep queue.
682  */
683 void
684 sleepq_wait(void *wchan, int pri)
685 {
686 	struct thread *td;
687 
688 	td = curthread;
689 	MPASS(!(td->td_flags & TDF_SINTR));
690 	thread_lock(td);
691 	sleepq_switch(wchan, pri);
692 	thread_unlock(td);
693 }
694 
695 /*
696  * Block the current thread until it is awakened from its sleep queue
697  * or it is interrupted by a signal.
698  */
699 int
700 sleepq_wait_sig(void *wchan, int pri)
701 {
702 	int rcatch;
703 	int rval;
704 
705 	rcatch = sleepq_catch_signals(wchan, pri);
706 	rval = sleepq_check_signals();
707 	thread_unlock(curthread);
708 	if (rcatch)
709 		return (rcatch);
710 	return (rval);
711 }
712 
713 /*
714  * Block the current thread until it is awakened from its sleep queue
715  * or it times out while waiting.
716  */
717 int
718 sleepq_timedwait(void *wchan, int pri)
719 {
720 	struct thread *td;
721 	int rval;
722 
723 	td = curthread;
724 	MPASS(!(td->td_flags & TDF_SINTR));
725 	thread_lock(td);
726 	sleepq_switch(wchan, pri);
727 	rval = sleepq_check_timeout();
728 	thread_unlock(td);
729 
730 	return (rval);
731 }
732 
733 /*
734  * Block the current thread until it is awakened from its sleep queue,
735  * it is interrupted by a signal, or it times out waiting to be awakened.
736  */
737 int
738 sleepq_timedwait_sig(void *wchan, int pri)
739 {
740 	int rcatch, rvalt, rvals;
741 
742 	rcatch = sleepq_catch_signals(wchan, pri);
743 	rvalt = sleepq_check_timeout();
744 	rvals = sleepq_check_signals();
745 	thread_unlock(curthread);
746 	if (rcatch)
747 		return (rcatch);
748 	if (rvals)
749 		return (rvals);
750 	return (rvalt);
751 }
752 
753 /*
754  * Returns the type of sleepqueue given a waitchannel.
755  */
756 int
757 sleepq_type(void *wchan)
758 {
759 	struct sleepqueue *sq;
760 	int type;
761 
762 	MPASS(wchan != NULL);
763 
764 	sleepq_lock(wchan);
765 	sq = sleepq_lookup(wchan);
766 	if (sq == NULL) {
767 		sleepq_release(wchan);
768 		return (-1);
769 	}
770 	type = sq->sq_type;
771 	sleepq_release(wchan);
772 	return (type);
773 }
774 
775 /*
776  * Removes a thread from a sleep queue and makes it
777  * runnable.
778  */
779 static int
780 sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri)
781 {
782 	struct sleepqueue_chain *sc __unused;
783 
784 	MPASS(td != NULL);
785 	MPASS(sq->sq_wchan != NULL);
786 	MPASS(td->td_wchan == sq->sq_wchan);
787 	MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0);
788 	THREAD_LOCK_ASSERT(td, MA_OWNED);
789 	sc = SC_LOOKUP(sq->sq_wchan);
790 	mtx_assert(&sc->sc_lock, MA_OWNED);
791 
792 	SDT_PROBE2(sched, , , wakeup, td, td->td_proc);
793 
794 	/* Remove the thread from the queue. */
795 	sq->sq_blockedcnt[td->td_sqqueue]--;
796 	TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq);
797 
798 	/*
799 	 * Get a sleep queue for this thread.  If this is the last waiter,
800 	 * use the queue itself and take it out of the chain, otherwise,
801 	 * remove a queue from the free list.
