1 /*- 2 * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 /* 28 * Implementation of sleep queues used to hold queue of threads blocked on 29 * a wait channel. Sleep queues are different from turnstiles in that wait 30 * channels are not owned by anyone, so there is no priority propagation. 31 * Sleep queues can also provide a timeout and can also be interrupted by 32 * signals. That said, there are several similarities between the turnstile 33 * and sleep queue implementations. (Note: turnstiles were implemented 34 * first.) For example, both use a hash table of the same size where each 35 * bucket is referred to as a "chain" that contains both a spin lock and 36 * a linked list of queues. An individual queue is located by using a hash 37 * to pick a chain, locking the chain, and then walking the chain searching 38 * for the queue. This means that a wait channel object does not need to 39 * embed its queue head just as locks do not embed their turnstile queue 40 * head. Threads also carry around a sleep queue that they lend to the 41 * wait channel when blocking. Just as in turnstiles, the queue includes 42 * a free list of the sleep queues of other threads blocked on the same 43 * wait channel in the case of multiple waiters. 44 * 45 * Some additional functionality provided by sleep queues include the 46 * ability to set a timeout. The timeout is managed using a per-thread 47 * callout that resumes a thread if it is asleep. A thread may also 48 * catch signals while it is asleep (aka an interruptible sleep). The 49 * signal code uses sleepq_abort() to interrupt a sleeping thread. Finally, 50 * sleep queues also provide some extra assertions. One is not allowed to 51 * mix the sleep/wakeup and cv APIs for a given wait channel. Also, one 52 * must consistently use the same lock to synchronize with a wait channel, 53 * though this check is currently only a warning for sleep/wakeup due to 54 * pre-existing abuse of that API. The same lock must also be held when 55 * awakening threads, though that is currently only enforced for condition 56 * variables. 57 */ 58 59 #include <sys/cdefs.h> 60 __FBSDID("$FreeBSD$"); 61 62 #include "opt_sleepqueue_profiling.h" 63 #include "opt_ddb.h" 64 #include "opt_sched.h" 65 #include "opt_stack.h" 66 67 #include <sys/param.h> 68 #include <sys/systm.h> 69 #include <sys/lock.h> 70 #include <sys/kernel.h> 71 #include <sys/ktr.h> 72 #include <sys/mutex.h> 73 #include <sys/proc.h> 74 #include <sys/sbuf.h> 75 #include <sys/sched.h> 76 #include <sys/sdt.h> 77 #include <sys/signalvar.h> 78 #include <sys/sleepqueue.h> 79 #include <sys/stack.h> 80 #include <sys/sysctl.h> 81 82 #include <vm/uma.h> 83 84 #ifdef DDB 85 #include <ddb/ddb.h> 86 #endif 87 88 89 /* 90 * Constants for the hash table of sleep queue chains. 91 * SC_TABLESIZE must be a power of two for SC_MASK to work properly. 92 */ 93 #define SC_TABLESIZE 256 /* Must be power of 2. */ 94 #define SC_MASK (SC_TABLESIZE - 1) 95 #define SC_SHIFT 8 96 #define SC_HASH(wc) ((((uintptr_t)(wc) >> SC_SHIFT) ^ (uintptr_t)(wc)) & \ 97 SC_MASK) 98 #define SC_LOOKUP(wc) &sleepq_chains[SC_HASH(wc)] 99 #define NR_SLEEPQS 2 100 /* 101 * There are two different lists of sleep queues. Both lists are connected 102 * via the sq_hash entries. The first list is the sleep queue chain list 103 * that a sleep queue is on when it is attached to a wait channel. The 104 * second list is the free list hung off of a sleep queue that is attached 105 * to a wait channel. 106 * 107 * Each sleep queue also contains the wait channel it is attached to, the 108 * list of threads blocked on that wait channel, flags specific to the 109 * wait channel, and the lock used to synchronize with a wait channel. 110 * The flags are used to catch mismatches between the various consumers 111 * of the sleep queue API (e.g. sleep/wakeup and condition variables). 112 * The lock pointer is only used when invariants are enabled for various 113 * debugging checks. 