xref: /freebsd/sys/kern/subr_sleepqueue.c (revision 2e5b60079b7d8c3ca68f1390cd90f305e651f8d3)
1 /*-
2  * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 /*
28  * Implementation of sleep queues used to hold queue of threads blocked on
29  * a wait channel.  Sleep queues different from turnstiles in that wait
30  * channels are not owned by anyone, so there is no priority propagation.
31  * Sleep queues can also provide a timeout and can also be interrupted by
32  * signals.  That said, there are several similarities between the turnstile
33  * and sleep queue implementations.  (Note: turnstiles were implemented
34  * first.)  For example, both use a hash table of the same size where each
35  * bucket is referred to as a "chain" that contains both a spin lock and
36  * a linked list of queues.  An individual queue is located by using a hash
37  * to pick a chain, locking the chain, and then walking the chain searching
38  * for the queue.  This means that a wait channel object does not need to
39  * embed it's queue head just as locks do not embed their turnstile queue
40  * head.  Threads also carry around a sleep queue that they lend to the
41  * wait channel when blocking.  Just as in turnstiles, the queue includes
42  * a free list of the sleep queues of other threads blocked on the same
43  * wait channel in the case of multiple waiters.
44  *
45  * Some additional functionality provided by sleep queues include the
46  * ability to set a timeout.  The timeout is managed using a per-thread
47  * callout that resumes a thread if it is asleep.  A thread may also
48  * catch signals while it is asleep (aka an interruptible sleep).  The
49  * signal code uses sleepq_abort() to interrupt a sleeping thread.  Finally,
50  * sleep queues also provide some extra assertions.  One is not allowed to
51  * mix the sleep/wakeup and cv APIs for a given wait channel.  Also, one
52  * must consistently use the same lock to synchronize with a wait channel,
53  * though this check is currently only a warning for sleep/wakeup due to
54  * pre-existing abuse of that API.  The same lock must also be held when
55  * awakening threads, though that is currently only enforced for condition
56  * variables.
57  */
58 
59 #include <sys/cdefs.h>
60 __FBSDID("$FreeBSD$");
61 
62 #include "opt_sleepqueue_profiling.h"
63 #include "opt_ddb.h"
64 #include "opt_sched.h"
65 
66 #include <sys/param.h>
67 #include <sys/systm.h>
68 #include <sys/lock.h>
69 #include <sys/kernel.h>
70 #include <sys/ktr.h>
71 #include <sys/mutex.h>
72 #include <sys/proc.h>
73 #include <sys/sbuf.h>
74 #include <sys/sched.h>
75 #include <sys/sdt.h>
76 #include <sys/signalvar.h>
77 #include <sys/sleepqueue.h>
78 #include <sys/sysctl.h>
79 
80 #include <vm/uma.h>
81 
82 #ifdef DDB
83 #include <ddb/ddb.h>
84 #endif
85 
86 /*
87  * Constants for the hash table of sleep queue chains.
88  * SC_TABLESIZE must be a power of two for SC_MASK to work properly.
89  */
90 #define	SC_TABLESIZE	256			/* Must be power of 2. */
91 #define	SC_MASK		(SC_TABLESIZE - 1)
92 #define	SC_SHIFT	8
93 #define	SC_HASH(wc)	((((uintptr_t)(wc) >> SC_SHIFT) ^ (uintptr_t)(wc)) & \
94 			    SC_MASK)
95 #define	SC_LOOKUP(wc)	&sleepq_chains[SC_HASH(wc)]
96 #define NR_SLEEPQS      2
97 /*
98  * There two different lists of sleep queues.  Both lists are connected
99  * via the sq_hash entries.  The first list is the sleep queue chain list
100  * that a sleep queue is on when it is attached to a wait channel.  The
101  * second list is the free list hung off of a sleep queue that is attached
102  * to a wait channel.
103  *
104  * Each sleep queue also contains the wait channel it is attached to, the
105  * list of threads blocked on that wait channel, flags specific to the
106  * wait channel, and the lock used to synchronize with a wait channel.
107  * The flags are used to catch mismatches between the various consumers
108  * of the sleep queue API (e.g. sleep/wakeup and condition variables).
109  * The lock pointer is only used when invariants are enabled for various
110  * debugging checks.
111  *
112  * Locking key:
113  *  c - sleep queue chain lock
114  */
115 struct sleepqueue {
116 	TAILQ_HEAD(, thread) sq_blocked[NR_SLEEPQS];	/* (c) Blocked threads. */
117 	u_int sq_blockedcnt[NR_SLEEPQS];	/* (c) N. of blocked threads. */
118 	LIST_ENTRY(sleepqueue) sq_hash;		/* (c) Chain and free list. */
119 	LIST_HEAD(, sleepqueue) sq_free;	/* (c) Free queues. */
120 	void	*sq_wchan;			/* (c) Wait channel. */
121 	int	sq_type;			/* (c) Queue type. */
122 #ifdef INVARIANTS
123 	struct lock_object *sq_lock;		/* (c) Associated lock. */
124 #endif
125 };
126 
127 struct sleepqueue_chain {
128 	LIST_HEAD(, sleepqueue) sc_queues;	/* List of sleep queues. */
129 	struct mtx sc_lock;			/* Spin lock for this chain. */
130 #ifdef SLEEPQUEUE_PROFILING
131 	u_int	sc_depth;			/* Length of sc_queues. */
132 	u_int	sc_max_depth;			/* Max length of sc_queues. */
133 #endif
134 };
135 
136 #ifdef SLEEPQUEUE_PROFILING
137 u_int sleepq_max_depth;
138 static SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling");
139 static SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0,
140     "sleepq chain stats");
141 SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth,
142     0, "maxmimum depth achieved of a single chain");
143 
144 static void	sleepq_profile(const char *wmesg);
145 static int	prof_enabled;
146 #endif
147 static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE];
148 static uma_zone_t sleepq_zone;
149 
150 /*
151  * Prototypes for non-exported routines.