802 	 */
803 	if (LIST_EMPTY(&sq->sq_free)) {
804 		td->td_sleepqueue = sq;
805 #ifdef INVARIANTS
806 		sq->sq_wchan = NULL;
807 #endif
808 #ifdef SLEEPQUEUE_PROFILING
809 		sc->sc_depth--;
810 #endif
811 	} else
812 		td->td_sleepqueue = LIST_FIRST(&sq->sq_free);
813 	LIST_REMOVE(td->td_sleepqueue, sq_hash);
814 
815 	td->td_wmesg = NULL;
816 	td->td_wchan = NULL;
817 	td->td_flags &= ~TDF_SINTR;
818 
819 	CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)",
820 	    (void *)td, (long)td->td_proc->p_pid, td->td_name);
821 
822 	/* Adjust priority if requested. */
823 	MPASS(pri == 0 || (pri >= PRI_MIN && pri <= PRI_MAX));
824 	if (pri != 0 && td->td_priority > pri &&
825 	    PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
826 		sched_prio(td, pri);
827 
828 	/*
829 	 * Note that thread td might not be sleeping if it is running
830 	 * sleepq_catch_signals() on another CPU or is blocked on its
831 	 * proc lock to check signals.  There's no need to mark the
832 	 * thread runnable in that case.
833 	 */
834 	if (TD_IS_SLEEPING(td)) {
835 		TD_CLR_SLEEPING(td);
836 		return (setrunnable(td));
837 	}
838 	return (0);
839 }
840 
841 #ifdef INVARIANTS
842 /*
843  * UMA zone item deallocator.
844  */
845 static void
846 sleepq_dtor(void *mem, int size, void *arg)
847 {
848 	struct sleepqueue *sq;
849 	int i;
850 
851 	sq = mem;
852 	for (i = 0; i < NR_SLEEPQS; i++) {
853 		MPASS(TAILQ_EMPTY(&sq->sq_blocked[i]));
854 		MPASS(sq->sq_blockedcnt[i] == 0);
855 	}
856 }
857 #endif
858 
859 /*
860  * UMA zone item initializer.
861  */
862 static int
863 sleepq_init(void *mem, int size, int flags)
864 {
865 	struct sleepqueue *sq;
866 	int i;
867 
868 	bzero(mem, size);
869 	sq = mem;
870 	for (i = 0; i < NR_SLEEPQS; i++) {
871 		TAILQ_INIT(&sq->sq_blocked[i]);
872 		sq->sq_blockedcnt[i] = 0;
873 	}
874 	LIST_INIT(&sq->sq_free);
875 	return (0);
876 }
877 
878 /*
879  * Find the highest priority thread sleeping on a wait channel and resume it.
880  */
881 int
882 sleepq_signal(void *wchan, int flags, int pri, int queue)
883 {
884 	struct sleepqueue *sq;
885 	struct thread *td, *besttd;
886 	int wakeup_swapper;
887 
888 	CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags);
889 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
890 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
891 	sq = sleepq_lookup(wchan);
892 	if (sq == NULL)
893 		return (0);
894 	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
895 	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
896 
897 	/*
898 	 * Find the highest priority thread on the queue.  If there is a
899 	 * tie, use the thread that first appears in the queue as it has
900 	 * been sleeping the longest since threads are always added to
901 	 * the tail of sleep queues.
902 	 */
903 	besttd = TAILQ_FIRST(&sq->sq_blocked[queue]);
904 	TAILQ_FOREACH(td, &sq->sq_blocked[queue], td_slpq) {
905 		if (td->td_priority < besttd->td_priority)
906 			besttd = td;
907 	}
908 	MPASS(besttd != NULL);
909 	thread_lock(besttd);
910 	wakeup_swapper = sleepq_resume_thread(sq, besttd, pri);
911 	thread_unlock(besttd);
912 	return (wakeup_swapper);
913 }
914 
915 static bool
916 match_any(struct thread *td __unused)
917 {
918 
919 	return (true);
920 }
921 
922 /*
923  * Resume all threads sleeping on a specified wait channel.
924  */
925 int
926 sleepq_broadcast(void *wchan, int flags, int pri, int queue)
927 {
928 	struct sleepqueue *sq;
929 
930 	CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags);
931 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
932 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
933 	sq = sleepq_lookup(wchan);
934 	if (sq == NULL)
935 		return (0);
936 	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
937 	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
938 
939 	return (sleepq_remove_matching(sq, queue, match_any, pri));
940 }
941 
942 /*
943  * Resume threads on the sleep queue that match the given predicate.
