1 /*- 2 * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the author nor the names of any co-contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 /* 31 * Implementation of sleep queues used to hold queue of threads blocked on 32 * a wait channel. Sleep queues different from turnstiles in that wait 33 * channels are not owned by anyone, so there is no priority propagation. 34 * Sleep queues can also provide a timeout and can also be interrupted by 35 * signals. That said, there are several similarities between the turnstile 36 * and sleep queue implementations. (Note: turnstiles were implemented 37 * first.) For example, both use a hash table of the same size where each 38 * bucket is referred to as a "chain" that contains both a spin lock and 39 * a linked list of queues. An individual queue is located by using a hash 40 * to pick a chain, locking the chain, and then walking the chain searching 41 * for the queue. This means that a wait channel object does not need to 42 * embed it's queue head just as locks do not embed their turnstile queue 43 * head. Threads also carry around a sleep queue that they lend to the 44 * wait channel when blocking. Just as in turnstiles, the queue includes 45 * a free list of the sleep queues of other threads blocked on the same 46 * wait channel in the case of multiple waiters. 47 * 48 * Some additional functionality provided by sleep queues include the 49 * ability to set a timeout. The timeout is managed using a per-thread 50 * callout that resumes a thread if it is asleep. A thread may also 51 * catch signals while it is asleep (aka an interruptible sleep). The 52 * signal code uses sleepq_abort() to interrupt a sleeping thread. Finally, 53 * sleep queues also provide some extra assertions. One is not allowed to 54 * mix the sleep/wakeup and cv APIs for a given wait channel. Also, one 55 * must consistently use the same lock to synchronize with a wait channel, 56 * though this check is currently only a warning for sleep/wakeup due to 57 * pre-existing abuse of that API. The same lock must also be held when 58 * awakening threads, though that is currently only enforced for condition 59 * variables. 60 */ 61 62 #include <sys/cdefs.h> 63 __FBSDID("$FreeBSD$"); 64 65 #include "opt_sleepqueue_profiling.h" 66 #include "opt_ddb.h" 67 #include "opt_sched.h" 68 69 #include <sys/param.h> 70 #include <sys/systm.h> 71 #include <sys/lock.h> 72 #include <sys/kernel.h> 73 #include <sys/ktr.h> 74 #include <sys/mutex.h> 75 #include <sys/proc.h> 76 #include <sys/sched.h> 77 #include <sys/signalvar.h> 78 #include <sys/sleepqueue.h> 79 #include <sys/sysctl.h> 80 81 #include <vm/uma.h> 82 83 #ifdef DDB 84 #include <ddb/ddb.h> 85 #endif 86 87 /* 88 * Constants for the hash table of sleep queue chains. These constants are 89 * the same ones that 4BSD (and possibly earlier versions of BSD) used. 90 * Basically, we ignore the lower 8 bits of the address since most wait 91 * channel pointers are aligned and only look at the next 7 bits for the 92 * hash. SC_TABLESIZE must be a power of two for SC_MASK to work properly. 93 */ 94 #define SC_TABLESIZE 128 /* Must be power of 2. */ 95 #define SC_MASK (SC_TABLESIZE - 1) 96 #define SC_SHIFT 8 97 #define SC_HASH(wc) (((uintptr_t)(wc) >> SC_SHIFT) & SC_MASK) 98 #define SC_LOOKUP(wc) &sleepq_chains[SC_HASH(wc)] 99 #define NR_SLEEPQS 2 100 /* 101 * There two different lists of sleep queues. Both lists are connected 102 * via the sq_hash entries. The first list is the sleep queue chain list 103 * that a sleep queue is on when it is attached to a wait channel. The 104 * second list is the free list hung off of a sleep queue that is attached 105 * to a wait channel. 