152  */
153 static int	sleepq_catch_signals(void *wchan, int pri);
154 static int	sleepq_check_signals(void);
155 static int	sleepq_check_timeout(struct thread *);
156 static void	sleepq_stop_timeout(struct thread *);
157 #ifdef INVARIANTS
158 static void	sleepq_dtor(void *mem, int size, void *arg);
159 #endif
160 static int	sleepq_init(void *mem, int size, int flags);
161 static int	sleepq_resume_thread(struct sleepqueue *sq, struct thread *td,
162 		    int pri);
163 static void	sleepq_switch(void *wchan, int pri);
164 static void	sleepq_timeout(void *arg);
165 
166 SDT_PROBE_DECLARE(sched, , , sleep);
167 SDT_PROBE_DECLARE(sched, , , wakeup);
168 
169 /*
170  * Initialize SLEEPQUEUE_PROFILING specific sysctl nodes.
171  * Note that it must happen after sleepinit() has been fully executed, so
172  * it must happen after SI_SUB_KMEM SYSINIT() subsystem setup.
173  */
174 #ifdef SLEEPQUEUE_PROFILING
175 static void
176 init_sleepqueue_profiling(void)
177 {
178 	char chain_name[10];
179 	struct sysctl_oid *chain_oid;
180 	u_int i;
181 
182 	for (i = 0; i < SC_TABLESIZE; i++) {
183 		snprintf(chain_name, sizeof(chain_name), "%u", i);
184 		chain_oid = SYSCTL_ADD_NODE(NULL,
185 		    SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO,
186 		    chain_name, CTLFLAG_RD, NULL, "sleepq chain stats");
187 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
188 		    "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL);
189 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
190 		    "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0,
191 		    NULL);
192 	}
193 }
194 
195 SYSINIT(sleepqueue_profiling, SI_SUB_LOCK, SI_ORDER_ANY,
196     init_sleepqueue_profiling, NULL);
197 #endif
198 
199 /*
200  * Early initialization of sleep queues that is called from the sleepinit()
201  * SYSINIT.
202  */
203 void
204 init_sleepqueues(void)
205 {
206 	int i;
207 
208 	for (i = 0; i < SC_TABLESIZE; i++) {
209 		LIST_INIT(&sleepq_chains[i].sc_queues);
210 		mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL,
211 		    MTX_SPIN | MTX_RECURSE);
212 	}
213 	sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue),
214 #ifdef INVARIANTS
215 	    NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
216 #else
217 	    NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
218 #endif
219 
220 	thread0.td_sleepqueue = sleepq_alloc();
221 }
222 
223 /*
224  * Get a sleep queue for a new thread.
225  */
226 struct sleepqueue *
227 sleepq_alloc(void)
228 {
229 
230 	return (uma_zalloc(sleepq_zone, M_WAITOK));
231 }
232 
233 /*
234  * Free a sleep queue when a thread is destroyed.
235  */
236 void
237 sleepq_free(struct sleepqueue *sq)
238 {
239 
240 	uma_zfree(sleepq_zone, sq);
241 }
242 
243 /*
244  * Lock the sleep queue chain associated with the specified wait channel.
245  */
246 void
247 sleepq_lock(void *wchan)
248 {
249 	struct sleepqueue_chain *sc;
250 
251 	sc = SC_LOOKUP(wchan);
252 	mtx_lock_spin(&sc->sc_lock);
253 }
254 
255 /*
256  * Look up the sleep queue associated with a given wait channel in the hash
257  * table locking the associated sleep queue chain.  If no queue is found in
258  * the table, NULL is returned.
259  */
260 struct sleepqueue *
261 sleepq_lookup(void *wchan)
262 {
263 	struct sleepqueue_chain *sc;
264 	struct sleepqueue *sq;
265 
266 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
267 	sc = SC_LOOKUP(wchan);
268 	mtx_assert(&sc->sc_lock, MA_OWNED);
269 	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
270 		if (sq->sq_wchan == wchan)
271 			return (sq);
272 	return (NULL);
273 }
274 
275 /*
276  * Unlock the sleep queue chain associated with a given wait channel.
277  */
278 void
279 sleepq_release(void *wchan)
280 {
281 	struct sleepqueue_chain *sc;
282 
283 	sc = SC_LOOKUP(wchan);
284 	mtx_unlock_spin(&sc->sc_lock);
285 }
286 
287 /*
288  * Places the current thread on the sleep queue for the specified wait
289  * channel.  If INVARIANTS is enabled, then it associates the passed in
290  * lock with the sleepq to make sure it is held when that sleep queue is
291  * woken up.