944  */
945 int
946 sleepq_remove_matching(struct sleepqueue *sq, int queue,
947     bool (*matches)(struct thread *), int pri)
948 {
949 	struct thread *td, *tdn;
950 	int wakeup_swapper;
951 
952 	/*
953 	 * The last thread will be given ownership of sq and may
954 	 * re-enqueue itself before sleepq_resume_thread() returns,
955 	 * so we must cache the "next" queue item at the beginning
956 	 * of the final iteration.
957 	 */
958 	wakeup_swapper = 0;
959 	TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, tdn) {
960 		thread_lock(td);
961 		if (matches(td))
962 			wakeup_swapper |= sleepq_resume_thread(sq, td, pri);
963 		thread_unlock(td);
964 	}
965 
966 	return (wakeup_swapper);
967 }
968 
969 /*
970  * Time sleeping threads out.  When the timeout expires, the thread is
971  * removed from the sleep queue and made runnable if it is still asleep.
972  */
973 static void
974 sleepq_timeout(void *arg)
975 {
976 	struct sleepqueue_chain *sc __unused;
977 	struct sleepqueue *sq;
978 	struct thread *td;
979 	void *wchan;
980 	int wakeup_swapper;
981 
982 	td = arg;
983 	wakeup_swapper = 0;
984 	CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)",
985 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
986 
987 	thread_lock(td);
988 
989 	if (td->td_sleeptimo > sbinuptime() || td->td_sleeptimo == 0) {
990 		/*
991 		 * The thread does not want a timeout (yet).
992 		 */
993 	} else if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) {
994 		/*
995 		 * See if the thread is asleep and get the wait
996 		 * channel if it is.
997 		 */
998 		wchan = td->td_wchan;
999 		sc = SC_LOOKUP(wchan);
1000 		THREAD_LOCKPTR_ASSERT(td, &sc->sc_lock);
1001 		sq = sleepq_lookup(wchan);
1002 		MPASS(sq != NULL);
1003 		td->td_flags |= TDF_TIMEOUT;
1004 		wakeup_swapper = sleepq_resume_thread(sq, td, 0);
1005 	} else if (TD_ON_SLEEPQ(td)) {
1006 		/*
1007 		 * If the thread is on the SLEEPQ but isn't sleeping
1008 		 * yet, it can either be on another CPU in between
1009 		 * sleepq_add() and one of the sleepq_*wait*()
1010 		 * routines or it can be in sleepq_catch_signals().
1011 		 */
1012 		td->td_flags |= TDF_TIMEOUT;
1013 	}
1014 
1015 	thread_unlock(td);
1016 	if (wakeup_swapper)
1017 		kick_proc0();
1018 }
1019 
1020 /*
1021  * Resumes a specific thread from the sleep queue associated with a specific
1022  * wait channel if it is on that queue.
1023  */
1024 void
1025 sleepq_remove(struct thread *td, void *wchan)
1026 {
1027 	struct sleepqueue *sq;
1028 	int wakeup_swapper;
1029 
1030 	/*
1031 	 * Look up the sleep queue for this wait channel, then re-check
1032 	 * that the thread is asleep on that channel, if it is not, then
1033 	 * bail.
1034 	 */
1035 	MPASS(wchan != NULL);
1036 	sleepq_lock(wchan);
1037 	sq = sleepq_lookup(wchan);
1038 	/*
1039 	 * We can not lock the thread here as it may be sleeping on a
1040 	 * different sleepq.  However, holding the sleepq lock for this
1041 	 * wchan can guarantee that we do not miss a wakeup for this
1042 	 * channel.  The asserts below will catch any false positives.
1043 	 */
1044 	if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) {
1045 		sleepq_release(wchan);
1046 		return;
1047 	}
1048 	/* Thread is asleep on sleep queue sq, so wake it up. */
1049 	thread_lock(td);
1050 	MPASS(sq != NULL);
1051 	MPASS(td->td_wchan == wchan);
1052 	wakeup_swapper = sleepq_resume_thread(sq, td, 0);
1053 	thread_unlock(td);
1054 	sleepq_release(wchan);
1055 	if (wakeup_swapper)
1056 		kick_proc0();
1057 }
1058 
1059 /*
1060  * Abort a thread as if an interrupt had occurred.  Only abort
1061  * interruptible waits (unfortunately it isn't safe to abort others).