106 * 107 * Each sleep queue also contains the wait channel it is attached to, the 108 * list of threads blocked on that wait channel, flags specific to the 109 * wait channel, and the lock used to synchronize with a wait channel. 110 * The flags are used to catch mismatches between the various consumers 111 * of the sleep queue API (e.g. sleep/wakeup and condition variables). 112 * The lock pointer is only used when invariants are enabled for various 113 * debugging checks. 114 * 115 * Locking key: 116 * c - sleep queue chain lock 117 */ 118 struct sleepqueue { 119 TAILQ_HEAD(, thread) sq_blocked[NR_SLEEPQS]; /* (c) Blocked threads. */ 120 LIST_ENTRY(sleepqueue) sq_hash; /* (c) Chain and free list. */ 121 LIST_HEAD(, sleepqueue) sq_free; /* (c) Free queues. */ 122 void *sq_wchan; /* (c) Wait channel. */ 123 #ifdef INVARIANTS 124 int sq_type; /* (c) Queue type. */ 125 struct lock_object *sq_lock; /* (c) Associated lock. */ 126 #endif 127 }; 128 129 struct sleepqueue_chain { 130 LIST_HEAD(, sleepqueue) sc_queues; /* List of sleep queues. */ 131 struct mtx sc_lock; /* Spin lock for this chain. */ 132 #ifdef SLEEPQUEUE_PROFILING 133 u_int sc_depth; /* Length of sc_queues. */ 134 u_int sc_max_depth; /* Max length of sc_queues. */ 135 #endif 136 }; 137 138 #ifdef SLEEPQUEUE_PROFILING 139 u_int sleepq_max_depth; 140 SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling"); 141 SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0, 142 "sleepq chain stats"); 143 SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth, 144 0, "maxmimum depth achieved of a single chain"); 145 #endif 146 static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE]; 147 static uma_zone_t sleepq_zone; 148 149 /* 150 * Prototypes for non-exported routines. 151 */ 152 static int sleepq_catch_signals(void *wchan); 153 static int sleepq_check_signals(void); 154 static int sleepq_check_timeout(void); 155 #ifdef INVARIANTS 156 static void sleepq_dtor(void *mem, int size, void *arg); 157 #endif 158 static int sleepq_init(void *mem, int size, int flags); 159 static void sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, 160 int pri); 161 static void sleepq_switch(void *wchan); 162 static void sleepq_timeout(void *arg); 163 164 /* 165 * Early initialization of sleep queues that is called from the sleepinit() 166 * SYSINIT. 167 */ 168 void 169 init_sleepqueues(void) 170 { 171 #ifdef SLEEPQUEUE_PROFILING 172 struct sysctl_oid *chain_oid; 173 char chain_name[10]; 174 #endif 175 int i; 176 177 for (i = 0; i < SC_TABLESIZE; i++) { 178 LIST_INIT(&sleepq_chains[i].sc_queues); 179 mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL, 180 MTX_SPIN); 181 #ifdef SLEEPQUEUE_PROFILING 182 snprintf(chain_name, sizeof(chain_name), "%d", i); 183 chain_oid = SYSCTL_ADD_NODE(NULL, 184 SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO, 185 chain_name, CTLFLAG_RD, NULL, "sleepq chain stats"); 186 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO, 187 "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL); 188 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO, 189 "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0, 190 NULL); 191 #endif 192 } 193 sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue), 194 #ifdef INVARIANTS 195 NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0); 196 #else 197 NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0); 198 #endif 199 200 thread0.td_sleepqueue = sleepq_alloc(); 201 } 202 203 /* 204 * Get a sleep queue for a new thread. 