292  */
293 void
294 sleepq_add(void *wchan, struct lock_object *lock, const char *wmesg, int flags,
295     int queue)
296 {
297 	struct sleepqueue_chain *sc;
298 	struct sleepqueue *sq;
299 	struct thread *td;
300 
301 	td = curthread;
302 	sc = SC_LOOKUP(wchan);
303 	mtx_assert(&sc->sc_lock, MA_OWNED);
304 	MPASS(td->td_sleepqueue != NULL);
305 	MPASS(wchan != NULL);
306 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
307 
308 	/* If this thread is not allowed to sleep, die a horrible death. */
309 	KASSERT(td->td_no_sleeping == 0,
310 	    ("%s: td %p to sleep on wchan %p with sleeping prohibited",
311 	    __func__, td, wchan));
312 
313 	/* Look up the sleep queue associated with the wait channel 'wchan'. */
314 	sq = sleepq_lookup(wchan);
315 
316 	/*
317 	 * If the wait channel does not already have a sleep queue, use
318 	 * this thread's sleep queue.  Otherwise, insert the current thread
319 	 * into the sleep queue already in use by this wait channel.
320 	 */
321 	if (sq == NULL) {
322 #ifdef INVARIANTS
323 		int i;
324 
325 		sq = td->td_sleepqueue;
326 		for (i = 0; i < NR_SLEEPQS; i++) {
327 			KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]),
328 			    ("thread's sleep queue %d is not empty", i));
329 			KASSERT(sq->sq_blockedcnt[i] == 0,
330 			    ("thread's sleep queue %d count mismatches", i));
331 		}
332 		KASSERT(LIST_EMPTY(&sq->sq_free),
333 		    ("thread's sleep queue has a non-empty free list"));
334 		KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer"));
335 		sq->sq_lock = lock;
336 #endif
337 #ifdef SLEEPQUEUE_PROFILING
338 		sc->sc_depth++;
339 		if (sc->sc_depth > sc->sc_max_depth) {
340 			sc->sc_max_depth = sc->sc_depth;
341 			if (sc->sc_max_depth > sleepq_max_depth)
342 				sleepq_max_depth = sc->sc_max_depth;
343 		}
344 #endif
345 		sq = td->td_sleepqueue;
346 		LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash);
347 		sq->sq_wchan = wchan;
348 		sq->sq_type = flags & SLEEPQ_TYPE;
349 	} else {
350 		MPASS(wchan == sq->sq_wchan);
351 		MPASS(lock == sq->sq_lock);
352 		MPASS((flags & SLEEPQ_TYPE) == sq->sq_type);
353 		LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash);
354 	}
355 	thread_lock(td);
356 	TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq);
357 	sq->sq_blockedcnt[queue]++;
358 	td->td_sleepqueue = NULL;
359 	td->td_sqqueue = queue;
360 	td->td_wchan = wchan;
361 	td->td_wmesg = wmesg;
362 	if (flags & SLEEPQ_INTERRUPTIBLE) {
363 		td->td_flags |= TDF_SINTR;
364 		td->td_flags &= ~TDF_SLEEPABORT;
365 	}
366 	thread_unlock(td);
367 }
368 
369 /*
370  * Sets a timeout that will remove the current thread from the specified
371  * sleep queue after timo ticks if the thread has not already been awakened.
372  */
373 void
374 sleepq_set_timeout_sbt(void *wchan, sbintime_t sbt, sbintime_t pr,
375     int flags)
376 {
377 	struct thread *td;
378 
379 	td = curthread;
380 
381 	mtx_lock_spin(&td->td_slpmutex);
382 	callout_reset_sbt_on(&td->td_slpcallout, sbt, pr,
383 	    sleepq_timeout, td, PCPU_GET(cpuid), flags | C_DIRECT_EXEC);
384 	mtx_unlock_spin(&td->td_slpmutex);
385 }
386 
387 /*
388  * Return the number of actual sleepers for the specified queue.
389  */
390 u_int
391 sleepq_sleepcnt(void *wchan, int queue)
392 {
393 	struct sleepqueue *sq;
394 
395 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
396 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
397 	sq = sleepq_lookup(wchan);
398 	if (sq == NULL)
399 		return (0);
400 	return (sq->sq_blockedcnt[queue]);
401 }
402 
403 /*
404  * Marks the pending sleep of the current thread as interruptible and
405  * makes an initial check for pending signals before putting a thread
406  * to sleep. Enters and exits with the thread lock held.  Thread lock
407  * may have transitioned from the sleepq lock to a run lock.
408  */
409 static int
410 sleepq_catch_signals(void *wchan, int pri)
411 {
412 	struct sleepqueue_chain *sc;
413 	struct sleepqueue *sq;
414 	struct thread *td;
415 	struct proc *p;
416 	struct sigacts *ps;
417 	int sig, ret;
418 
419 	td = curthread;
420 	p = curproc;
421 	sc = SC_LOOKUP(wchan);
422 	mtx_assert(&sc->sc_lock, MA_OWNED);
423 	MPASS(wchan != NULL);
424 	if ((td->td_pflags & TDP_WAKEUP) != 0) {
425 		td->td_pflags &= ~TDP_WAKEUP;
426 		ret = EINTR;
427 		thread_lock(td);
428 		goto out;
429 	}
430 
431 	/*
432 	 * See if there are any pending signals for this thread.  If not
433 	 * we can switch immediately.  Otherwise do the signal processing
434 	 * directly.