114 * 115 * Locking key: 116 * c - sleep queue chain lock 117 */ 118 struct sleepqueue { 119 TAILQ_HEAD(, thread) sq_blocked[NR_SLEEPQS]; /* (c) Blocked threads. */ 120 u_int sq_blockedcnt[NR_SLEEPQS]; /* (c) N. of blocked threads. */ 121 LIST_ENTRY(sleepqueue) sq_hash; /* (c) Chain and free list. */ 122 LIST_HEAD(, sleepqueue) sq_free; /* (c) Free queues. */ 123 void *sq_wchan; /* (c) Wait channel. */ 124 int sq_type; /* (c) Queue type. */ 125 #ifdef INVARIANTS 126 struct lock_object *sq_lock; /* (c) Associated lock. */ 127 #endif 128 }; 129 130 struct sleepqueue_chain { 131 LIST_HEAD(, sleepqueue) sc_queues; /* List of sleep queues. */ 132 struct mtx sc_lock; /* Spin lock for this chain. */ 133 #ifdef SLEEPQUEUE_PROFILING 134 u_int sc_depth; /* Length of sc_queues. */ 135 u_int sc_max_depth; /* Max length of sc_queues. */ 136 #endif 137 }; 138 139 #ifdef SLEEPQUEUE_PROFILING 140 u_int sleepq_max_depth; 141 static SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling"); 142 static SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0, 143 "sleepq chain stats"); 144 SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth, 145 0, "maxmimum depth achieved of a single chain"); 146 147 static void sleepq_profile(const char *wmesg); 148 static int prof_enabled; 149 #endif 150 static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE]; 151 static uma_zone_t sleepq_zone; 152 153 /* 154 * Prototypes for non-exported routines. 155 */ 156 static int sleepq_catch_signals(void *wchan, int pri); 157 static int sleepq_check_signals(void); 158 static int sleepq_check_timeout(void); 159 #ifdef INVARIANTS 160 static void sleepq_dtor(void *mem, int size, void *arg); 161 #endif 162 static int sleepq_init(void *mem, int size, int flags); 163 static int sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, 164 int pri); 165 static void sleepq_switch(void *wchan, int pri); 166 static void sleepq_timeout(void *arg); 167 168 SDT_PROBE_DECLARE(sched, , , sleep); 169 SDT_PROBE_DECLARE(sched, , , wakeup); 170 171 /* 172 * Initialize SLEEPQUEUE_PROFILING specific sysctl nodes. 173 * Note that it must happen after sleepinit() has been fully executed, so 174 * it must happen after SI_SUB_KMEM SYSINIT() subsystem setup. 175 */ 176 #ifdef SLEEPQUEUE_PROFILING 177 static void 178 init_sleepqueue_profiling(void) 179 { 180 char chain_name[10]; 181 struct sysctl_oid *chain_oid; 182 u_int i; 183 184 for (i = 0; i < SC_TABLESIZE; i++) { 185 snprintf(chain_name, sizeof(chain_name), "%u", i); 186 chain_oid = SYSCTL_ADD_NODE(NULL, 187 SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO, 188 chain_name, CTLFLAG_RD, NULL, "sleepq chain stats"); 189 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO, 190 "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL); 191 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO, 192 "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0, 193 NULL); 194 } 195 } 196 197 SYSINIT(sleepqueue_profiling, SI_SUB_LOCK, SI_ORDER_ANY, 198 init_sleepqueue_profiling, NULL); 199 #endif 200 201 /* 202 * Early initialization of sleep queues that is called from the sleepinit() 203 * SYSINIT. 204 */ 205 void 206 init_sleepqueues(void) 207 { 208 int i; 209 210 for (i = 0; i < SC_TABLESIZE; i++) { 211 LIST_INIT(&sleepq_chains[i].sc_queues); 212 mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL, 213 MTX_SPIN | MTX_RECURSE); 214 } 215 sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue), 216 #ifdef INVARIANTS 217 NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0); 218 #else 219 NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0); 220 #endif 221 222 thread0.td_sleepqueue = sleepq_alloc(); 223 } 224 225 /* 226 * Get a sleep queue for a new thread. 227 */ 228 struct sleepqueue * 229 sleepq_alloc(void) 230 { 231 232 return (uma_zalloc(sleepq_zone, M_WAITOK)); 233 } 234 235 /* 236 * Free a sleep queue when a thread is destroyed. 237 */ 238 void 239 sleepq_free(struct sleepqueue *sq) 240 { 241 242 uma_zfree(sleepq_zone, sq); 243 } 244 245 /* 246 * Lock the sleep queue chain associated with the specified wait channel. 247 */ 248 void 249 sleepq_lock(void *wchan) 250 { 251 struct sleepqueue_chain *sc; 252 253 sc = SC_LOOKUP(wchan); 254 mtx_lock_spin(&sc->sc_lock); 255 } 256 257 /* 258 * Look up the sleep queue associated with a given wait channel in the hash 259 * table locking the associated sleep queue chain. If no queue is found in 260 * the table, NULL is returned. 261 */ 262 struct sleepqueue * 263 sleepq_lookup(void *wchan) 264 { 265 struct sleepqueue_chain *sc; 266 struct sleepqueue *sq; 267 268 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 269 sc = SC_LOOKUP(wchan); 270 mtx_assert(&sc->sc_lock, MA_OWNED); 271 LIST_FOREACH(sq, &sc->sc_queues, sq_hash) 272 if (sq->sq_wchan == wchan) 273 return (sq); 274 return (NULL); 275 } 276 277 /* 278 * Unlock the sleep queue chain associated with a given wait channel. 