205 */ 206 struct sleepqueue * 207 sleepq_alloc(void) 208 { 209 210 return (uma_zalloc(sleepq_zone, M_WAITOK)); 211 } 212 213 /* 214 * Free a sleep queue when a thread is destroyed. 215 */ 216 void 217 sleepq_free(struct sleepqueue *sq) 218 { 219 220 uma_zfree(sleepq_zone, sq); 221 } 222 223 /* 224 * Lock the sleep queue chain associated with the specified wait channel. 225 */ 226 void 227 sleepq_lock(void *wchan) 228 { 229 struct sleepqueue_chain *sc; 230 231 sc = SC_LOOKUP(wchan); 232 mtx_lock_spin(&sc->sc_lock); 233 } 234 235 /* 236 * Look up the sleep queue associated with a given wait channel in the hash 237 * table locking the associated sleep queue chain. If no queue is found in 238 * the table, NULL is returned. 239 */ 240 struct sleepqueue * 241 sleepq_lookup(void *wchan) 242 { 243 struct sleepqueue_chain *sc; 244 struct sleepqueue *sq; 245 246 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 247 sc = SC_LOOKUP(wchan); 248 mtx_assert(&sc->sc_lock, MA_OWNED); 249 LIST_FOREACH(sq, &sc->sc_queues, sq_hash) 250 if (sq->sq_wchan == wchan) 251 return (sq); 252 return (NULL); 253 } 254 255 /* 256 * Unlock the sleep queue chain associated with a given wait channel. 257 */ 258 void 259 sleepq_release(void *wchan) 260 { 261 struct sleepqueue_chain *sc; 262 263 sc = SC_LOOKUP(wchan); 264 mtx_unlock_spin(&sc->sc_lock); 265 } 266 267 /* 268 * Places the current thread on the sleep queue for the specified wait 269 * channel. If INVARIANTS is enabled, then it associates the passed in 270 * lock with the sleepq to make sure it is held when that sleep queue is 271 * woken up. 272 */ 273 void 274 sleepq_add(void *wchan, struct lock_object *lock, const char *wmesg, int flags, 275 int queue) 276 { 277 struct sleepqueue_chain *sc; 278 struct sleepqueue *sq; 279 struct thread *td; 280 281 td = curthread; 282 sc = SC_LOOKUP(wchan); 283 mtx_assert(&sc->sc_lock, MA_OWNED); 284 MPASS(td->td_sleepqueue != NULL); 285 MPASS(wchan != NULL); 286 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 287 288 /* If this thread is not allowed to sleep, die a horrible death. */ 289 KASSERT(!(td->td_pflags & TDP_NOSLEEPING), 290 ("Trying sleep, but thread marked as sleeping prohibited")); 291 292 /* Look up the sleep queue associated with the wait channel 'wchan'. */ 293 sq = sleepq_lookup(wchan); 294 295 /* 296 * If the wait channel does not already have a sleep queue, use 297 * this thread's sleep queue. Otherwise, insert the current thread 298 * into the sleep queue already in use by this wait channel. 299 */ 300 if (sq == NULL) { 301 #ifdef INVARIANTS 302 int i; 303 304 sq = td->td_sleepqueue; 305 for (i = 0; i < NR_SLEEPQS; i++) 306 KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]), 307 ("thread's sleep queue %d is not empty", i)); 308 KASSERT(LIST_EMPTY(&sq->sq_free), 309 ("thread's sleep queue has a non-empty free list")); 310 KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer")); 311 sq->sq_lock = lock; 312 sq->sq_type = flags & SLEEPQ_TYPE; 313 #endif 314 #ifdef SLEEPQUEUE_PROFILING 315 sc->sc_depth++; 316 if (sc->sc_depth > sc->sc_max_depth) { 317 sc->sc_max_depth = sc->sc_depth; 318 if (sc->sc_max_depth > sleepq_max_depth) 319 sleepq_max_depth = sc->sc_max_depth; 320 } 321 #endif 322 sq = td->td_sleepqueue; 323 LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash); 