435 	 */
436 	thread_lock(td);
437 	if ((td->td_flags & (TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK)) == 0) {
438 		sleepq_switch(wchan, pri);
439 		return (0);
440 	}
441 	thread_unlock(td);
442 	mtx_unlock_spin(&sc->sc_lock);
443 	CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)",
444 		(void *)td, (long)p->p_pid, td->td_name);
445 	PROC_LOCK(p);
446 	ps = p->p_sigacts;
447 	mtx_lock(&ps->ps_mtx);
448 	sig = cursig(td);
449 	if (sig == 0) {
450 		mtx_unlock(&ps->ps_mtx);
451 		ret = thread_suspend_check(1);
452 		MPASS(ret == 0 || ret == EINTR || ret == ERESTART);
453 	} else {
454 		if (SIGISMEMBER(ps->ps_sigintr, sig))
455 			ret = EINTR;
456 		else
457 			ret = ERESTART;
458 		mtx_unlock(&ps->ps_mtx);
459 	}
460 	/*
461 	 * Lock the per-process spinlock prior to dropping the PROC_LOCK
462 	 * to avoid a signal delivery race.  PROC_LOCK, PROC_SLOCK, and
463 	 * thread_lock() are currently held in tdsendsignal().
464 	 */
465 	PROC_SLOCK(p);
466 	mtx_lock_spin(&sc->sc_lock);
467 	PROC_UNLOCK(p);
468 	thread_lock(td);
469 	PROC_SUNLOCK(p);
470 	if (ret == 0) {
471 		sleepq_switch(wchan, pri);
472 		return (0);
473 	}
474 out:
475 	/*
476 	 * There were pending signals and this thread is still
477 	 * on the sleep queue, remove it from the sleep queue.
478 	 */
479 	if (TD_ON_SLEEPQ(td)) {
480 		sq = sleepq_lookup(wchan);
481 		if (sleepq_resume_thread(sq, td, 0)) {
482 #ifdef INVARIANTS
483 			/*
484 			 * This thread hasn't gone to sleep yet, so it
485 			 * should not be swapped out.
486 			 */
487 			panic("not waking up swapper");
488 #endif
489 		}
490 	}
491 	mtx_unlock_spin(&sc->sc_lock);
492 	MPASS(td->td_lock != &sc->sc_lock);
493 	return (ret);
494 }
495 
496 /*
497  * Switches to another thread if we are still asleep on a sleep queue.
498  * Returns with thread lock.
499  */
500 static void
501 sleepq_switch(void *wchan, int pri)
502 {
503 	struct sleepqueue_chain *sc;
504 	struct sleepqueue *sq;
505 	struct thread *td;
506 
507 	td = curthread;
508 	sc = SC_LOOKUP(wchan);
509 	mtx_assert(&sc->sc_lock, MA_OWNED);
510 	THREAD_LOCK_ASSERT(td, MA_OWNED);
511 
512 	/*
513 	 * If we have a sleep queue, then we've already been woken up, so
514 	 * just return.
515 	 */
516 	if (td->td_sleepqueue != NULL) {
517 		mtx_unlock_spin(&sc->sc_lock);
518 		return;
519 	}
520 
521 	/*
522 	 * If TDF_TIMEOUT is set, then our sleep has been timed out
523 	 * already but we are still on the sleep queue, so dequeue the
524 	 * thread and return.
525 	 */
526 	if (td->td_flags & TDF_TIMEOUT) {
527 		MPASS(TD_ON_SLEEPQ(td));
528 		sq = sleepq_lookup(wchan);
529 		if (sleepq_resume_thread(sq, td, 0)) {
530 #ifdef INVARIANTS
531 			/*
532 			 * This thread hasn't gone to sleep yet, so it
533 			 * should not be swapped out.
534 			 */
535 			panic("not waking up swapper");
536 #endif
537 		}
538 		mtx_unlock_spin(&sc->sc_lock);
539 		return;
540 	}
541 #ifdef SLEEPQUEUE_PROFILING
542 	if (prof_enabled)
543 		sleepq_profile(td->td_wmesg);
544 #endif
545 	MPASS(td->td_sleepqueue == NULL);
546 	sched_sleep(td, pri);
547 	thread_lock_set(td, &sc->sc_lock);
548 	SDT_PROBE0(sched, , , sleep);
549 	TD_SET_SLEEPING(td);
550 	mi_switch(SW_VOL | SWT_SLEEPQ, NULL);
551 	KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
552 	CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)",
553 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
554 }
555 
556 /*
557  * Check to see if we timed out.
558  */
559 static int
560 sleepq_check_timeout(struct thread *td)
561 {
562 	THREAD_LOCK_ASSERT(td, MA_OWNED);
563 
564 	/*
565 	 * If TDF_TIMEOUT is set, we timed out.
566 	 */
567 	if (td->td_flags & TDF_TIMEOUT) {
568 		td->td_flags &= ~TDF_TIMEOUT;
569 		return (EWOULDBLOCK);
570 	}
571 	return (0);
572 }
573 
574 /*
575  * Atomically stop the timeout by using a mutex.
576  */
577 static void
578 sleepq_stop_timeout(struct thread *td)
579 {
580 	mtx_lock_spin(&td->td_slpmutex);
581 	callout_stop(&td->td_slpcallout);
582 	mtx_unlock_spin(&td->td_slpmutex);
583 }
584 
585 /*
586  * Check to see if we were awoken by a signal.
587  */
588 static int
589 sleepq_check_signals(void)
590 {
591 	struct thread *td;
592 
593 	td = curthread;
594 	THREAD_LOCK_ASSERT(td, MA_OWNED);
595 
596 	/* We are no longer in an interruptible sleep. */
597 	if (td->td_flags & TDF_SINTR)
598 		td->td_flags &= ~TDF_SINTR;
599 
600 	if (td->td_flags & TDF_SLEEPABORT) {
601 		td->td_flags &= ~TDF_SLEEPABORT;
602 		return (td->td_intrval);
603 	}
604 
605 	return (0);
606 }
607 
608 /*
609  * Block the current thread until it is awakened from its sleep queue.