279 */ 280 void 281 sleepq_release(void *wchan) 282 { 283 struct sleepqueue_chain *sc; 284 285 sc = SC_LOOKUP(wchan); 286 mtx_unlock_spin(&sc->sc_lock); 287 } 288 289 /* 290 * Places the current thread on the sleep queue for the specified wait 291 * channel. If INVARIANTS is enabled, then it associates the passed in 292 * lock with the sleepq to make sure it is held when that sleep queue is 293 * woken up. 294 */ 295 void 296 sleepq_add(void *wchan, struct lock_object *lock, const char *wmesg, int flags, 297 int queue) 298 { 299 struct sleepqueue_chain *sc; 300 struct sleepqueue *sq; 301 struct thread *td; 302 303 td = curthread; 304 sc = SC_LOOKUP(wchan); 305 mtx_assert(&sc->sc_lock, MA_OWNED); 306 MPASS(td->td_sleepqueue != NULL); 307 MPASS(wchan != NULL); 308 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 309 310 /* If this thread is not allowed to sleep, die a horrible death. */ 311 KASSERT(td->td_no_sleeping == 0, 312 ("%s: td %p to sleep on wchan %p with sleeping prohibited", 313 __func__, td, wchan)); 314 315 /* Look up the sleep queue associated with the wait channel 'wchan'. */ 316 sq = sleepq_lookup(wchan); 317 318 /* 319 * If the wait channel does not already have a sleep queue, use 320 * this thread's sleep queue. Otherwise, insert the current thread 321 * into the sleep queue already in use by this wait channel. 322 */ 323 if (sq == NULL) { 324 #ifdef INVARIANTS 325 int i; 326 327 sq = td->td_sleepqueue; 328 for (i = 0; i < NR_SLEEPQS; i++) { 329 KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]), 330 ("thread's sleep queue %d is not empty", i)); 331 KASSERT(sq->sq_blockedcnt[i] == 0, 332 ("thread's sleep queue %d count mismatches", i)); 333 } 334 KASSERT(LIST_EMPTY(&sq->sq_free), 335 ("thread's sleep queue has a non-empty free list")); 336 KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer")); 337 sq->sq_lock = lock; 338 #endif 339 #ifdef SLEEPQUEUE_PROFILING 340 sc->sc_depth++; 341 if (sc->sc_depth > sc->sc_max_depth) { 342 sc->sc_max_depth = sc->sc_depth; 343 if (sc->sc_max_depth > sleepq_max_depth) 344 sleepq_max_depth = sc->sc_max_depth; 345 } 346 #endif 347 sq = td->td_sleepqueue; 348 LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash); 349 sq->sq_wchan = wchan; 350 sq->sq_type = flags & SLEEPQ_TYPE; 351 } else { 352 MPASS(wchan == sq->sq_wchan); 353 MPASS(lock == sq->sq_lock); 354 MPASS((flags & SLEEPQ_TYPE) == sq->sq_type); 355 LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash); 356 } 357 thread_lock(td); 358 TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq); 359 sq->sq_blockedcnt[queue]++; 360 td->td_sleepqueue = NULL; 361 td->td_sqqueue = queue; 362 td->td_wchan = wchan; 363 td->td_wmesg = wmesg; 364 if (flags & SLEEPQ_INTERRUPTIBLE) { 365 td->td_flags |= TDF_SINTR; 366 td->td_flags &= ~TDF_SLEEPABORT; 367 } 368 thread_unlock(td); 369 } 370 371 /* 372 * Sets a timeout that will remove the current thread from the specified 373 * sleep queue after timo ticks if the thread has not already been awakened. 374 */ 375 void 376 sleepq_set_timeout_sbt(void *wchan, sbintime_t sbt, sbintime_t pr, 377 int flags) 378 { 379 struct sleepqueue_chain *sc; 380 struct thread *td; 381 sbintime_t pr1; 382 383 td = curthread; 384 sc = SC_LOOKUP(wchan); 385 mtx_assert(&sc->sc_lock, MA_OWNED); 386 MPASS(TD_ON_SLEEPQ(td)); 387 MPASS(td->td_sleepqueue == NULL); 388 MPASS(wchan != NULL); 389 if (cold && td == &thread0) 390 panic("timed sleep before timers are working"); 391 KASSERT(td->td_sleeptimo == 0, ("td %d %p td_sleeptimo %jx", 392 td->td_tid, td, (uintmax_t)td->td_sleeptimo)); 393 thread_lock(td); 394 callout_when(sbt, pr, flags, &td->td_sleeptimo, &pr1); 395 thread_unlock(td); 396 callout_reset_sbt_on(&td->td_slpcallout, td->td_sleeptimo, pr1, 397 sleepq_timeout, td, PCPU_GET(cpuid), flags | C_PRECALC | 398 C_DIRECT_EXEC); 399 } 400 401 /* 402 * Return the number of actual sleepers for the specified queue. 403 */ 404 u_int 405 sleepq_sleepcnt(void *wchan, int queue) 406 { 407 struct sleepqueue *sq; 408 409 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 410 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 411 sq = sleepq_lookup(wchan); 412 if (sq == NULL) 413 return (0); 414 return (sq->sq_blockedcnt[queue]); 415 } 416 417 /* 418 * Marks the pending sleep of the current thread as interruptible and 419 * makes an initial check for pending signals before putting a thread 420 * to sleep. Enters and exits with the thread lock held. Thread lock 421 * may have transitioned from the sleepq lock to a run lock. 422 */ 423 static int 424 sleepq_catch_signals(void *wchan, int pri) 425 { 426 struct sleepqueue_chain *sc; 427 struct sleepqueue *sq; 428 struct thread *td; 429 struct proc *p; 430 struct sigacts *ps; 431 int sig, ret; 432 433 ret = 0; 434 td = curthread; 435 p = curproc; 436 sc = SC_LOOKUP(wchan); 437 mtx_assert(&sc->sc_lock, MA_OWNED); 438 MPASS(wchan != NULL); 439 if ((td->td_pflags & TDP_WAKEUP) != 0) { 440 td->td_pflags &= ~TDP_WAKEUP; 441 ret = EINTR; 442 thread_lock(td); 443 goto out; 444 } 445 446 /* 447 * See if there are any pending signals or suspension requests for this 448 * thread. If not, we can switch immediately. 