324 sq->sq_wchan = wchan; 325 } else { 326 MPASS(wchan == sq->sq_wchan); 327 MPASS(lock == sq->sq_lock); 328 MPASS((flags & SLEEPQ_TYPE) == sq->sq_type); 329 LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash); 330 } 331 thread_lock(td); 332 TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq); 333 td->td_sleepqueue = NULL; 334 td->td_sqqueue = queue; 335 td->td_wchan = wchan; 336 td->td_wmesg = wmesg; 337 if (flags & SLEEPQ_INTERRUPTIBLE) { 338 td->td_flags |= TDF_SINTR; 339 td->td_flags &= ~TDF_SLEEPABORT; 340 } 341 thread_unlock(td); 342 } 343 344 /* 345 * Sets a timeout that will remove the current thread from the specified 346 * sleep queue after timo ticks if the thread has not already been awakened. 347 */ 348 void 349 sleepq_set_timeout(void *wchan, int timo) 350 { 351 struct sleepqueue_chain *sc; 352 struct thread *td; 353 354 td = curthread; 355 sc = SC_LOOKUP(wchan); 356 mtx_assert(&sc->sc_lock, MA_OWNED); 357 MPASS(TD_ON_SLEEPQ(td)); 358 MPASS(td->td_sleepqueue == NULL); 359 MPASS(wchan != NULL); 360 callout_reset(&td->td_slpcallout, timo, sleepq_timeout, td); 361 } 362 363 /* 364 * Marks the pending sleep of the current thread as interruptible and 365 * makes an initial check for pending signals before putting a thread 366 * to sleep. Enters and exits with the thread lock held. Thread lock 367 * may have transitioned from the sleepq lock to a run lock. 368 */ 369 static int 370 sleepq_catch_signals(void *wchan) 371 { 372 struct sleepqueue_chain *sc; 373 struct sleepqueue *sq; 374 struct thread *td; 375 struct proc *p; 376 struct sigacts *ps; 377 int sig, ret; 378 379 td = curthread; 380 p = curproc; 381 sc = SC_LOOKUP(wchan); 382 mtx_assert(&sc->sc_lock, MA_OWNED); 383 MPASS(wchan != NULL); 384 CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)", 385 (void *)td, (long)p->p_pid, td->td_name); 386 387 mtx_unlock_spin(&sc->sc_lock); 388 389 /* See if there are any pending signals for this thread. */ 390 PROC_LOCK(p); 391 ps = p->p_sigacts; 392 mtx_lock(&ps->ps_mtx); 393 sig = cursig(td); 394 if (sig == 0) { 395 mtx_unlock(&ps->ps_mtx); 396 ret = thread_suspend_check(1); 397 MPASS(ret == 0 || ret == EINTR || ret == ERESTART); 398 } else { 399 if (SIGISMEMBER(ps->ps_sigintr, sig)) 400 ret = EINTR; 401 else 402 ret = ERESTART; 403 mtx_unlock(&ps->ps_mtx); 404 } 405 /* 406 * Lock sleepq chain before unlocking proc 407 * without this, we could lose a race. 408 */ 409 mtx_lock_spin(&sc->sc_lock); 410 PROC_UNLOCK(p); 411 thread_lock(td); 412 if (ret == 0) { 413 if (!(td->td_flags & TDF_INTERRUPT)) { 414 sleepq_switch(wchan); 415 return (0); 416 } 417 /* KSE threads tried unblocking us. */ 418 ret = td->td_intrval; 419 MPASS(ret == EINTR || ret == ERESTART || ret == EWOULDBLOCK); 420 } 421 /* 422 * There were pending signals and this thread is still 423 * on the sleep queue, remove it from the sleep queue. 424 */ 425 if (TD_ON_SLEEPQ(td)) { 426 sq = sleepq_lookup(wchan); 427 sleepq_resume_thread(sq, td, -1); 428 } 429 mtx_unlock_spin(&sc->sc_lock); 430 MPASS(td->td_lock != &sc->sc_lock); 431 return (ret); 432 } 433 434 /* 435 * Switches to another thread if we are still asleep on a sleep queue. 