xref: /freebsd/sys/kern/subr_sleepqueue.c (revision 1e413cf93298b5b97441a21d9a50fdcd0ee9945e)
1 /*-
2  * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the author nor the names of any co-contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /*
31  * Implementation of sleep queues used to hold queue of threads blocked on
32  * a wait channel.  Sleep queues different from turnstiles in that wait
33  * channels are not owned by anyone, so there is no priority propagation.
34  * Sleep queues can also provide a timeout and can also be interrupted by
35  * signals.  That said, there are several similarities between the turnstile
36  * and sleep queue implementations.  (Note: turnstiles were implemented
37  * first.)  For example, both use a hash table of the same size where each
38  * bucket is referred to as a "chain" that contains both a spin lock and
39  * a linked list of queues.  An individual queue is located by using a hash
40  * to pick a chain, locking the chain, and then walking the chain searching
41  * for the queue.  This means that a wait channel object does not need to
42  * embed it's queue head just as locks do not embed their turnstile queue
43  * head.  Threads also carry around a sleep queue that they lend to the
44  * wait channel when blocking.  Just as in turnstiles, the queue includes
45  * a free list of the sleep queues of other threads blocked on the same
46  * wait channel in the case of multiple waiters.
47  *
48  * Some additional functionality provided by sleep queues include the
49  * ability to set a timeout.  The timeout is managed using a per-thread
50  * callout that resumes a thread if it is asleep.  A thread may also
51  * catch signals while it is asleep (aka an interruptible sleep).  The
52  * signal code uses sleepq_abort() to interrupt a sleeping thread.  Finally,
53  * sleep queues also provide some extra assertions.  One is not allowed to
54  * mix the sleep/wakeup and cv APIs for a given wait channel.  Also, one
55  * must consistently use the same lock to synchronize with a wait channel,
56  * though this check is currently only a warning for sleep/wakeup due to
57  * pre-existing abuse of that API.  The same lock must also be held when
58  * awakening threads, though that is currently only enforced for condition
59  * variables.
60  */
61 
62 #include <sys/cdefs.h>
63 __FBSDID("$FreeBSD$");
64 
65 #include "opt_sleepqueue_profiling.h"
66 #include "opt_ddb.h"
67 #include "opt_sched.h"
68 
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/lock.h>
72 #include <sys/kernel.h>
73 #include <sys/ktr.h>
74 #include <sys/mutex.h>
75 #include <sys/proc.h>
76 #include <sys/sched.h>
77 #include <sys/signalvar.h>
78 #include <sys/sleepqueue.h>
79 #include <sys/sysctl.h>
80 
81 #include <vm/uma.h>
82 
83 #ifdef DDB
84 #include <ddb/ddb.h>
85 #endif
86 
87 /*
88  * Constants for the hash table of sleep queue chains.  These constants are
89  * the same ones that 4BSD (and possibly earlier versions of BSD) used.
90  * Basically, we ignore the lower 8 bits of the address since most wait
91  * channel pointers are aligned and only look at the next 7 bits for the
92  * hash.  SC_TABLESIZE must be a power of two for SC_MASK to work properly.
93  */
94 #define	SC_TABLESIZE	128			/* Must be power of 2. */
95 #define	SC_MASK		(SC_TABLESIZE - 1)
96 #define	SC_SHIFT	8
97 #define	SC_HASH(wc)	(((uintptr_t)(wc) >> SC_SHIFT) & SC_MASK)
98 #define	SC_LOOKUP(wc)	&sleepq_chains[SC_HASH(wc)]
99 #define NR_SLEEPQS      2
100 /*
101  * There two different lists of sleep queues.  Both lists are connected
102  * via the sq_hash entries.  The first list is the sleep queue chain list
103  * that a sleep queue is on when it is attached to a wait channel.  The
104  * second list is the free list hung off of a sleep queue that is attached
105  * to a wait channel.
106  *
107  * Each sleep queue also contains the wait channel it is attached to, the
108  * list of threads blocked on that wait channel, flags specific to the
109  * wait channel, and the lock used to synchronize with a wait channel.
110  * The flags are used to catch mismatches between the various consumers
111  * of the sleep queue API (e.g. sleep/wakeup and condition variables).
112  * The lock pointer is only used when invariants are enabled for various
113  * debugging checks.