449 */ 450 thread_lock(td); 451 if ((td->td_flags & (TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK)) != 0) { 452 thread_unlock(td); 453 mtx_unlock_spin(&sc->sc_lock); 454 CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)", 455 (void *)td, (long)p->p_pid, td->td_name); 456 PROC_LOCK(p); 457 /* 458 * Check for suspension first. Checking for signals and then 459 * suspending could result in a missed signal, since a signal 460 * can be delivered while this thread is suspended. 461 */ 462 if ((td->td_flags & TDF_NEEDSUSPCHK) != 0) { 463 ret = thread_suspend_check(1); 464 MPASS(ret == 0 || ret == EINTR || ret == ERESTART); 465 if (ret != 0) { 466 PROC_UNLOCK(p); 467 mtx_lock_spin(&sc->sc_lock); 468 thread_lock(td); 469 goto out; 470 } 471 } 472 if ((td->td_flags & TDF_NEEDSIGCHK) != 0) { 473 ps = p->p_sigacts; 474 mtx_lock(&ps->ps_mtx); 475 sig = cursig(td); 476 if (sig == -1) { 477 mtx_unlock(&ps->ps_mtx); 478 KASSERT((td->td_flags & TDF_SBDRY) != 0, 479 ("lost TDF_SBDRY")); 480 KASSERT(TD_SBDRY_INTR(td), 481 ("lost TDF_SERESTART of TDF_SEINTR")); 482 KASSERT((td->td_flags & 483 (TDF_SEINTR | TDF_SERESTART)) != 484 (TDF_SEINTR | TDF_SERESTART), 485 ("both TDF_SEINTR and TDF_SERESTART")); 486 ret = TD_SBDRY_ERRNO(td); 487 } else if (sig != 0) { 488 ret = SIGISMEMBER(ps->ps_sigintr, sig) ? 489 EINTR : ERESTART; 490 mtx_unlock(&ps->ps_mtx); 491 } else { 492 mtx_unlock(&ps->ps_mtx); 493 } 494 } 495 /* 496 * Lock the per-process spinlock prior to dropping the PROC_LOCK 497 * to avoid a signal delivery race. PROC_LOCK, PROC_SLOCK, and 498 * thread_lock() are currently held in tdsendsignal(). 499 */ 500 PROC_SLOCK(p); 501 mtx_lock_spin(&sc->sc_lock); 502 PROC_UNLOCK(p); 503 thread_lock(td); 504 PROC_SUNLOCK(p); 505 } 506 if (ret == 0) { 507 sleepq_switch(wchan, pri); 508 return (0); 509 } 510 out: 511 /* 512 * There were pending signals and this thread is still 513 * on the sleep queue, remove it from the sleep queue. 514 */ 515 if (TD_ON_SLEEPQ(td)) { 516 sq = sleepq_lookup(wchan); 517 if (sleepq_resume_thread(sq, td, 0)) { 518 #ifdef INVARIANTS 519 /* 520 * This thread hasn't gone to sleep yet, so it 521 * should not be swapped out. 522 */ 523 panic("not waking up swapper"); 524 #endif 525 } 526 } 527 mtx_unlock_spin(&sc->sc_lock); 528 MPASS(td->td_lock != &sc->sc_lock); 529 return (ret); 530 } 531 532 /* 533 * Switches to another thread if we are still asleep on a sleep queue. 534 * Returns with thread lock. 535 */ 536 static void 537 sleepq_switch(void *wchan, int pri) 538 { 539 struct sleepqueue_chain *sc; 540 struct sleepqueue *sq; 541 struct thread *td; 542 543 td = curthread; 544 sc = SC_LOOKUP(wchan); 545 mtx_assert(&sc->sc_lock, MA_OWNED); 546 THREAD_LOCK_ASSERT(td, MA_OWNED); 547 548 /* 549 * If we have a sleep queue, then we've already been woken up, so 550 * just return. 551 */ 552 if (td->td_sleepqueue != NULL) { 553 mtx_unlock_spin(&sc->sc_lock); 554 return; 555 } 556 557 /* 558 * If TDF_TIMEOUT is set, then our sleep has been timed out 559 * already but we are still on the sleep queue, so dequeue the 560 * thread and return. 561 */ 562 if (td->td_flags & TDF_TIMEOUT) { 563 MPASS(TD_ON_SLEEPQ(td)); 564 sq = sleepq_lookup(wchan); 565 if (sleepq_resume_thread(sq, td, 0)) { 566 #ifdef INVARIANTS 567 /* 568 * This thread hasn't gone to sleep yet, so it 569 * should not be swapped out. 570 */ 571 panic("not waking up swapper"); 572 #endif 573 } 574 mtx_unlock_spin(&sc->sc_lock); 575 return; 576 } 577 #ifdef SLEEPQUEUE_PROFILING 578 if (prof_enabled) 579 sleepq_profile(td->td_wmesg); 580 #endif 581 MPASS(td->td_sleepqueue == NULL); 582 sched_sleep(td, pri); 583 thread_lock_set(td, &sc->sc_lock); 584 SDT_PROBE0(sched, , , sleep); 585 TD_SET_SLEEPING(td); 586 mi_switch(SW_VOL | SWT_SLEEPQ, NULL); 587 KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING")); 588 CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)", 589 (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name); 590 } 591 592 /* 593 * Check to see if we timed out. 594 */ 595 static int 596 sleepq_check_timeout(void) 597 { 598 struct thread *td; 599 int res; 600 601 td = curthread; 602 THREAD_LOCK_ASSERT(td, MA_OWNED); 603 604 /* 605 * If TDF_TIMEOUT is set, we timed out. But recheck 606 * td_sleeptimo anyway. 