610  */
611 void
612 sleepq_wait(void *wchan, int pri)
613 {
614 	struct thread *td;
615 
616 	td = curthread;
617 	MPASS(!(td->td_flags & TDF_SINTR));
618 	thread_lock(td);
619 	sleepq_switch(wchan, pri);
620 	thread_unlock(td);
621 }
622 
623 /*
624  * Block the current thread until it is awakened from its sleep queue
625  * or it is interrupted by a signal.
626  */
627 int
628 sleepq_wait_sig(void *wchan, int pri)
629 {
630 	int rcatch;
631 	int rval;
632 
633 	rcatch = sleepq_catch_signals(wchan, pri);
634 	rval = sleepq_check_signals();
635 	thread_unlock(curthread);
636 	if (rcatch)
637 		return (rcatch);
638 	return (rval);
639 }
640 
641 /*
642  * Block the current thread until it is awakened from its sleep queue
643  * or it times out while waiting.
644  */
645 int
646 sleepq_timedwait(void *wchan, int pri)
647 {
648 	struct thread *td;
649 	int rval;
650 
651 	td = curthread;
652 	MPASS(!(td->td_flags & TDF_SINTR));
653 	thread_lock(td);
654 	sleepq_switch(wchan, pri);
655 	rval = sleepq_check_timeout(td);
656 	thread_unlock(td);
657 
658 	sleepq_stop_timeout(td);
659 
660 	return (rval);
661 }
662 
663 /*
664  * Block the current thread until it is awakened from its sleep queue,
665  * it is interrupted by a signal, or it times out waiting to be awakened.
666  */
667 int
668 sleepq_timedwait_sig(void *wchan, int pri)
669 {
670 	struct thread *td;
671 	int rcatch, rvalt, rvals;
672 
673 	td = curthread;
674 
675 	rcatch = sleepq_catch_signals(wchan, pri);
676 	rvalt = sleepq_check_timeout(td);
677 	rvals = sleepq_check_signals();
678 	thread_unlock(td);
679 
680 	sleepq_stop_timeout(td);
681 
682 	if (rcatch)
683 		return (rcatch);
684 	if (rvals)
685 		return (rvals);
686 	return (rvalt);
687 }
688 
689 /*
690  * Returns the type of sleepqueue given a waitchannel.
691  */
692 int
693 sleepq_type(void *wchan)
694 {
695 	struct sleepqueue *sq;
696 	int type;
697 
698 	MPASS(wchan != NULL);
699 
700 	sleepq_lock(wchan);
701 	sq = sleepq_lookup(wchan);
702 	if (sq == NULL) {
703 		sleepq_release(wchan);
704 		return (-1);
705 	}
706 	type = sq->sq_type;
707 	sleepq_release(wchan);
708 	return (type);
709 }
710 
711 /*
712  * Removes a thread from a sleep queue and makes it
713  * runnable.
714  */
715 static int
716 sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri)
717 {
718 	struct sleepqueue_chain *sc;
719 
720 	MPASS(td != NULL);
721 	MPASS(sq->sq_wchan != NULL);
722 	MPASS(td->td_wchan == sq->sq_wchan);
723 	MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0);
724 	THREAD_LOCK_ASSERT(td, MA_OWNED);
725 	sc = SC_LOOKUP(sq->sq_wchan);
726 	mtx_assert(&sc->sc_lock, MA_OWNED);
727 
728 	SDT_PROBE2(sched, , , wakeup, td, td->td_proc);
729 
730 	/* Remove the thread from the queue. */
731 	sq->sq_blockedcnt[td->td_sqqueue]--;
732 	TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq);
733 
734 	/*
735 	 * Get a sleep queue for this thread.  If this is the last waiter,
736 	 * use the queue itself and take it out of the chain, otherwise,
737 	 * remove a queue from the free list.
738 	 */
739 	if (LIST_EMPTY(&sq->sq_free)) {
740 		td->td_sleepqueue = sq;
741 #ifdef INVARIANTS
742 		sq->sq_wchan = NULL;
743 #endif
744 #ifdef SLEEPQUEUE_PROFILING
745 		sc->sc_depth--;
746 #endif
747 	} else
748 		td->td_sleepqueue = LIST_FIRST(&sq->sq_free);
749 	LIST_REMOVE(td->td_sleepqueue, sq_hash);
750 
751 	td->td_wmesg = NULL;
752 	td->td_wchan = NULL;
753 	td->td_flags &= ~TDF_SINTR;
754 
755 	CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)",
756 	    (void *)td, (long)td->td_proc->p_pid, td->td_name);
757 
758 	/* Adjust priority if requested. */
759 	MPASS(pri == 0 || (pri >= PRI_MIN && pri <= PRI_MAX));
760 	if (pri != 0 && td->td_priority > pri &&
761 	    PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
762 		sched_prio(td, pri);
763 
764 	/*
765 	 * Note that thread td might not be sleeping if it is running
766 	 * sleepq_catch_signals() on another CPU or is blocked on its
767 	 * proc lock to check signals.  There's no need to mark the
768 	 * thread runnable in that case.
769 	 */
770 	if (TD_IS_SLEEPING(td)) {
771 		TD_CLR_SLEEPING(td);
772 		return (setrunnable(td));
773 	}
774 	return (0);
775 }
776 
777 #ifdef INVARIANTS
778 /*
779  * UMA zone item deallocator.