436 * Returns with thread lock. 437 */ 438 static void 439 sleepq_switch(void *wchan) 440 { 441 struct sleepqueue_chain *sc; 442 struct thread *td; 443 444 td = curthread; 445 sc = SC_LOOKUP(wchan); 446 mtx_assert(&sc->sc_lock, MA_OWNED); 447 THREAD_LOCK_ASSERT(td, MA_OWNED); 448 /* We were removed */ 449 if (td->td_sleepqueue != NULL) { 450 mtx_unlock_spin(&sc->sc_lock); 451 return; 452 } 453 thread_lock_set(td, &sc->sc_lock); 454 455 MPASS(td->td_sleepqueue == NULL); 456 sched_sleep(td); 457 TD_SET_SLEEPING(td); 458 SCHED_STAT_INC(switch_sleepq); 459 mi_switch(SW_VOL, NULL); 460 KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING")); 461 CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)", 462 (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name); 463 } 464 465 /* 466 * Check to see if we timed out. 467 */ 468 static int 469 sleepq_check_timeout(void) 470 { 471 struct thread *td; 472 473 td = curthread; 474 THREAD_LOCK_ASSERT(td, MA_OWNED); 475 476 /* 477 * If TDF_TIMEOUT is set, we timed out. 478 */ 479 if (td->td_flags & TDF_TIMEOUT) { 480 td->td_flags &= ~TDF_TIMEOUT; 481 return (EWOULDBLOCK); 482 } 483 484 /* 485 * If TDF_TIMOFAIL is set, the timeout ran after we had 486 * already been woken up. 487 */ 488 if (td->td_flags & TDF_TIMOFAIL) 489 td->td_flags &= ~TDF_TIMOFAIL; 490 491 /* 492 * If callout_stop() fails, then the timeout is running on 493 * another CPU, so synchronize with it to avoid having it 494 * accidentally wake up a subsequent sleep. 495 */ 496 else if (callout_stop(&td->td_slpcallout) == 0) { 497 td->td_flags |= TDF_TIMEOUT; 498 TD_SET_SLEEPING(td); 499 SCHED_STAT_INC(switch_sleepqtimo); 500 mi_switch(SW_INVOL, NULL); 501 } 502 return (0); 503 } 504 505 /* 506 * Check to see if we were awoken by a signal. 507 */ 508 static int 509 sleepq_check_signals(void) 510 { 511 struct thread *td; 512 513 td = curthread; 514 THREAD_LOCK_ASSERT(td, MA_OWNED); 515 516 /* We are no longer in an interruptible sleep. */ 517 if (td->td_flags & TDF_SINTR) 518 td->td_flags &= ~TDF_SINTR; 519 520 if (td->td_flags & TDF_SLEEPABORT) { 521 td->td_flags &= ~TDF_SLEEPABORT; 522 return (td->td_intrval); 523 } 524 525 if (td->td_flags & TDF_INTERRUPT) 526 return (td->td_intrval); 527 528 return (0); 529 } 530 531 /* 532 * Block the current thread until it is awakened from its sleep queue. 533 */ 534 void 535 sleepq_wait(void *wchan) 536 { 537 struct thread *td; 538 539 td = curthread; 540 MPASS(!(td->td_flags & TDF_SINTR)); 541 thread_lock(td); 542 sleepq_switch(wchan); 543 thread_unlock(td); 544 } 545 546 /* 547 * Block the current thread until it is awakened from its sleep queue 548 * or it is interrupted by a signal. 549 */ 550 int 551 sleepq_wait_sig(void *wchan) 552 { 553 int rcatch; 554 int rval; 555 556 rcatch = sleepq_catch_signals(wchan); 557 rval = sleepq_check_signals(); 558 thread_unlock(curthread); 559 if (rcatch) 560 return (rcatch); 561 return (rval); 562 } 563 564 /* 565 * Block the current thread until it is awakened from its sleep queue 566 * or it times out while waiting. 567 */ 568 int 569 sleepq_timedwait(void *wchan) 570 { 571 struct thread *td; 572 int rval; 573 574 td = curthread; 575 MPASS(!(td->td_flags & TDF_SINTR)); 576 thread_lock(td); 577 sleepq_switch(wchan); 578 rval = sleepq_check_timeout(); 579 thread_unlock(td); 580 581 return (rval); 582 } 583 584 /* 585 * Block the current thread until it is awakened from its sleep queue, 586 * it is interrupted by a signal, or it times out waiting to be awakened. 587 */ 588 int 589 sleepq_timedwait_sig(void *wchan) 590 { 591 int rcatch, rvalt, rvals; 592 593 rcatch = sleepq_catch_signals(wchan); 594 rvalt = sleepq_check_timeout(); 595 rvals = sleepq_check_signals(); 596 thread_unlock(curthread); 597 if (rcatch) 598 return (rcatch); 599 if (rvals) 600 return (rvals); 601 return (rvalt); 602 } 603 604 /* 605 * Removes a thread from a sleep queue and makes it 606 * runnable. 