114  *
115  * Locking key:
116  *  c - sleep queue chain lock
117  */
118 struct sleepqueue {
119 	TAILQ_HEAD(, thread) sq_blocked[NR_SLEEPQS];	/* (c) Blocked threads. */
120 	LIST_ENTRY(sleepqueue) sq_hash;		/* (c) Chain and free list. */
121 	LIST_HEAD(, sleepqueue) sq_free;	/* (c) Free queues. */
122 	void	*sq_wchan;			/* (c) Wait channel. */
123 #ifdef INVARIANTS
124 	int	sq_type;			/* (c) Queue type. */
125 	struct lock_object *sq_lock;		/* (c) Associated lock. */
126 #endif
127 };
128 
129 struct sleepqueue_chain {
130 	LIST_HEAD(, sleepqueue) sc_queues;	/* List of sleep queues. */
131 	struct mtx sc_lock;			/* Spin lock for this chain. */
132 #ifdef SLEEPQUEUE_PROFILING
133 	u_int	sc_depth;			/* Length of sc_queues. */
134 	u_int	sc_max_depth;			/* Max length of sc_queues. */
135 #endif
136 };
137 
138 #ifdef SLEEPQUEUE_PROFILING
139 u_int sleepq_max_depth;
140 SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling");
141 SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0,
142     "sleepq chain stats");
143 SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth,
144     0, "maxmimum depth achieved of a single chain");
145 #endif
146 static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE];
147 static uma_zone_t sleepq_zone;
148 
149 /*
150  * Prototypes for non-exported routines.
151  */
152 static int	sleepq_catch_signals(void *wchan);
153 static int	sleepq_check_signals(void);
154 static int	sleepq_check_timeout(void);
155 #ifdef INVARIANTS
156 static void	sleepq_dtor(void *mem, int size, void *arg);
157 #endif
158 static int	sleepq_init(void *mem, int size, int flags);
159 static void	sleepq_resume_thread(struct sleepqueue *sq, struct thread *td,
160 		    int pri);
161 static void	sleepq_switch(void *wchan);
162 static void	sleepq_timeout(void *arg);
163 
164 /*
165  * Early initialization of sleep queues that is called from the sleepinit()
166  * SYSINIT.
167  */
168 void
169 init_sleepqueues(void)
170 {
171 #ifdef SLEEPQUEUE_PROFILING
172 	struct sysctl_oid *chain_oid;
173 	char chain_name[10];
174 #endif
175 	int i;
176 
177 	for (i = 0; i < SC_TABLESIZE; i++) {
178 		LIST_INIT(&sleepq_chains[i].sc_queues);
179 		mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL,
180 		    MTX_SPIN);
181 #ifdef SLEEPQUEUE_PROFILING
182 		snprintf(chain_name, sizeof(chain_name), "%d", i);
183 		chain_oid = SYSCTL_ADD_NODE(NULL,
184 		    SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO,
185 		    chain_name, CTLFLAG_RD, NULL, "sleepq chain stats");
186 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
187 		    "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL);
188 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
189 		    "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0,
190 		    NULL);
191 #endif
192 	}
193 	sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue),
194 #ifdef INVARIANTS
195 	    NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
196 #else
197 	    NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
198 #endif
199 
200 	thread0.td_sleepqueue = sleepq_alloc();
201 }
202 
203 /*
204  * Get a sleep queue for a new thread.
205  */
206 struct sleepqueue *
207 sleepq_alloc(void)
208 {
209 
210 	return (uma_zalloc(sleepq_zone, M_WAITOK));
211 }
212 
213 /*
214  * Free a sleep queue when a thread is destroyed.
215  */
216 void
217 sleepq_free(struct sleepqueue *sq)
218 {
219 
220 	uma_zfree(sleepq_zone, sq);
221 }
222 
223 /*
224  * Lock the sleep queue chain associated with the specified wait channel.
225  */
226 void
227 sleepq_lock(void *wchan)
228 {
229 	struct sleepqueue_chain *sc;
230 
231 	sc = SC_LOOKUP(wchan);
232 	mtx_lock_spin(&sc->sc_lock);
233 }
234 
235 /*
236  * Look up the sleep queue associated with a given wait channel in the hash
237  * table locking the associated sleep queue chain.  If no queue is found in
238  * the table, NULL is returned.