1062  */
1063 int
1064 sleepq_abort(struct thread *td, int intrval)
1065 {
1066 	struct sleepqueue *sq;
1067 	void *wchan;
1068 
1069 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1070 	MPASS(TD_ON_SLEEPQ(td));
1071 	MPASS(td->td_flags & TDF_SINTR);
1072 	MPASS(intrval == EINTR || intrval == ERESTART);
1073 
1074 	/*
1075 	 * If the TDF_TIMEOUT flag is set, just leave. A
1076 	 * timeout is scheduled anyhow.
1077 	 */
1078 	if (td->td_flags & TDF_TIMEOUT)
1079 		return (0);
1080 
1081 	CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)",
1082 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
1083 	td->td_intrval = intrval;
1084 	td->td_flags |= TDF_SLEEPABORT;
1085 	/*
1086 	 * If the thread has not slept yet it will find the signal in
1087 	 * sleepq_catch_signals() and call sleepq_resume_thread.  Otherwise
1088 	 * we have to do it here.
1089 	 */
1090 	if (!TD_IS_SLEEPING(td))
1091 		return (0);
1092 	wchan = td->td_wchan;
1093 	MPASS(wchan != NULL);
1094 	sq = sleepq_lookup(wchan);
1095 	MPASS(sq != NULL);
1096 
1097 	/* Thread is asleep on sleep queue sq, so wake it up. */
1098 	return (sleepq_resume_thread(sq, td, 0));
1099 }
1100 
1101 void
1102 sleepq_chains_remove_matching(bool (*matches)(struct thread *))
1103 {
1104 	struct sleepqueue_chain *sc;
1105 	struct sleepqueue *sq, *sq1;
1106 	int i, wakeup_swapper;
1107 
1108 	wakeup_swapper = 0;
1109 	for (sc = &sleepq_chains[0]; sc < sleepq_chains + SC_TABLESIZE; ++sc) {
1110 		if (LIST_EMPTY(&sc->sc_queues)) {
1111 			continue;
1112 		}
1113 		mtx_lock_spin(&sc->sc_lock);
1114 		LIST_FOREACH_SAFE(sq, &sc->sc_queues, sq_hash, sq1) {
1115 			for (i = 0; i < NR_SLEEPQS; ++i) {
1116 				wakeup_swapper |= sleepq_remove_matching(sq, i,
1117 				    matches, 0);
1118 			}
1119 		}
1120 		mtx_unlock_spin(&sc->sc_lock);
1121 	}
1122 	if (wakeup_swapper) {
1123 		kick_proc0();
1124 	}
1125 }
1126 
1127 /*
1128  * Prints the stacks of all threads presently sleeping on wchan/queue to
1129  * the sbuf sb.  Sets count_stacks_printed to the number of stacks actually
1130  * printed.  Typically, this will equal the number of threads sleeping on the
1131  * queue, but may be less if sb overflowed before all stacks were printed.
1132  */
1133 #ifdef STACK
1134 int
1135 sleepq_sbuf_print_stacks(struct sbuf *sb, void *wchan, int queue,
1136     int *count_stacks_printed)
1137 {
1138 	struct thread *td, *td_next;
1139 	struct sleepqueue *sq;
1140 	struct stack **st;
1141 	struct sbuf **td_infos;
1142 	int i, stack_idx, error, stacks_to_allocate;
1143 	bool finished;
1144 
1145 	error = 0;
1146 	finished = false;
1147 
1148 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
1149 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
1150 
1151 	stacks_to_allocate = 10;
1152 	for (i = 0; i < 3 && !finished ; i++) {
1153 		/* We cannot malloc while holding the queue's spinlock, so
1154 		 * we do our mallocs now, and hope it is enough.  If it
1155 		 * isn't, we will free these, drop the lock, malloc more,
1156 		 * and try again, up to a point.  After that point we will
1157 		 * give up and report ENOMEM. We also cannot write to sb
1158 		 * during this time since the client may have set the
1159 		 * SBUF_AUTOEXTEND flag on their sbuf, which could cause a
1160 		 * malloc as we print to it.  So we defer actually printing
1161 		 * to sb until after we drop the spinlock.