607 */ 608 res = 0; 609 if (td->td_sleeptimo != 0) { 610 if (td->td_sleeptimo <= sbinuptime()) 611 res = EWOULDBLOCK; 612 td->td_sleeptimo = 0; 613 } 614 if (td->td_flags & TDF_TIMEOUT) 615 td->td_flags &= ~TDF_TIMEOUT; 616 else 617 /* 618 * We ignore the situation where timeout subsystem was 619 * unable to stop our callout. The struct thread is 620 * type-stable, the callout will use the correct 621 * memory when running. The checks of the 622 * td_sleeptimo value in this function and in 623 * sleepq_timeout() ensure that the thread does not 624 * get spurious wakeups, even if the callout was reset 625 * or thread reused. 626 */ 627 callout_stop(&td->td_slpcallout); 628 return (res); 629 } 630 631 /* 632 * Check to see if we were awoken by a signal. 633 */ 634 static int 635 sleepq_check_signals(void) 636 { 637 struct thread *td; 638 639 td = curthread; 640 THREAD_LOCK_ASSERT(td, MA_OWNED); 641 642 /* We are no longer in an interruptible sleep. */ 643 if (td->td_flags & TDF_SINTR) 644 td->td_flags &= ~TDF_SINTR; 645 646 if (td->td_flags & TDF_SLEEPABORT) { 647 td->td_flags &= ~TDF_SLEEPABORT; 648 return (td->td_intrval); 649 } 650 651 return (0); 652 } 653 654 /* 655 * Block the current thread until it is awakened from its sleep queue. 656 */ 657 void 658 sleepq_wait(void *wchan, int pri) 659 { 660 struct thread *td; 661 662 td = curthread; 663 MPASS(!(td->td_flags & TDF_SINTR)); 664 thread_lock(td); 665 sleepq_switch(wchan, pri); 666 thread_unlock(td); 667 } 668 669 /* 670 * Block the current thread until it is awakened from its sleep queue 671 * or it is interrupted by a signal. 672 */ 673 int 674 sleepq_wait_sig(void *wchan, int pri) 675 { 676 int rcatch; 677 int rval; 678 679 rcatch = sleepq_catch_signals(wchan, pri); 680 rval = sleepq_check_signals(); 681 thread_unlock(curthread); 682 if (rcatch) 683 return (rcatch); 684 return (rval); 685 } 686 687 /* 688 * Block the current thread until it is awakened from its sleep queue 689 * or it times out while waiting. 690 */ 691 int 692 sleepq_timedwait(void *wchan, int pri) 693 { 694 struct thread *td; 695 int rval; 696 697 td = curthread; 698 MPASS(!(td->td_flags & TDF_SINTR)); 699 thread_lock(td); 700 sleepq_switch(wchan, pri); 701 rval = sleepq_check_timeout(); 702 thread_unlock(td); 703 704 return (rval); 705 } 706 707 /* 708 * Block the current thread until it is awakened from its sleep queue, 709 * it is interrupted by a signal, or it times out waiting to be awakened. 710 */ 711 int 712 sleepq_timedwait_sig(void *wchan, int pri) 713 { 714 int rcatch, rvalt, rvals; 715 716 rcatch = sleepq_catch_signals(wchan, pri); 717 rvalt = sleepq_check_timeout(); 718 rvals = sleepq_check_signals(); 719 thread_unlock(curthread); 720 if (rcatch) 721 return (rcatch); 722 if (rvals) 723 return (rvals); 724 return (rvalt); 725 } 726 727 /* 728 * Returns the type of sleepqueue given a waitchannel. 729 */ 730 int 731 sleepq_type(void *wchan) 732 { 733 struct sleepqueue *sq; 734 int type; 735 736 MPASS(wchan != NULL); 737 738 sleepq_lock(wchan); 739 sq = sleepq_lookup(wchan); 740 if (sq == NULL) { 741 sleepq_release(wchan); 742 return (-1); 743 } 744 type = sq->sq_type; 745 sleepq_release(wchan); 746 return (type); 747 } 748 749 /* 750 * Removes a thread from a sleep queue and makes it 751 * runnable. 752 */ 753 static int 754 sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri) 755 { 756 struct sleepqueue_chain *sc; 757 758 MPASS(td != NULL); 759 MPASS(sq->sq_wchan != NULL); 760 MPASS(td->td_wchan == sq->sq_wchan); 761 MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0); 762 THREAD_LOCK_ASSERT(td, MA_OWNED); 763 sc = SC_LOOKUP(sq->sq_wchan); 764 mtx_assert(&sc->sc_lock, MA_OWNED); 765 766 SDT_PROBE2(sched, , , wakeup, td, td->td_proc); 767 768 /* Remove the thread from the queue. */ 769 sq->sq_blockedcnt[td->td_sqqueue]--; 770 TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq); 771 772 /* 773 * Get a sleep queue for this thread. If this is the last waiter, 774 * use the queue itself and take it out of the chain, otherwise, 775 * remove a queue from the free list. 776 */ 777 if (LIST_EMPTY(&sq->sq_free)) { 778 td->td_sleepqueue = sq; 779 #ifdef INVARIANTS 780 sq->sq_wchan = NULL; 781 #endif 782 #ifdef SLEEPQUEUE_PROFILING 783 sc->sc_depth--; 784 #endif 785 } else 786 td->td_sleepqueue = LIST_FIRST(&sq->sq_free); 787 LIST_REMOVE(td->td_sleepqueue, sq_hash); 788 789 td->td_wmesg = NULL; 