607 */ 608 static void 609 sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri) 610 { 611 struct sleepqueue_chain *sc; 612 613 MPASS(td != NULL); 614 MPASS(sq->sq_wchan != NULL); 615 MPASS(td->td_wchan == sq->sq_wchan); 616 MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0); 617 THREAD_LOCK_ASSERT(td, MA_OWNED); 618 sc = SC_LOOKUP(sq->sq_wchan); 619 mtx_assert(&sc->sc_lock, MA_OWNED); 620 621 /* Remove the thread from the queue. */ 622 TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq); 623 624 /* 625 * Get a sleep queue for this thread. If this is the last waiter, 626 * use the queue itself and take it out of the chain, otherwise, 627 * remove a queue from the free list. 628 */ 629 if (LIST_EMPTY(&sq->sq_free)) { 630 td->td_sleepqueue = sq; 631 #ifdef INVARIANTS 632 sq->sq_wchan = NULL; 633 #endif 634 #ifdef SLEEPQUEUE_PROFILING 635 sc->sc_depth--; 636 #endif 637 } else 638 td->td_sleepqueue = LIST_FIRST(&sq->sq_free); 639 LIST_REMOVE(td->td_sleepqueue, sq_hash); 640 641 td->td_wmesg = NULL; 642 td->td_wchan = NULL; 643 td->td_flags &= ~TDF_SINTR; 644 645 /* 646 * Note that thread td might not be sleeping if it is running 647 * sleepq_catch_signals() on another CPU or is blocked on 648 * its proc lock to check signals. It doesn't hurt to clear 649 * the sleeping flag if it isn't set though, so we just always 650 * do it. However, we can't assert that it is set. 651 */ 652 CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)", 653 (void *)td, (long)td->td_proc->p_pid, td->td_name); 654 TD_CLR_SLEEPING(td); 655 656 /* Adjust priority if requested. */ 657 MPASS(pri == -1 || (pri >= PRI_MIN && pri <= PRI_MAX)); 658 if (pri != -1 && td->td_priority > pri) 659 sched_prio(td, pri); 660 setrunnable(td); 661 } 662 663 #ifdef INVARIANTS 664 /* 665 * UMA zone item deallocator. 666 */ 667 static void 668 sleepq_dtor(void *mem, int size, void *arg) 669 { 670 struct sleepqueue *sq; 671 int i; 672 673 sq = mem; 674 for (i = 0; i < NR_SLEEPQS; i++) 675 MPASS(TAILQ_EMPTY(&sq->sq_blocked[i])); 676 } 677 #endif 678 679 /* 680 * UMA zone item initializer. 681 */ 682 static int 683 sleepq_init(void *mem, int size, int flags) 684 { 685 struct sleepqueue *sq; 686 int i; 687 688 bzero(mem, size); 689 sq = mem; 690 for (i = 0; i < NR_SLEEPQS; i++) 691 TAILQ_INIT(&sq->sq_blocked[i]); 692 LIST_INIT(&sq->sq_free); 693 return (0); 694 } 695 696 /* 697 * Find the highest priority thread sleeping on a wait channel and resume it. 698 */ 699 void 700 sleepq_signal(void *wchan, int flags, int pri, int queue) 701 { 702 struct sleepqueue *sq; 703 struct thread *td, *besttd; 704 705 CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags); 706 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 707 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 708 sq = sleepq_lookup(wchan); 709 if (sq == NULL) 710 return; 711 KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE), 712 ("%s: mismatch between sleep/wakeup and cv_*", __func__)); 713 714 /* 715 * Find the highest priority thread on the queue. If there is a 716 * tie, use the thread that first appears in the queue as it has 717 * been sleeping the longest since threads are always added to 718 * the tail of sleep queues. 