780  */
781 static void
782 sleepq_dtor(void *mem, int size, void *arg)
783 {
784 	struct sleepqueue *sq;
785 	int i;
786 
787 	sq = mem;
788 	for (i = 0; i < NR_SLEEPQS; i++) {
789 		MPASS(TAILQ_EMPTY(&sq->sq_blocked[i]));
790 		MPASS(sq->sq_blockedcnt[i] == 0);
791 	}
792 }
793 #endif
794 
795 /*
796  * UMA zone item initializer.
797  */
798 static int
799 sleepq_init(void *mem, int size, int flags)
800 {
801 	struct sleepqueue *sq;
802 	int i;
803 
804 	bzero(mem, size);
805 	sq = mem;
806 	for (i = 0; i < NR_SLEEPQS; i++) {
807 		TAILQ_INIT(&sq->sq_blocked[i]);
808 		sq->sq_blockedcnt[i] = 0;
809 	}
810 	LIST_INIT(&sq->sq_free);
811 	return (0);
812 }
813 
814 /*
815  * Find the highest priority thread sleeping on a wait channel and resume it.
816  */
817 int
818 sleepq_signal(void *wchan, int flags, int pri, int queue)
819 {
820 	struct sleepqueue *sq;
821 	struct thread *td, *besttd;
822 	int wakeup_swapper;
823 
824 	CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags);
825 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
826 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
827 	sq = sleepq_lookup(wchan);
828 	if (sq == NULL)
829 		return (0);
830 	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
831 	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
832 
833 	/*
834 	 * Find the highest priority thread on the queue.  If there is a
835 	 * tie, use the thread that first appears in the queue as it has
836 	 * been sleeping the longest since threads are always added to
837 	 * the tail of sleep queues.
838 	 */
839 	besttd = NULL;
840 	TAILQ_FOREACH(td, &sq->sq_blocked[queue], td_slpq) {
841 		if (besttd == NULL || td->td_priority < besttd->td_priority)
842 			besttd = td;
843 	}
844 	MPASS(besttd != NULL);
845 	thread_lock(besttd);
846 	wakeup_swapper = sleepq_resume_thread(sq, besttd, pri);
847 	thread_unlock(besttd);
848 	return (wakeup_swapper);
849 }
850 
851 /*
852  * Resume all threads sleeping on a specified wait channel.
853  */
854 int
855 sleepq_broadcast(void *wchan, int flags, int pri, int queue)
856 {
857 	struct sleepqueue *sq;
858 	struct thread *td, *tdn;
859 	int wakeup_swapper;
860 
861 	CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags);
862 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
863 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
864 	sq = sleepq_lookup(wchan);
865 	if (sq == NULL)
866 		return (0);
867 	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
868 	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
869 
870 	/* Resume all blocked threads on the sleep queue. */
871 	wakeup_swapper = 0;
872 	TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, tdn) {
873 		thread_lock(td);
874 		if (sleepq_resume_thread(sq, td, pri))
875 			wakeup_swapper = 1;
876 		thread_unlock(td);
877 	}
878 	return (wakeup_swapper);
879 }
880 
881 /*
882  * Time sleeping threads out.  When the timeout expires, the thread is
883  * removed from the sleep queue and made runnable if it is still asleep.
884  */
885 static void
886 sleepq_timeout(void *arg)
887 {
888 	struct thread *td = arg;
889 	int wakeup_swapper = 0;
890 
891 	CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)",
892 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
893 
894 	/* Handle the three cases which can happen */
895 
896 	thread_lock(td);
897 	if (TD_ON_SLEEPQ(td)) {
898 		if (TD_IS_SLEEPING(td)) {
899 			struct sleepqueue_chain *sc;
900 			struct sleepqueue *sq;
901 			void *wchan;
902 
903 			/*
904 			 * Case I - thread is asleep and needs to be
905 			 * awoken:
906 			 */
907 			wchan = td->td_wchan;
908 			sc = SC_LOOKUP(wchan);
909 			THREAD_LOCKPTR_ASSERT(td, &sc->sc_lock);
910 			sq = sleepq_lookup(wchan);
911 			MPASS(sq != NULL);
912 			td->td_flags |= TDF_TIMEOUT;
913 			wakeup_swapper = sleepq_resume_thread(sq, td, 0);
914 		} else {
915 			/*
916 			 * Case II - cancel going to sleep by setting
917 			 * the timeout flag because the target thread
918 			 * is not asleep yet. It can be on another CPU
919 			 * in between sleepq_add() and one of the
920 			 * sleepq_*wait*() routines or it can be in
921 			 * sleepq_catch_signals().
922 			 */
923 			td->td_flags |= TDF_TIMEOUT;
924 		}
925 	} else {
926 		/*
927 		 * Case III - thread is already woken up by a wakeup
928 		 * call and should not timeout. Nothing to do!
929 		 */
930 	}
931 	thread_unlock(td);
932 	if (wakeup_swapper)
933 		kick_proc0();
934 }
935 
936 /*
937  * Resumes a specific thread from the sleep queue associated with a specific
938  * wait channel if it is on that queue.
939  */
940 void
941 sleepq_remove(struct thread *td, void *wchan)
942 {
943 	struct sleepqueue *sq;
944 	int wakeup_swapper;
945 
946 	/*
947 	 * Look up the sleep queue for this wait channel, then re-check
948 	 * that the thread is asleep on that channel, if it is not, then
949 	 * bail.
950 	 */
951 	MPASS(wchan != NULL);
952 	sleepq_lock(wchan);
953 	sq = sleepq_lookup(wchan);
954 	/*
955 	 * We can not lock the thread here as it may be sleeping on a
956 	 * different sleepq.  However, holding the sleepq lock for this
957 	 * wchan can guarantee that we do not miss a wakeup for this
958 	 * channel.  The asserts below will catch any false positives.