239  */
240 struct sleepqueue *
241 sleepq_lookup(void *wchan)
242 {
243 	struct sleepqueue_chain *sc;
244 	struct sleepqueue *sq;
245 
246 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
247 	sc = SC_LOOKUP(wchan);
248 	mtx_assert(&sc->sc_lock, MA_OWNED);
249 	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
250 		if (sq->sq_wchan == wchan)
251 			return (sq);
252 	return (NULL);
253 }
254 
255 /*
256  * Unlock the sleep queue chain associated with a given wait channel.
257  */
258 void
259 sleepq_release(void *wchan)
260 {
261 	struct sleepqueue_chain *sc;
262 
263 	sc = SC_LOOKUP(wchan);
264 	mtx_unlock_spin(&sc->sc_lock);
265 }
266 
267 /*
268  * Places the current thread on the sleep queue for the specified wait
269  * channel.  If INVARIANTS is enabled, then it associates the passed in
270  * lock with the sleepq to make sure it is held when that sleep queue is
271  * woken up.
272  */
273 void
274 sleepq_add(void *wchan, struct lock_object *lock, const char *wmesg, int flags,
275     int queue)
276 {
277 	struct sleepqueue_chain *sc;
278 	struct sleepqueue *sq;
279 	struct thread *td;
280 
281 	td = curthread;
282 	sc = SC_LOOKUP(wchan);
283 	mtx_assert(&sc->sc_lock, MA_OWNED);
284 	MPASS(td->td_sleepqueue != NULL);
285 	MPASS(wchan != NULL);
286 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
287 
288 	/* If this thread is not allowed to sleep, die a horrible death. */
289 	KASSERT(!(td->td_pflags & TDP_NOSLEEPING),
290 	    ("Trying sleep, but thread marked as sleeping prohibited"));
291 
292 	/* Look up the sleep queue associated with the wait channel 'wchan'. */
293 	sq = sleepq_lookup(wchan);
294 
295 	/*
296 	 * If the wait channel does not already have a sleep queue, use
297 	 * this thread's sleep queue.  Otherwise, insert the current thread
298 	 * into the sleep queue already in use by this wait channel.
299 	 */
300 	if (sq == NULL) {
301 #ifdef INVARIANTS
302 		int i;
303 
304 		sq = td->td_sleepqueue;
305 		for (i = 0; i < NR_SLEEPQS; i++)
306 			KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]),
307 				("thread's sleep queue %d is not empty", i));
308 		KASSERT(LIST_EMPTY(&sq->sq_free),
309 		    ("thread's sleep queue has a non-empty free list"));
310 		KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer"));
311 		sq->sq_lock = lock;
312 		sq->sq_type = flags & SLEEPQ_TYPE;
313 #endif
314 #ifdef SLEEPQUEUE_PROFILING
315 		sc->sc_depth++;
316 		if (sc->sc_depth > sc->sc_max_depth) {
317 			sc->sc_max_depth = sc->sc_depth;
318 			if (sc->sc_max_depth > sleepq_max_depth)
319 				sleepq_max_depth = sc->sc_max_depth;
320 		}
321 #endif
322 		sq = td->td_sleepqueue;
323 		LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash);
324 		sq->sq_wchan = wchan;
325 	} else {
326 		MPASS(wchan == sq->sq_wchan);
327 		MPASS(lock == sq->sq_lock);
328 		MPASS((flags & SLEEPQ_TYPE) == sq->sq_type);
329 		LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash);
330 	}
331 	thread_lock(td);
332 	TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq);
333 	td->td_sleepqueue = NULL;
334 	td->td_sqqueue = queue;
335 	td->td_wchan = wchan;
336 	td->td_wmesg = wmesg;
337 	if (flags & SLEEPQ_INTERRUPTIBLE) {
338 		td->td_flags |= TDF_SINTR;
339 		td->td_flags &= ~TDF_SLEEPABORT;
340 	}
341 	thread_unlock(td);
342 }
343 
344 /*
345  * Sets a timeout that will remove the current thread from the specified
346  * sleep queue after timo ticks if the thread has not already been awakened.