719 */ 720 besttd = NULL; 721 TAILQ_FOREACH(td, &sq->sq_blocked[queue], td_slpq) { 722 if (besttd == NULL || td->td_priority < besttd->td_priority) 723 besttd = td; 724 } 725 MPASS(besttd != NULL); 726 thread_lock(besttd); 727 sleepq_resume_thread(sq, besttd, pri); 728 thread_unlock(besttd); 729 } 730 731 /* 732 * Resume all threads sleeping on a specified wait channel. 733 */ 734 void 735 sleepq_broadcast(void *wchan, int flags, int pri, int queue) 736 { 737 struct sleepqueue *sq; 738 struct thread *td; 739 740 CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags); 741 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 742 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 743 sq = sleepq_lookup(wchan); 744 if (sq == NULL) { 745 sleepq_release(wchan); 746 return; 747 } 748 KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE), 749 ("%s: mismatch between sleep/wakeup and cv_*", __func__)); 750 751 /* Resume all blocked threads on the sleep queue. */ 752 while (!TAILQ_EMPTY(&sq->sq_blocked[queue])) { 753 td = TAILQ_FIRST(&sq->sq_blocked[queue]); 754 thread_lock(td); 755 sleepq_resume_thread(sq, td, pri); 756 thread_unlock(td); 757 } 758 sleepq_release(wchan); 759 } 760 761 /* 762 * Time sleeping threads out. When the timeout expires, the thread is 763 * removed from the sleep queue and made runnable if it is still asleep. 764 */ 765 static void 766 sleepq_timeout(void *arg) 767 { 768 struct sleepqueue_chain *sc; 769 struct sleepqueue *sq; 770 struct thread *td; 771 void *wchan; 772 773 td = arg; 774 CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)", 775 (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name); 776 777 /* 778 * First, see if the thread is asleep and get the wait channel if 779 * it is. 780 */ 781 thread_lock(td); 782 if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) { 783 wchan = td->td_wchan; 784 sc = SC_LOOKUP(wchan); 785 MPASS(td->td_lock == &sc->sc_lock); 786 sq = sleepq_lookup(wchan); 787 MPASS(sq != NULL); 788 td->td_flags |= TDF_TIMEOUT; 789 sleepq_resume_thread(sq, td, -1); 790 thread_unlock(td); 791 return; 792 } 793 /* 794 * If the thread is on the SLEEPQ but not sleeping and we have it 795 * locked it must be in sleepq_catch_signals(). Let it know we've 796 * timedout here so it can remove itself. 797 */ 798 if (TD_ON_SLEEPQ(td)) { 799 td->td_flags |= TDF_TIMEOUT | TDF_INTERRUPT; 800 td->td_intrval = EWOULDBLOCK; 801 thread_unlock(td); 802 return; 803 } 804 805 /* 806 * Now check for the edge cases. First, if TDF_TIMEOUT is set, 807 * then the other thread has already yielded to us, so clear 808 * the flag and resume it. If TDF_TIMEOUT is not set, then the 809 * we know that the other thread is not on a sleep queue, but it 810 * hasn't resumed execution yet. In that case, set TDF_TIMOFAIL 811 * to let it know that the timeout has already run and doesn't 812 * need to be canceled. 813 */ 814 if (td->td_flags & TDF_TIMEOUT) { 815 MPASS(TD_IS_SLEEPING(td)); 816 td->td_flags &= ~TDF_TIMEOUT; 817 TD_CLR_SLEEPING(td); 818 setrunnable(td); 819 } else 820 td->td_flags |= TDF_TIMOFAIL; 821 thread_unlock(td); 822 } 823 824 /* 825 * Resumes a specific thread from the sleep queue associated with a specific 826 * wait channel if it is on that queue. 827 */ 828 void 829 sleepq_remove(struct thread *td, void *wchan) 830 { 831 struct sleepqueue *sq; 832 833 /* 834 * Look up the sleep queue for this wait channel, then re-check 835 * that the thread is asleep on that channel, if it is not, then 836 * bail. 837 */ 838 MPASS(wchan != NULL); 839 sleepq_lock(wchan); 840 sq = sleepq_lookup(wchan); 841 /* 842 * We can not lock the thread here as it may be sleeping on a 843 * different sleepq. However, holding the sleepq lock for this 844 * wchan can guarantee that we do not miss a wakeup for this 845 * channel. The asserts below will catch any false positives. 