959 	 */
960 	if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) {
961 		sleepq_release(wchan);
962 		return;
963 	}
964 	/* Thread is asleep on sleep queue sq, so wake it up. */
965 	thread_lock(td);
966 	MPASS(sq != NULL);
967 	MPASS(td->td_wchan == wchan);
968 	wakeup_swapper = sleepq_resume_thread(sq, td, 0);
969 	thread_unlock(td);
970 	sleepq_release(wchan);
971 	if (wakeup_swapper)
972 		kick_proc0();
973 }
974 
975 /*
976  * Abort a thread as if an interrupt had occurred.  Only abort
977  * interruptible waits (unfortunately it isn't safe to abort others).
978  */
979 int
980 sleepq_abort(struct thread *td, int intrval)
981 {
982 	struct sleepqueue *sq;
983 	void *wchan;
984 
985 	THREAD_LOCK_ASSERT(td, MA_OWNED);
986 	MPASS(TD_ON_SLEEPQ(td));
987 	MPASS(td->td_flags & TDF_SINTR);
988 	MPASS(intrval == EINTR || intrval == ERESTART);
989 
990 	/*
991 	 * If the TDF_TIMEOUT flag is set, just leave. A
992 	 * timeout is scheduled anyhow.
993 	 */
994 	if (td->td_flags & TDF_TIMEOUT)
995 		return (0);
996 
997 	CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)",
998 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
999 	td->td_intrval = intrval;
1000 	td->td_flags |= TDF_SLEEPABORT;
1001 	/*
1002 	 * If the thread has not slept yet it will find the signal in
1003 	 * sleepq_catch_signals() and call sleepq_resume_thread.  Otherwise
1004 	 * we have to do it here.
1005 	 */
1006 	if (!TD_IS_SLEEPING(td))
1007 		return (0);
1008 	wchan = td->td_wchan;
1009 	MPASS(wchan != NULL);
1010 	sq = sleepq_lookup(wchan);
1011 	MPASS(sq != NULL);
1012 
1013 	/* Thread is asleep on sleep queue sq, so wake it up. */
1014 	return (sleepq_resume_thread(sq, td, 0));
1015 }
1016 
1017 #ifdef SLEEPQUEUE_PROFILING
1018 #define	SLEEPQ_PROF_LOCATIONS	1024
1019 #define	SLEEPQ_SBUFSIZE		512
1020 struct sleepq_prof {
1021 	LIST_ENTRY(sleepq_prof) sp_link;
1022 	const char	*sp_wmesg;
1023 	long		sp_count;
1024 };
1025 
1026 LIST_HEAD(sqphead, sleepq_prof);
1027 
1028 struct sqphead sleepq_prof_free;
1029 struct sqphead sleepq_hash[SC_TABLESIZE];
1030 static struct sleepq_prof sleepq_profent[SLEEPQ_PROF_LOCATIONS];
1031 static struct mtx sleepq_prof_lock;
1032 MTX_SYSINIT(sleepq_prof_lock, &sleepq_prof_lock, "sleepq_prof", MTX_SPIN);
1033 
1034 static void
1035 sleepq_profile(const char *wmesg)
1036 {
1037 	struct sleepq_prof *sp;
1038 
1039 	mtx_lock_spin(&sleepq_prof_lock);
1040 	if (prof_enabled == 0)
1041 		goto unlock;
1042 	LIST_FOREACH(sp, &sleepq_hash[SC_HASH(wmesg)], sp_link)
1043 		if (sp->sp_wmesg == wmesg)
1044 			goto done;
1045 	sp = LIST_FIRST(&sleepq_prof_free);
1046 	if (sp == NULL)
1047 		goto unlock;
1048 	sp->sp_wmesg = wmesg;
1049 	LIST_REMOVE(sp, sp_link);
1050 	LIST_INSERT_HEAD(&sleepq_hash[SC_HASH(wmesg)], sp, sp_link);
1051 done:
1052 	sp->sp_count++;
1053 unlock:
1054 	mtx_unlock_spin(&sleepq_prof_lock);
1055 	return;
1056 }
1057 
1058 static void
1059 sleepq_prof_reset(void)
1060 {
1061 	struct sleepq_prof *sp;
1062 	int enabled;
1063 	int i;
1064 
1065 	mtx_lock_spin(&sleepq_prof_lock);
1066 	enabled = prof_enabled;
1067 	prof_enabled = 0;
1068 	for (i = 0; i < SC_TABLESIZE; i++)
1069 		LIST_INIT(&sleepq_hash[i]);
1070 	LIST_INIT(&sleepq_prof_free);
1071 	for (i = 0; i < SLEEPQ_PROF_LOCATIONS; i++) {
1072 		sp = &sleepq_profent[i];
1073 		sp->sp_wmesg = NULL;
1074 		sp->sp_count = 0;
1075 		LIST_INSERT_HEAD(&sleepq_prof_free, sp, sp_link);
1076 	}
1077 	prof_enabled = enabled;
1078 	mtx_unlock_spin(&sleepq_prof_lock);
1079 }
1080 
1081 static int
1082 enable_sleepq_prof(SYSCTL_HANDLER_ARGS)
1083 {
1084 	int error, v;
1085 
1086 	v = prof_enabled;
1087 	error = sysctl_handle_int(oidp, &v, v, req);
1088 	if (error)
1089 		return (error);
1090 	if (req->newptr == NULL)
1091 		return (error);
1092 	if (v == prof_enabled)
1093 		return (0);
1094 	if (v == 1)
1095 		sleepq_prof_reset();
1096 	mtx_lock_spin(&sleepq_prof_lock);