347  */
348 void
349 sleepq_set_timeout(void *wchan, int timo)
350 {
351 	struct sleepqueue_chain *sc;
352 	struct thread *td;
353 
354 	td = curthread;
355 	sc = SC_LOOKUP(wchan);
356 	mtx_assert(&sc->sc_lock, MA_OWNED);
357 	MPASS(TD_ON_SLEEPQ(td));
358 	MPASS(td->td_sleepqueue == NULL);
359 	MPASS(wchan != NULL);
360 	callout_reset(&td->td_slpcallout, timo, sleepq_timeout, td);
361 }
362 
363 /*
364  * Marks the pending sleep of the current thread as interruptible and
365  * makes an initial check for pending signals before putting a thread
366  * to sleep. Enters and exits with the thread lock held.  Thread lock
367  * may have transitioned from the sleepq lock to a run lock.
368  */
369 static int
370 sleepq_catch_signals(void *wchan)
371 {
372 	struct sleepqueue_chain *sc;
373 	struct sleepqueue *sq;
374 	struct thread *td;
375 	struct proc *p;
376 	struct sigacts *ps;
377 	int sig, ret;
378 
379 	td = curthread;
380 	p = curproc;
381 	sc = SC_LOOKUP(wchan);
382 	mtx_assert(&sc->sc_lock, MA_OWNED);
383 	MPASS(wchan != NULL);
384 	CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)",
385 		(void *)td, (long)p->p_pid, td->td_name);
386 
387 	mtx_unlock_spin(&sc->sc_lock);
388 
389 	/* See if there are any pending signals for this thread. */
390 	PROC_LOCK(p);
391 	ps = p->p_sigacts;
392 	mtx_lock(&ps->ps_mtx);
393 	sig = cursig(td);
394 	if (sig == 0) {
395 		mtx_unlock(&ps->ps_mtx);
396 		ret = thread_suspend_check(1);
397 		MPASS(ret == 0 || ret == EINTR || ret == ERESTART);
398 	} else {
399 		if (SIGISMEMBER(ps->ps_sigintr, sig))
400 			ret = EINTR;
401 		else
402 			ret = ERESTART;
403 		mtx_unlock(&ps->ps_mtx);
404 	}
405 	/*
406 	 * Lock sleepq chain before unlocking proc
407 	 * without this, we could lose a race.
408 	 */
409 	mtx_lock_spin(&sc->sc_lock);
410 	PROC_UNLOCK(p);
411 	thread_lock(td);
412 	if (ret == 0) {
413 		if (!(td->td_flags & TDF_INTERRUPT)) {
414 			sleepq_switch(wchan);
415 			return (0);
416 		}
417 		/* KSE threads tried unblocking us. */
418 		ret = td->td_intrval;
419 		MPASS(ret == EINTR || ret == ERESTART || ret == EWOULDBLOCK);
420 	}
421 	/*
422 	 * There were pending signals and this thread is still
423 	 * on the sleep queue, remove it from the sleep queue.
424 	 */
425 	if (TD_ON_SLEEPQ(td)) {
426 		sq = sleepq_lookup(wchan);
427 		sleepq_resume_thread(sq, td, -1);
428 	}
429 	mtx_unlock_spin(&sc->sc_lock);
430 	MPASS(td->td_lock != &sc->sc_lock);
431 	return (ret);
432 }
433 
434 /*
435  * Switches to another thread if we are still asleep on a sleep queue.
436  * Returns with thread lock.
437  */
438 static void
439 sleepq_switch(void *wchan)
440 {
441 	struct sleepqueue_chain *sc;
442 	struct thread *td;
443 
444 	td = curthread;
445 	sc = SC_LOOKUP(wchan);
446 	mtx_assert(&sc->sc_lock, MA_OWNED);
447 	THREAD_LOCK_ASSERT(td, MA_OWNED);
448 	/* We were removed */
449 	if (td->td_sleepqueue != NULL) {
450 		mtx_unlock_spin(&sc->sc_lock);
451 		return;
452 	}
453 	thread_lock_set(td, &sc->sc_lock);
454 
455 	MPASS(td->td_sleepqueue == NULL);
456 	sched_sleep(td);
457 	TD_SET_SLEEPING(td);
458 	SCHED_STAT_INC(switch_sleepq);
459 	mi_switch(SW_VOL, NULL);
460 	KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
461 	CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)",
462 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
463 }
464 
465 /*
466  * Check to see if we timed out.