790 td->td_wchan = NULL; 791 td->td_flags &= ~TDF_SINTR; 792 793 CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)", 794 (void *)td, (long)td->td_proc->p_pid, td->td_name); 795 796 /* Adjust priority if requested. */ 797 MPASS(pri == 0 || (pri >= PRI_MIN && pri <= PRI_MAX)); 798 if (pri != 0 && td->td_priority > pri && 799 PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) 800 sched_prio(td, pri); 801 802 /* 803 * Note that thread td might not be sleeping if it is running 804 * sleepq_catch_signals() on another CPU or is blocked on its 805 * proc lock to check signals. There's no need to mark the 806 * thread runnable in that case. 807 */ 808 if (TD_IS_SLEEPING(td)) { 809 TD_CLR_SLEEPING(td); 810 return (setrunnable(td)); 811 } 812 return (0); 813 } 814 815 #ifdef INVARIANTS 816 /* 817 * UMA zone item deallocator. 818 */ 819 static void 820 sleepq_dtor(void *mem, int size, void *arg) 821 { 822 struct sleepqueue *sq; 823 int i; 824 825 sq = mem; 826 for (i = 0; i < NR_SLEEPQS; i++) { 827 MPASS(TAILQ_EMPTY(&sq->sq_blocked[i])); 828 MPASS(sq->sq_blockedcnt[i] == 0); 829 } 830 } 831 #endif 832 833 /* 834 * UMA zone item initializer. 835 */ 836 static int 837 sleepq_init(void *mem, int size, int flags) 838 { 839 struct sleepqueue *sq; 840 int i; 841 842 bzero(mem, size); 843 sq = mem; 844 for (i = 0; i < NR_SLEEPQS; i++) { 845 TAILQ_INIT(&sq->sq_blocked[i]); 846 sq->sq_blockedcnt[i] = 0; 847 } 848 LIST_INIT(&sq->sq_free); 849 return (0); 850 } 851 852 /* 853 * Find the highest priority thread sleeping on a wait channel and resume it. 854 */ 855 int 856 sleepq_signal(void *wchan, int flags, int pri, int queue) 857 { 858 struct sleepqueue *sq; 859 struct thread *td, *besttd; 860 int wakeup_swapper; 861 862 CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags); 863 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 864 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 865 sq = sleepq_lookup(wchan); 866 if (sq == NULL) 867 return (0); 868 KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE), 869 ("%s: mismatch between sleep/wakeup and cv_*", __func__)); 870 871 /* 872 * Find the highest priority thread on the queue. If there is a 873 * tie, use the thread that first appears in the queue as it has 874 * been sleeping the longest since threads are always added to 875 * the tail of sleep queues. 876 */ 877 besttd = TAILQ_FIRST(&sq->sq_blocked[queue]); 878 TAILQ_FOREACH(td, &sq->sq_blocked[queue], td_slpq) { 879 if (td->td_priority < besttd->td_priority) 880 besttd = td; 881 } 882 MPASS(besttd != NULL); 883 thread_lock(besttd); 884 wakeup_swapper = sleepq_resume_thread(sq, besttd, pri); 885 thread_unlock(besttd); 886 return (wakeup_swapper); 887 } 888 889 /* 890 * Resume all threads sleeping on a specified wait channel. 891 */ 892 int 893 sleepq_broadcast(void *wchan, int flags, int pri, int queue) 894 { 895 struct sleepqueue *sq; 896 struct thread *td, *tdn; 897 int wakeup_swapper; 898 899 CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags); 900 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 901 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 902 sq = sleepq_lookup(wchan); 903 if (sq == NULL) 904 return (0); 905 KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE), 906 ("%s: mismatch between sleep/wakeup and cv_*", __func__)); 907 908 /* 909 * Resume all blocked threads on the sleep queue. The last thread will 910 * be given ownership of sq and may re-enqueue itself before 911 * sleepq_resume_thread() returns, so we must cache the "next" queue 912 * item at the beginning of the final iteration. 913 */ 914 wakeup_swapper = 0; 915 TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, tdn) { 916 thread_lock(td); 917 wakeup_swapper |= sleepq_resume_thread(sq, td, pri); 918 thread_unlock(td); 919 } 920 return (wakeup_swapper); 921 } 922 923 /* 924 * Time sleeping threads out. When the timeout expires, the thread is 925 * removed from the sleep queue and made runnable if it is still asleep. 926 */ 927 static void 928 sleepq_timeout(void *arg) 929 { 930 struct sleepqueue_chain *sc; 931 struct sleepqueue *sq; 932 struct thread *td; 933 void *wchan; 934 int wakeup_swapper; 935 936 td = arg; 937 wakeup_swapper = 0; 938 CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)", 939 (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name); 940 941 thread_lock(td); 942 943 if (td->td_sleeptimo > sbinuptime() || td->td_sleeptimo == 0) { 944 /* 945 * The thread does not want a timeout (yet). 