1162 		 */
1163 
1164 		/* Where we will store the stacks. */
1165 		st = malloc(sizeof(struct stack *) * stacks_to_allocate,
1166 		    M_TEMP, M_WAITOK);
1167 		for (stack_idx = 0; stack_idx < stacks_to_allocate;
1168 		    stack_idx++)
1169 			st[stack_idx] = stack_create(M_WAITOK);
1170 
1171 		/* Where we will store the td name, tid, etc. */
1172 		td_infos = malloc(sizeof(struct sbuf *) * stacks_to_allocate,
1173 		    M_TEMP, M_WAITOK);
1174 		for (stack_idx = 0; stack_idx < stacks_to_allocate;
1175 		    stack_idx++)
1176 			td_infos[stack_idx] = sbuf_new(NULL, NULL,
1177 			    MAXCOMLEN + sizeof(struct thread *) * 2 + 40,
1178 			    SBUF_FIXEDLEN);
1179 
1180 		sleepq_lock(wchan);
1181 		sq = sleepq_lookup(wchan);
1182 		if (sq == NULL) {
1183 			/* This sleepq does not exist; exit and return ENOENT. */
1184 			error = ENOENT;
1185 			finished = true;
1186 			sleepq_release(wchan);
1187 			goto loop_end;
1188 		}
1189 
1190 		stack_idx = 0;
1191 		/* Save thread info */
1192 		TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq,
1193 		    td_next) {
1194 			if (stack_idx >= stacks_to_allocate)
1195 				goto loop_end;
1196 
1197 			/* Note the td_lock is equal to the sleepq_lock here. */
1198 			stack_save_td(st[stack_idx], td);
1199 
1200 			sbuf_printf(td_infos[stack_idx], "%d: %s %p",
1201 			    td->td_tid, td->td_name, td);
1202 
1203 			++stack_idx;
1204 		}
1205 
1206 		finished = true;
1207 		sleepq_release(wchan);
1208 
1209 		/* Print the stacks */
1210 		for (i = 0; i < stack_idx; i++) {
1211 			sbuf_finish(td_infos[i]);
1212 			sbuf_printf(sb, "--- thread %s: ---\n", sbuf_data(td_infos[i]));
1213 			stack_sbuf_print(sb, st[i]);
1214 			sbuf_printf(sb, "\n");
1215 
1216 			error = sbuf_error(sb);
1217 			if (error == 0)
1218 				*count_stacks_printed = stack_idx;
1219 		}
1220 
1221 loop_end:
1222 		if (!finished)
1223 			sleepq_release(wchan);
1224 		for (stack_idx = 0; stack_idx < stacks_to_allocate;
1225 		    stack_idx++)
1226 			stack_destroy(st[stack_idx]);
1227 		for (stack_idx = 0; stack_idx < stacks_to_allocate;
1228 		    stack_idx++)
1229 			sbuf_delete(td_infos[stack_idx]);
1230 		free(st, M_TEMP);
1231 		free(td_infos, M_TEMP);
1232 		stacks_to_allocate *= 10;
1233 	}
1234 
1235 	if (!finished && error == 0)
1236 		error = ENOMEM;
1237 
1238 	return (error);
1239 }
1240 #endif
1241 
1242 #ifdef SLEEPQUEUE_PROFILING
1243 #define	SLEEPQ_PROF_LOCATIONS	1024
1244 #define	SLEEPQ_SBUFSIZE		512
1245 struct sleepq_prof {
1246 	LIST_ENTRY(sleepq_prof) sp_link;
1247 	const char	*sp_wmesg;
1248 	long		sp_count;
1249 };
1250 
1251 LIST_HEAD(sqphead, sleepq_prof);
1252 
1253 struct sqphead sleepq_prof_free;
1254 struct sqphead sleepq_hash[SC_TABLESIZE];
1255 static struct sleepq_prof sleepq_profent[SLEEPQ_PROF_LOCATIONS];