467  */
468 static int
469 sleepq_check_timeout(void)
470 {
471 	struct thread *td;
472 
473 	td = curthread;
474 	THREAD_LOCK_ASSERT(td, MA_OWNED);
475 
476 	/*
477 	 * If TDF_TIMEOUT is set, we timed out.
478 	 */
479 	if (td->td_flags & TDF_TIMEOUT) {
480 		td->td_flags &= ~TDF_TIMEOUT;
481 		return (EWOULDBLOCK);
482 	}
483 
484 	/*
485 	 * If TDF_TIMOFAIL is set, the timeout ran after we had
486 	 * already been woken up.
487 	 */
488 	if (td->td_flags & TDF_TIMOFAIL)
489 		td->td_flags &= ~TDF_TIMOFAIL;
490 
491 	/*
492 	 * If callout_stop() fails, then the timeout is running on
493 	 * another CPU, so synchronize with it to avoid having it
494 	 * accidentally wake up a subsequent sleep.
495 	 */
496 	else if (callout_stop(&td->td_slpcallout) == 0) {
497 		td->td_flags |= TDF_TIMEOUT;
498 		TD_SET_SLEEPING(td);
499 		SCHED_STAT_INC(switch_sleepqtimo);
500 		mi_switch(SW_INVOL, NULL);
501 	}
502 	return (0);
503 }
504 
505 /*
506  * Check to see if we were awoken by a signal.
507  */
508 static int
509 sleepq_check_signals(void)
510 {
511 	struct thread *td;
512 
513 	td = curthread;
514 	THREAD_LOCK_ASSERT(td, MA_OWNED);
515 
516 	/* We are no longer in an interruptible sleep. */
517 	if (td->td_flags & TDF_SINTR)
518 		td->td_flags &= ~TDF_SINTR;
519 
520 	if (td->td_flags & TDF_SLEEPABORT) {
521 		td->td_flags &= ~TDF_SLEEPABORT;
522 		return (td->td_intrval);
523 	}
524 
525 	if (td->td_flags & TDF_INTERRUPT)
526 		return (td->td_intrval);
527 
528 	return (0);
529 }
530 
531 /*
532  * Block the current thread until it is awakened from its sleep queue.
533  */
534 void
535 sleepq_wait(void *wchan)
536 {
537 	struct thread *td;
538 
539 	td = curthread;
540 	MPASS(!(td->td_flags & TDF_SINTR));
541 	thread_lock(td);
542 	sleepq_switch(wchan);
543 	thread_unlock(td);
544 }
545 
546 /*
547  * Block the current thread until it is awakened from its sleep queue
548  * or it is interrupted by a signal.
549  */
550 int
551 sleepq_wait_sig(void *wchan)
552 {
553 	int rcatch;
554 	int rval;
555 
556 	rcatch = sleepq_catch_signals(wchan);
557 	rval = sleepq_check_signals();
558 	thread_unlock(curthread);
559 	if (rcatch)
560 		return (rcatch);
561 	return (rval);
562 }
563 
564 /*
565  * Block the current thread until it is awakened from its sleep queue
566  * or it times out while waiting.
567  */
568 int
569 sleepq_timedwait(void *wchan)
570 {
571 	struct thread *td;
572 	int rval;
573 
574 	td = curthread;
575 	MPASS(!(td->td_flags & TDF_SINTR));
576 	thread_lock(td);
577 	sleepq_switch(wchan);
578 	rval = sleepq_check_timeout();
579 	thread_unlock(td);
580 
581 	return (rval);
582 }
583 
584 /*
585  * Block the current thread until it is awakened from its sleep queue,
586  * it is interrupted by a signal, or it times out waiting to be awakened.
587  */
588 int
589 sleepq_timedwait_sig(void *wchan)
590 {
591 	int rcatch, rvalt, rvals;
592 
593 	rcatch = sleepq_catch_signals(wchan);
594 	rvalt = sleepq_check_timeout();
595 	rvals = sleepq_check_signals();
596 	thread_unlock(curthread);
597 	if (rcatch)
598 		return (rcatch);
599 	if (rvals)
600 		return (rvals);
601 	return (rvalt);
602 }
603 
604 /*
605  * Removes a thread from a sleep queue and makes it
606  * runnable.