946 */ 947 } else if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) { 948 /* 949 * See if the thread is asleep and get the wait 950 * channel if it is. 951 */ 952 wchan = td->td_wchan; 953 sc = SC_LOOKUP(wchan); 954 THREAD_LOCKPTR_ASSERT(td, &sc->sc_lock); 955 sq = sleepq_lookup(wchan); 956 MPASS(sq != NULL); 957 td->td_flags |= TDF_TIMEOUT; 958 wakeup_swapper = sleepq_resume_thread(sq, td, 0); 959 } else if (TD_ON_SLEEPQ(td)) { 960 /* 961 * If the thread is on the SLEEPQ but isn't sleeping 962 * yet, it can either be on another CPU in between 963 * sleepq_add() and one of the sleepq_*wait*() 964 * routines or it can be in sleepq_catch_signals(). 965 */ 966 td->td_flags |= TDF_TIMEOUT; 967 } 968 969 thread_unlock(td); 970 if (wakeup_swapper) 971 kick_proc0(); 972 } 973 974 /* 975 * Resumes a specific thread from the sleep queue associated with a specific 976 * wait channel if it is on that queue. 977 */ 978 void 979 sleepq_remove(struct thread *td, void *wchan) 980 { 981 struct sleepqueue *sq; 982 int wakeup_swapper; 983 984 /* 985 * Look up the sleep queue for this wait channel, then re-check 986 * that the thread is asleep on that channel, if it is not, then 987 * bail. 988 */ 989 MPASS(wchan != NULL); 990 sleepq_lock(wchan); 991 sq = sleepq_lookup(wchan); 992 /* 993 * We can not lock the thread here as it may be sleeping on a 994 * different sleepq. However, holding the sleepq lock for this 995 * wchan can guarantee that we do not miss a wakeup for this 996 * channel. The asserts below will catch any false positives. 997 */ 998 if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) { 999 sleepq_release(wchan); 1000 return; 1001 } 1002 /* Thread is asleep on sleep queue sq, so wake it up. */ 1003 thread_lock(td); 1004 MPASS(sq != NULL); 1005 MPASS(td->td_wchan == wchan); 1006 wakeup_swapper = sleepq_resume_thread(sq, td, 0); 1007 thread_unlock(td); 1008 sleepq_release(wchan); 1009 if (wakeup_swapper) 1010 kick_proc0(); 1011 } 1012 1013 /* 1014 * Abort a thread as if an interrupt had occurred. Only abort 1015 * interruptible waits (unfortunately it isn't safe to abort others). 1016 */ 1017 int 1018 sleepq_abort(struct thread *td, int intrval) 1019 { 1020 struct sleepqueue *sq; 1021 void *wchan; 1022 1023 THREAD_LOCK_ASSERT(td, MA_OWNED); 1024 MPASS(TD_ON_SLEEPQ(td)); 1025 MPASS(td->td_flags & TDF_SINTR); 1026 MPASS(intrval == EINTR || intrval == ERESTART); 1027 1028 /* 1029 * If the TDF_TIMEOUT flag is set, just leave. A 1030 * timeout is scheduled anyhow. 1031 */ 1032 if (td->td_flags & TDF_TIMEOUT) 1033 return (0); 1034 1035 CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)", 1036 (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name); 1037 td->td_intrval = intrval; 1038 td->td_flags |= TDF_SLEEPABORT; 1039 /* 1040 * If the thread has not slept yet it will find the signal in 1041 * sleepq_catch_signals() and call sleepq_resume_thread. Otherwise 1042 * we have to do it here. 1043 */ 1044 if (!TD_IS_SLEEPING(td)) 1045 return (0); 1046 wchan = td->td_wchan; 1047 MPASS(wchan != NULL); 1048 sq = sleepq_lookup(wchan); 1049 MPASS(sq != NULL); 1050 1051 /* Thread is asleep on sleep queue sq, so wake it up. */ 1052 return (sleepq_resume_thread(sq, td, 0)); 1053 } 1054 1055 /* 1056 * Prints the stacks of all threads presently sleeping on wchan/queue to 1057 * the sbuf sb. Sets count_stacks_printed to the number of stacks actually 1058 * printed. Typically, this will equal the number of threads sleeping on the 1059 * queue, but may be less if sb overflowed before all stacks were printed. 1060 */ 1061 #ifdef STACK 1062 int 1063 sleepq_sbuf_print_stacks(struct sbuf *sb, void *wchan, int queue, 1064 int *count_stacks_printed) 1065 { 1066 struct thread *td, *td_next; 1067 struct sleepqueue *sq; 1068 struct stack **st; 1069 struct sbuf **td_infos; 1070 int i, stack_idx, error, stacks_to_allocate; 1071 bool finished, partial_print; 1072 1073 error = 0; 1074 finished = false; 1075 partial_print = false; 1076 1077 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 1078 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 1079 1080 stacks_to_allocate = 10; 1081 for (i = 0; i < 3 && !finished ; i++) { 1082 /* We cannot malloc while holding the queue's spinlock, so 1083 * we do our mallocs now, and hope it is enough. If it 1084 * isn't, we will free these, drop the lock, malloc more, 1085 * and try again, up to a point. After that point we will 1086 * give up and report ENOMEM. We also cannot write to sb 1087 * during this time since the client may have set the 1088 * SBUF_AUTOEXTEND flag on their sbuf, which could cause a 1089 * malloc as we print to it. So we defer actually printing 1090 * to sb until after we drop the spinlock. 