1256 static struct mtx sleepq_prof_lock;
1257 MTX_SYSINIT(sleepq_prof_lock, &sleepq_prof_lock, "sleepq_prof", MTX_SPIN);
1258 
1259 static void
1260 sleepq_profile(const char *wmesg)
1261 {
1262 	struct sleepq_prof *sp;
1263 
1264 	mtx_lock_spin(&sleepq_prof_lock);
1265 	if (prof_enabled == 0)
1266 		goto unlock;
1267 	LIST_FOREACH(sp, &sleepq_hash[SC_HASH(wmesg)], sp_link)
1268 		if (sp->sp_wmesg == wmesg)
1269 			goto done;
1270 	sp = LIST_FIRST(&sleepq_prof_free);
1271 	if (sp == NULL)
1272 		goto unlock;
1273 	sp->sp_wmesg = wmesg;
1274 	LIST_REMOVE(sp, sp_link);
1275 	LIST_INSERT_HEAD(&sleepq_hash[SC_HASH(wmesg)], sp, sp_link);
1276 done:
1277 	sp->sp_count++;
1278 unlock:
1279 	mtx_unlock_spin(&sleepq_prof_lock);
1280 	return;
1281 }
1282 
1283 static void
1284 sleepq_prof_reset(void)
1285 {
1286 	struct sleepq_prof *sp;
1287 	int enabled;
1288 	int i;
1289 
1290 	mtx_lock_spin(&sleepq_prof_lock);
1291 	enabled = prof_enabled;
1292 	prof_enabled = 0;
1293 	for (i = 0; i < SC_TABLESIZE; i++)
1294 		LIST_INIT(&sleepq_hash[i]);
1295 	LIST_INIT(&sleepq_prof_free);
1296 	for (i = 0; i < SLEEPQ_PROF_LOCATIONS; i++) {
1297 		sp = &sleepq_profent[i];
1298 		sp->sp_wmesg = NULL;
1299 		sp->sp_count = 0;
1300 		LIST_INSERT_HEAD(&sleepq_prof_free, sp, sp_link);
1301 	}
1302 	prof_enabled = enabled;
1303 	mtx_unlock_spin(&sleepq_prof_lock);
1304 }
1305 
1306 static int
1307 enable_sleepq_prof(SYSCTL_HANDLER_ARGS)
1308 {
1309 	int error, v;
1310 
1311 	v = prof_enabled;
1312 	error = sysctl_handle_int(oidp, &v, v, req);
1313 	if (error)
1314 		return (error);
1315 	if (req->newptr == NULL)
1316 		return (error);
1317 	if (v == prof_enabled)
1318 		return (0);
1319 	if (v == 1)
1320 		sleepq_prof_reset();
1321 	mtx_lock_spin(&sleepq_prof_lock);
1322 	prof_enabled = !!v;
1323 	mtx_unlock_spin(&sleepq_prof_lock);
1324 
1325 	return (0);
1326 }
1327 
1328 static int
1329 reset_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1330 {
1331 	int error, v;
1332 
1333 	v = 0;
1334 	error = sysctl_handle_int(oidp, &v, 0, req);
1335 	if (error)
1336 		return (error);
1337 	if (req->newptr == NULL)
1338 		return (error);
1339 	if (v == 0)
1340 		return (0);
1341 	sleepq_prof_reset();
1342 
1343 	return (0);
1344 }
1345 
1346 static int
1347 dump_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1348 {
1349 	struct sleepq_prof *sp;
1350 	struct sbuf *sb;
1351 	int enabled;
1352 	int error;
1353 	int i;
1354 
1355 	error = sysctl_wire_old_buffer(req, 0);
1356 	if (error != 0)
1357 		return (error);
1358 	sb = sbuf_new_for_sysctl(NULL, NULL, SLEEPQ_SBUFSIZE, req);
1359 	sbuf_printf(sb, "\nwmesg\tcount\n");
1360 	enabled = prof_enabled;
1361 	mtx_lock_spin(&sleepq_prof_lock);
1362 	prof_enabled = 0;
1363 	mtx_unlock_spin(&sleepq_prof_lock);
1364 	for (i = 0; i < SC_TABLESIZE; i++) {