607  */
608 static void
609 sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri)
610 {
611 	struct sleepqueue_chain *sc;
612 
613 	MPASS(td != NULL);
614 	MPASS(sq->sq_wchan != NULL);
615 	MPASS(td->td_wchan == sq->sq_wchan);
616 	MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0);
617 	THREAD_LOCK_ASSERT(td, MA_OWNED);
618 	sc = SC_LOOKUP(sq->sq_wchan);
619 	mtx_assert(&sc->sc_lock, MA_OWNED);
620 
621 	/* Remove the thread from the queue. */
622 	TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq);
623 
624 	/*
625 	 * Get a sleep queue for this thread.  If this is the last waiter,
626 	 * use the queue itself and take it out of the chain, otherwise,
627 	 * remove a queue from the free list.
628 	 */
629 	if (LIST_EMPTY(&sq->sq_free)) {
630 		td->td_sleepqueue = sq;
631 #ifdef INVARIANTS
632 		sq->sq_wchan = NULL;
633 #endif
634 #ifdef SLEEPQUEUE_PROFILING
635 		sc->sc_depth--;
636 #endif
637 	} else
638 		td->td_sleepqueue = LIST_FIRST(&sq->sq_free);
639 	LIST_REMOVE(td->td_sleepqueue, sq_hash);
640 
641 	td->td_wmesg = NULL;
642 	td->td_wchan = NULL;
643 	td->td_flags &= ~TDF_SINTR;
644 
645 	/*
646 	 * Note that thread td might not be sleeping if it is running
647 	 * sleepq_catch_signals() on another CPU or is blocked on
648 	 * its proc lock to check signals.  It doesn't hurt to clear
649 	 * the sleeping flag if it isn't set though, so we just always
650 	 * do it.  However, we can't assert that it is set.
651 	 */
652 	CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)",
653 	    (void *)td, (long)td->td_proc->p_pid, td->td_name);
654 	TD_CLR_SLEEPING(td);
655 
656 	/* Adjust priority if requested. */
657 	MPASS(pri == -1 || (pri >= PRI_MIN && pri <= PRI_MAX));
658 	if (pri != -1 && td->td_priority > pri)
659 		sched_prio(td, pri);
660 	setrunnable(td);
661 }
662 
663 #ifdef INVARIANTS
664 /*
665  * UMA zone item deallocator.
666  */
667 static void
668 sleepq_dtor(void *mem, int size, void *arg)
669 {
670 	struct sleepqueue *sq;
671 	int i;
672 
673 	sq = mem;
674 	for (i = 0; i < NR_SLEEPQS; i++)
675 		MPASS(TAILQ_EMPTY(&sq->sq_blocked[i]));
676 }
677 #endif
678 
679 /*
680  * UMA zone item initializer.
681  */
682 static int
683 sleepq_init(void *mem, int size, int flags)
684 {
685 	struct sleepqueue *sq;
686 	int i;
687 
688 	bzero(mem, size);
689 	sq = mem;
690 	for (i = 0; i < NR_SLEEPQS; i++)
691 		TAILQ_INIT(&sq->sq_blocked[i]);
692 	LIST_INIT(&sq->sq_free);
693 	return (0);
694 }
695 
696 /*
697  * Find the highest priority thread sleeping on a wait channel and resume it.
698  */
699 void
700 sleepq_signal(void *wchan, int flags, int pri, int queue)
701 {
702 	struct sleepqueue *sq;
703 	struct thread *td, *besttd;
704 
705 	CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags);
706 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
707 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
708 	sq = sleepq_lookup(wchan);
709 	if (sq == NULL)
710 		return;
711 	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
712 	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
713 
714 	/*
715 	 * Find the highest priority thread on the queue.  If there is a
716 	 * tie, use the thread that first appears in the queue as it has
717 	 * been sleeping the longest since threads are always added to
718 	 * the tail of sleep queues.
719 	 */
720 	besttd = NULL;
721 	TAILQ_FOREACH(td, &sq->sq_blocked[queue], td_slpq) {
722 		if (besttd == NULL || td->td_priority < besttd->td_priority)
723 			besttd = td;
724 	}
725 	MPASS(besttd != NULL);
726 	thread_lock(besttd);
727 	sleepq_resume_thread(sq, besttd, pri);
728 	thread_unlock(besttd);
729 }
730 
731 /*
732  * Resume all threads sleeping on a specified wait channel.