1097 	prof_enabled = !!v;
1098 	mtx_unlock_spin(&sleepq_prof_lock);
1099 
1100 	return (0);
1101 }
1102 
1103 static int
1104 reset_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1105 {
1106 	int error, v;
1107 
1108 	v = 0;
1109 	error = sysctl_handle_int(oidp, &v, 0, req);
1110 	if (error)
1111 		return (error);
1112 	if (req->newptr == NULL)
1113 		return (error);
1114 	if (v == 0)
1115 		return (0);
1116 	sleepq_prof_reset();
1117 
1118 	return (0);
1119 }
1120 
1121 static int
1122 dump_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1123 {
1124 	struct sleepq_prof *sp;
1125 	struct sbuf *sb;
1126 	int enabled;
1127 	int error;
1128 	int i;
1129 
1130 	error = sysctl_wire_old_buffer(req, 0);
1131 	if (error != 0)
1132 		return (error);
1133 	sb = sbuf_new_for_sysctl(NULL, NULL, SLEEPQ_SBUFSIZE, req);
1134 	sbuf_printf(sb, "\nwmesg\tcount\n");
1135 	enabled = prof_enabled;
1136 	mtx_lock_spin(&sleepq_prof_lock);
1137 	prof_enabled = 0;
1138 	mtx_unlock_spin(&sleepq_prof_lock);
1139 	for (i = 0; i < SC_TABLESIZE; i++) {
1140 		LIST_FOREACH(sp, &sleepq_hash[i], sp_link) {
1141 			sbuf_printf(sb, "%s\t%ld\n",
1142 			    sp->sp_wmesg, sp->sp_count);
1143 		}
1144 	}
1145 	mtx_lock_spin(&sleepq_prof_lock);
1146 	prof_enabled = enabled;
1147 	mtx_unlock_spin(&sleepq_prof_lock);
1148 
1149 	error = sbuf_finish(sb);
1150 	sbuf_delete(sb);
1151 	return (error);
1152 }
1153 
1154 SYSCTL_PROC(_debug_sleepq, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD,
1155     NULL, 0, dump_sleepq_prof_stats, "A", "Sleepqueue profiling statistics");
1156 SYSCTL_PROC(_debug_sleepq, OID_AUTO, reset, CTLTYPE_INT | CTLFLAG_RW,
1157     NULL, 0, reset_sleepq_prof_stats, "I",
1158     "Reset sleepqueue profiling statistics");
1159 SYSCTL_PROC(_debug_sleepq, OID_AUTO, enable, CTLTYPE_INT | CTLFLAG_RW,
1160     NULL, 0, enable_sleepq_prof, "I", "Enable sleepqueue profiling");
1161 #endif
1162 
1163 #ifdef DDB
1164 DB_SHOW_COMMAND(sleepq, db_show_sleepqueue)
1165 {
1166 	struct sleepqueue_chain *sc;
1167 	struct sleepqueue *sq;
1168 #ifdef INVARIANTS
1169 	struct lock_object *lock;
1170 #endif
1171 	struct thread *td;
1172 	void *wchan;
1173 	int i;
1174 
1175 	if (!have_addr)
1176 		return;
1177 
1178 	/*
1179 	 * First, see if there is an active sleep queue for the wait channel
1180 	 * indicated by the address.
1181 	 */
1182 	wchan = (void *)addr;
1183 	sc = SC_LOOKUP(wchan);
1184 	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
1185 		if (sq->sq_wchan == wchan)
1186 			goto found;
1187 
1188 	/*
1189 	 * Second, see if there is an active sleep queue at the address
1190 	 * indicated.
1191 	 */
1192 	for (i = 0; i < SC_TABLESIZE; i++)
1193 		LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) {
1194 			if (sq == (struct sleepqueue *)addr)
1195 				goto found;
1196 		}
1197 
1198 	db_printf("Unable to locate a sleep queue via %p\n", (void *)addr);
1199 	return;
1200 found:
1201 	db_printf("Wait channel: %p\n", sq->sq_wchan);
1202 	db_printf("Queue type: %d\n", sq->sq_type);
1203 #ifdef INVARIANTS
1204 	if (sq->sq_lock) {
1205 		lock = sq->sq_lock;
1206 		db_printf("Associated Interlock: %p - (%s) %s\n", lock,
1207 		    LOCK_CLASS(lock)->lc_name, lock->lo_name);
1208 	}
1209 #endif
1210 	db_printf("Blocked threads:\n");
1211 	for (i = 0; i < NR_SLEEPQS; i++) {
1212 		db_printf("\nQueue[%d]:\n", i);
1213 		if (TAILQ_EMPTY(&sq->sq_blocked[i]))
1214 			db_printf("\tempty\n");
1215 		else
1216 			TAILQ_FOREACH(td, &sq->sq_blocked[0],
1217 				      td_slpq) {
1218 				db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td,
1219 					  td->td_tid, td->td_proc->p_pid,
1220 					  td->td_name);
1221 			}
1222 		db_printf("(expected: %u)\n", sq->sq_blockedcnt[i]);
1223 	}
1224 }
1225 
1226 /* Alias 'show sleepqueue' to 'show sleepq'. */
1227 DB_SHOW_ALIAS(sleepqueue, db_show_sleepqueue);
1228 #endif
1229