1365 		LIST_FOREACH(sp, &sleepq_hash[i], sp_link) {
1366 			sbuf_printf(sb, "%s\t%ld\n",
1367 			    sp->sp_wmesg, sp->sp_count);
1368 		}
1369 	}
1370 	mtx_lock_spin(&sleepq_prof_lock);
1371 	prof_enabled = enabled;
1372 	mtx_unlock_spin(&sleepq_prof_lock);
1373 
1374 	error = sbuf_finish(sb);
1375 	sbuf_delete(sb);
1376 	return (error);
1377 }
1378 
1379 SYSCTL_PROC(_debug_sleepq, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD,
1380     NULL, 0, dump_sleepq_prof_stats, "A", "Sleepqueue profiling statistics");
1381 SYSCTL_PROC(_debug_sleepq, OID_AUTO, reset, CTLTYPE_INT | CTLFLAG_RW,
1382     NULL, 0, reset_sleepq_prof_stats, "I",
1383     "Reset sleepqueue profiling statistics");
1384 SYSCTL_PROC(_debug_sleepq, OID_AUTO, enable, CTLTYPE_INT | CTLFLAG_RW,
1385     NULL, 0, enable_sleepq_prof, "I", "Enable sleepqueue profiling");
1386 #endif
1387 
1388 #ifdef DDB
1389 DB_SHOW_COMMAND(sleepq, db_show_sleepqueue)
1390 {
1391 	struct sleepqueue_chain *sc;
1392 	struct sleepqueue *sq;
1393 #ifdef INVARIANTS
1394 	struct lock_object *lock;
1395 #endif
1396 	struct thread *td;
1397 	void *wchan;
1398 	int i;
1399 
1400 	if (!have_addr)
1401 		return;
1402 
1403 	/*
1404 	 * First, see if there is an active sleep queue for the wait channel
1405 	 * indicated by the address.
1406 	 */
1407 	wchan = (void *)addr;
1408 	sc = SC_LOOKUP(wchan);
1409 	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
1410 		if (sq->sq_wchan == wchan)
1411 			goto found;
1412 
1413 	/*
1414 	 * Second, see if there is an active sleep queue at the address
1415 	 * indicated.
1416 	 */
1417 	for (i = 0; i < SC_TABLESIZE; i++)
1418 		LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) {
1419 			if (sq == (struct sleepqueue *)addr)
1420 				goto found;
1421 		}
1422 
1423 	db_printf("Unable to locate a sleep queue via %p\n", (void *)addr);
1424 	return;
1425 found:
1426 	db_printf("Wait channel: %p\n", sq->sq_wchan);
1427 	db_printf("Queue type: %d\n", sq->sq_type);
1428 #ifdef INVARIANTS
1429 	if (sq->sq_lock) {
1430 		lock = sq->sq_lock;
1431 		db_printf("Associated Interlock: %p - (%s) %s\n", lock,
1432 		    LOCK_CLASS(lock)->lc_name, lock->lo_name);
1433 	}
1434 #endif
1435 	db_printf("Blocked threads:\n");
1436 	for (i = 0; i < NR_SLEEPQS; i++) {
1437 		db_printf("\nQueue[%d]:\n", i);
1438 		if (TAILQ_EMPTY(&sq->sq_blocked[i]))
1439 			db_printf("\tempty\n");
1440 		else
1441 			TAILQ_FOREACH(td, &sq->sq_blocked[i],
1442 				      td_slpq) {
1443 				db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td,
1444 					  td->td_tid, td->td_proc->p_pid,
1445 					  td->td_name);
1446 			}
1447 		db_printf("(expected: %u)\n", sq->sq_blockedcnt[i]);
1448 	}
1449 }
1450 
1451 /* Alias 'show sleepqueue' to 'show sleepq'. */
1452 DB_SHOW_ALIAS(sleepqueue, db_show_sleepqueue);
1453 #endif
1454