733  */
734 void
735 sleepq_broadcast(void *wchan, int flags, int pri, int queue)
736 {
737 	struct sleepqueue *sq;
738 	struct thread *td;
739 
740 	CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags);
741 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
742 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
743 	sq = sleepq_lookup(wchan);
744 	if (sq == NULL) {
745 		sleepq_release(wchan);
746 		return;
747 	}
748 	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
749 	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
750 
751 	/* Resume all blocked threads on the sleep queue. */
752 	while (!TAILQ_EMPTY(&sq->sq_blocked[queue])) {
753 		td = TAILQ_FIRST(&sq->sq_blocked[queue]);
754 		thread_lock(td);
755 		sleepq_resume_thread(sq, td, pri);
756 		thread_unlock(td);
757 	}
758 	sleepq_release(wchan);
759 }
760 
761 /*
762  * Time sleeping threads out.  When the timeout expires, the thread is
763  * removed from the sleep queue and made runnable if it is still asleep.
764  */
765 static void
766 sleepq_timeout(void *arg)
767 {
768 	struct sleepqueue_chain *sc;
769 	struct sleepqueue *sq;
770 	struct thread *td;
771 	void *wchan;
772 
773 	td = arg;
774 	CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)",
775 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
776 
777 	/*
778 	 * First, see if the thread is asleep and get the wait channel if
779 	 * it is.
780 	 */
781 	thread_lock(td);
782 	if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) {
783 		wchan = td->td_wchan;
784 		sc = SC_LOOKUP(wchan);
785 		MPASS(td->td_lock == &sc->sc_lock);
786 		sq = sleepq_lookup(wchan);
787 		MPASS(sq != NULL);
788 		td->td_flags |= TDF_TIMEOUT;
789 		sleepq_resume_thread(sq, td, -1);
790 		thread_unlock(td);
791 		return;
792 	}
793 	/*
794 	 * If the thread is on the SLEEPQ but not sleeping and we have it
795 	 * locked it must be in sleepq_catch_signals().  Let it know we've
796  	 * timedout here so it can remove itself.
797 	 */
798 	if (TD_ON_SLEEPQ(td)) {
799 		td->td_flags |= TDF_TIMEOUT | TDF_INTERRUPT;
800 		td->td_intrval = EWOULDBLOCK;
801 		thread_unlock(td);
802 		return;
803 	}
804 
805 	/*
806 	 * Now check for the edge cases.  First, if TDF_TIMEOUT is set,
807 	 * then the other thread has already yielded to us, so clear
808 	 * the flag and resume it.  If TDF_TIMEOUT is not set, then the
809 	 * we know that the other thread is not on a sleep queue, but it
810 	 * hasn't resumed execution yet.  In that case, set TDF_TIMOFAIL
811 	 * to let it know that the timeout has already run and doesn't
812 	 * need to be canceled.
813 	 */
814 	if (td->td_flags & TDF_TIMEOUT) {
815 		MPASS(TD_IS_SLEEPING(td));
816 		td->td_flags &= ~TDF_TIMEOUT;
817 		TD_CLR_SLEEPING(td);
818 		setrunnable(td);
819 	} else
820 		td->td_flags |= TDF_TIMOFAIL;
821 	thread_unlock(td);
822 }
823 
824 /*
825  * Resumes a specific thread from the sleep queue associated with a specific
826  * wait channel if it is on that queue.
827  */
828 void
829 sleepq_remove(struct thread *td, void *wchan)
830 {
831 	struct sleepqueue *sq;
832 
833 	/*
834 	 * Look up the sleep queue for this wait channel, then re-check
835 	 * that the thread is asleep on that channel, if it is not, then
836 	 * bail.
837 	 */
838 	MPASS(wchan != NULL);
839 	sleepq_lock(wchan);
840 	sq = sleepq_lookup(wchan);
841 	/*
842 	 * We can not lock the thread here as it may be sleeping on a
843 	 * different sleepq.  However, holding the sleepq lock for this
844 	 * wchan can guarantee that we do not miss a wakeup for this
845 	 * channel.  The asserts below will catch any false positives.