846 */ 847 if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) { 848 sleepq_release(wchan); 849 return; 850 } 851 /* Thread is asleep on sleep queue sq, so wake it up. */ 852 thread_lock(td); 853 MPASS(sq != NULL); 854 MPASS(td->td_wchan == wchan); 855 sleepq_resume_thread(sq, td, -1); 856 thread_unlock(td); 857 sleepq_release(wchan); 858 } 859 860 /* 861 * Abort a thread as if an interrupt had occurred. Only abort 862 * interruptible waits (unfortunately it isn't safe to abort others). 863 */ 864 void 865 sleepq_abort(struct thread *td, int intrval) 866 { 867 struct sleepqueue *sq; 868 void *wchan; 869 870 THREAD_LOCK_ASSERT(td, MA_OWNED); 871 MPASS(TD_ON_SLEEPQ(td)); 872 MPASS(td->td_flags & TDF_SINTR); 873 MPASS(intrval == EINTR || intrval == ERESTART); 874 875 /* 876 * If the TDF_TIMEOUT flag is set, just leave. A 877 * timeout is scheduled anyhow. 878 */ 879 if (td->td_flags & TDF_TIMEOUT) 880 return; 881 882 CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)", 883 (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name); 884 td->td_intrval = intrval; 885 td->td_flags |= TDF_SLEEPABORT; 886 /* 887 * If the thread has not slept yet it will find the signal in 888 * sleepq_catch_signals() and call sleepq_resume_thread. Otherwise 889 * we have to do it here. 890 */ 891 if (!TD_IS_SLEEPING(td)) 892 return; 893 wchan = td->td_wchan; 894 MPASS(wchan != NULL); 895 sq = sleepq_lookup(wchan); 896 MPASS(sq != NULL); 897 898 /* Thread is asleep on sleep queue sq, so wake it up. */ 899 sleepq_resume_thread(sq, td, -1); 900 } 901 902 #ifdef DDB 903 DB_SHOW_COMMAND(sleepq, db_show_sleepqueue) 904 { 905 struct sleepqueue_chain *sc; 906 struct sleepqueue *sq; 907 #ifdef INVARIANTS 908 struct lock_object *lock; 909 #endif 910 struct thread *td; 911 void *wchan; 912 int i; 913 914 if (!have_addr) 915 return; 916 917 /* 918 * First, see if there is an active sleep queue for the wait channel 919 * indicated by the address. 920 */ 921 wchan = (void *)addr; 922 sc = SC_LOOKUP(wchan); 923 LIST_FOREACH(sq, &sc->sc_queues, sq_hash) 924 if (sq->sq_wchan == wchan) 925 goto found; 926 927 /* 928 * Second, see if there is an active sleep queue at the address 929 * indicated. 930 */ 931 for (i = 0; i < SC_TABLESIZE; i++) 932 LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) { 933 if (sq == (struct sleepqueue *)addr) 934 goto found; 935 } 936 937 db_printf("Unable to locate a sleep queue via %p\n", (void *)addr); 938 return; 939 found: 940 db_printf("Wait channel: %p\n", sq->sq_wchan); 941 #ifdef INVARIANTS 942 db_printf("Queue type: %d\n", sq->sq_type); 943 if (sq->sq_lock) { 944 lock = sq->sq_lock; 945 db_printf("Associated Interlock: %p - (%s) %s\n", lock, 946 LOCK_CLASS(lock)->lc_name, lock->lo_name); 947 } 948 #endif 949 db_printf("Blocked threads:\n"); 950 for (i = 0; i < NR_SLEEPQS; i++) { 951 db_printf("\nQueue[%d]:\n", i); 952 if (TAILQ_EMPTY(&sq->sq_blocked[i])) 953 db_printf("\tempty\n"); 954 else 955 TAILQ_FOREACH(td, &sq->sq_blocked[0], 956 td_slpq) { 957 db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td, 958 td->td_tid, td->td_proc->p_pid, 959 td->td_name[i] != '\0' ? td->td_name : 960 td->td_name); 961 } 962 } 963 } 964 965 /* Alias 'show sleepqueue' to 'show sleepq'. */ 966 DB_SET(sleepqueue, db_show_sleepqueue, db_show_cmd_set, 0, NULL); 967 #endif 968