846 	 */
847 	if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) {
848 		sleepq_release(wchan);
849 		return;
850 	}
851 	/* Thread is asleep on sleep queue sq, so wake it up. */
852 	thread_lock(td);
853 	MPASS(sq != NULL);
854 	MPASS(td->td_wchan == wchan);
855 	sleepq_resume_thread(sq, td, -1);
856 	thread_unlock(td);
857 	sleepq_release(wchan);
858 }
859 
860 /*
861  * Abort a thread as if an interrupt had occurred.  Only abort
862  * interruptible waits (unfortunately it isn't safe to abort others).
863  */
864 void
865 sleepq_abort(struct thread *td, int intrval)
866 {
867 	struct sleepqueue *sq;
868 	void *wchan;
869 
870 	THREAD_LOCK_ASSERT(td, MA_OWNED);
871 	MPASS(TD_ON_SLEEPQ(td));
872 	MPASS(td->td_flags & TDF_SINTR);
873 	MPASS(intrval == EINTR || intrval == ERESTART);
874 
875 	/*
876 	 * If the TDF_TIMEOUT flag is set, just leave. A
877 	 * timeout is scheduled anyhow.
878 	 */
879 	if (td->td_flags & TDF_TIMEOUT)
880 		return;
881 
882 	CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)",
883 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
884 	td->td_intrval = intrval;
885 	td->td_flags |= TDF_SLEEPABORT;
886 	/*
887 	 * If the thread has not slept yet it will find the signal in
888 	 * sleepq_catch_signals() and call sleepq_resume_thread.  Otherwise
889 	 * we have to do it here.
890 	 */
891 	if (!TD_IS_SLEEPING(td))
892 		return;
893 	wchan = td->td_wchan;
894 	MPASS(wchan != NULL);
895 	sq = sleepq_lookup(wchan);
896 	MPASS(sq != NULL);
897 
898 	/* Thread is asleep on sleep queue sq, so wake it up. */
899 	sleepq_resume_thread(sq, td, -1);
900 }
901 
902 #ifdef DDB
903 DB_SHOW_COMMAND(sleepq, db_show_sleepqueue)
904 {
905 	struct sleepqueue_chain *sc;
906 	struct sleepqueue *sq;
907 #ifdef INVARIANTS
908 	struct lock_object *lock;
909 #endif
910 	struct thread *td;
911 	void *wchan;
912 	int i;
913 
914 	if (!have_addr)
915 		return;
916 
917 	/*
918 	 * First, see if there is an active sleep queue for the wait channel
919 	 * indicated by the address.
920 	 */
921 	wchan = (void *)addr;
922 	sc = SC_LOOKUP(wchan);
923 	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
924 		if (sq->sq_wchan == wchan)
925 			goto found;
926 
927 	/*
928 	 * Second, see if there is an active sleep queue at the address
929 	 * indicated.
930 	 */
931 	for (i = 0; i < SC_TABLESIZE; i++)
932 		LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) {
933 			if (sq == (struct sleepqueue *)addr)
934 				goto found;
935 		}
936 
937 	db_printf("Unable to locate a sleep queue via %p\n", (void *)addr);
938 	return;
939 found:
940 	db_printf("Wait channel: %p\n", sq->sq_wchan);
941 #ifdef INVARIANTS
942 	db_printf("Queue type: %d\n", sq->sq_type);
943 	if (sq->sq_lock) {
944 		lock = sq->sq_lock;
945 		db_printf("Associated Interlock: %p - (%s) %s\n", lock,
946 		    LOCK_CLASS(lock)->lc_name, lock->lo_name);
947 	}
948 #endif
949 	db_printf("Blocked threads:\n");
950 	for (i = 0; i < NR_SLEEPQS; i++) {
951 		db_printf("\nQueue[%d]:\n", i);
952 		if (TAILQ_EMPTY(&sq->sq_blocked[i]))
953 			db_printf("\tempty\n");
954 		else
955 			TAILQ_FOREACH(td, &sq->sq_blocked[0],
956 				      td_slpq) {
957 				db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td,
958 					  td->td_tid, td->td_proc->p_pid,
959 					  td->td_name[i] != '\0' ? td->td_name :
960 					  td->td_name);
961 			}
962 	}
963 }
964 
965 /* Alias 'show sleepqueue' to 'show sleepq'. */
966 DB_SET(sleepqueue, db_show_sleepqueue, db_show_cmd_set, 0, NULL);
967 #endif
968