1091 */ 1092 1093 /* Where we will store the stacks. */ 1094 st = malloc(sizeof(struct stack *) * stacks_to_allocate, 1095 M_TEMP, M_WAITOK); 1096 for (stack_idx = 0; stack_idx < stacks_to_allocate; 1097 stack_idx++) 1098 st[stack_idx] = stack_create(); 1099 1100 /* Where we will store the td name, tid, etc. */ 1101 td_infos = malloc(sizeof(struct sbuf *) * stacks_to_allocate, 1102 M_TEMP, M_WAITOK); 1103 for (stack_idx = 0; stack_idx < stacks_to_allocate; 1104 stack_idx++) 1105 td_infos[stack_idx] = sbuf_new(NULL, NULL, 1106 MAXCOMLEN + sizeof(struct thread *) * 2 + 40, 1107 SBUF_FIXEDLEN); 1108 1109 sleepq_lock(wchan); 1110 sq = sleepq_lookup(wchan); 1111 if (sq == NULL) { 1112 /* This sleepq does not exist; exit and return ENOENT. */ 1113 error = ENOENT; 1114 finished = true; 1115 sleepq_release(wchan); 1116 goto loop_end; 1117 } 1118 1119 stack_idx = 0; 1120 /* Save thread info */ 1121 TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, 1122 td_next) { 1123 if (stack_idx >= stacks_to_allocate) 1124 goto loop_end; 1125 1126 /* Note the td_lock is equal to the sleepq_lock here. */ 1127 stack_save_td(st[stack_idx], td); 1128 1129 sbuf_printf(td_infos[stack_idx], "%d: %s %p", 1130 td->td_tid, td->td_name, td); 1131 1132 ++stack_idx; 1133 } 1134 1135 finished = true; 1136 sleepq_release(wchan); 1137 1138 /* Print the stacks */ 1139 for (i = 0; i < stack_idx; i++) { 1140 sbuf_finish(td_infos[i]); 1141 sbuf_printf(sb, "--- thread %s: ---\n", sbuf_data(td_infos[i])); 1142 stack_sbuf_print(sb, st[i]); 1143 sbuf_printf(sb, "\n"); 1144 1145 error = sbuf_error(sb); 1146 if (error == 0) 1147 *count_stacks_printed = stack_idx; 1148 } 1149 1150 loop_end: 1151 if (!finished) 1152 sleepq_release(wchan); 1153 for (stack_idx = 0; stack_idx < stacks_to_allocate; 1154 stack_idx++) 1155 stack_destroy(st[stack_idx]); 1156 for (stack_idx = 0; stack_idx < stacks_to_allocate; 1157 stack_idx++) 1158 sbuf_delete(td_infos[stack_idx]); 1159 free(st, M_TEMP); 1160 free(td_infos, M_TEMP); 1161 stacks_to_allocate *= 10; 1162 } 1163 1164 if (!finished && error == 0) 1165 error = ENOMEM; 1166 1167 return (error); 1168 } 1169 #endif 1170 1171 #ifdef SLEEPQUEUE_PROFILING 1172 #define SLEEPQ_PROF_LOCATIONS 1024 1173 #define SLEEPQ_SBUFSIZE 512 1174 struct sleepq_prof { 1175 LIST_ENTRY(sleepq_prof) sp_link; 1176 const char *sp_wmesg; 1177 long sp_count; 1178 }; 1179 1180 LIST_HEAD(sqphead, sleepq_prof); 1181 1182 struct sqphead sleepq_prof_free; 1183 struct sqphead sleepq_hash[SC_TABLESIZE]; 1184 static struct sleepq_prof sleepq_profent[SLEEPQ_PROF_LOCATIONS]; 1185 static struct mtx sleepq_prof_lock; 1186 MTX_SYSINIT(sleepq_prof_lock, &sleepq_prof_lock, "sleepq_prof", MTX_SPIN); 1187 1188 static void 1189 sleepq_profile(const char *wmesg) 1190 { 1191 struct sleepq_prof *sp; 1192 1193 mtx_lock_spin(&sleepq_prof_lock); 1194 if (prof_enabled == 0) 1195 goto unlock; 1196 LIST_FOREACH(sp, &sleepq_hash[SC_HASH(wmesg)], sp_link) 1197 if (sp->sp_wmesg == wmesg) 1198 goto done; 1199 sp = LIST_FIRST(&sleepq_prof_free); 1200 if (sp == NULL) 1201 goto unlock; 1202 sp->sp_wmesg = wmesg; 1203 LIST_REMOVE(sp, sp_link); 1204 LIST_INSERT_HEAD(&sleepq_hash[SC_HASH(wmesg)], sp, sp_link); 1205 done: 1206 sp->sp_count++; 1207 unlock: 1208 mtx_unlock_spin(&sleepq_prof_lock); 1209 return; 1210 } 1211 1212 static void 1213 sleepq_prof_reset(void) 1214 { 1215 struct sleepq_prof *sp; 1216 int enabled; 1217 int i; 1218 1219 mtx_lock_spin(&sleepq_prof_lock); 1220 enabled = prof_enabled; 1221 prof_enabled = 0; 1222 for (i = 0; i < SC_TABLESIZE; i++) 1223 LIST_INIT(&sleepq_hash[i]); 1224 LIST_INIT(&sleepq_prof_free); 1225 for (i = 0; i < SLEEPQ_PROF_LOCATIONS; i++) { 1226 sp = &sleepq_profent[i]; 1227 sp->sp_wmesg = NULL; 1228 sp->sp_count = 0; 1229 LIST_INSERT_HEAD(&sleepq_prof_free, sp, sp_link); 1230 } 1231 prof_enabled = enabled; 1232 mtx_unlock_spin(&sleepq_prof_lock); 1233 } 1234 1235 static int 1236 enable_sleepq_prof(SYSCTL_HANDLER_ARGS) 1237 { 1238 int error, v; 1239 1240 v = prof_enabled; 1241 error = sysctl_handle_int(oidp, &v, v, req); 1242 if (error) 1243 return (error); 1244 if (req->newptr == NULL) 1245 return (error); 1246 if (v == prof_enabled) 1247 return (0); 1248 if (v == 1) 1249 sleepq_prof_reset(); 1250 mtx_lock_spin(&sleepq_prof_lock); 1251 prof_enabled = !!v; 1252 mtx_unlock_spin(&sleepq_prof_lock); 1253 1254 return (0); 1255 } 1256 1257 static int 1258 reset_sleepq_prof_stats(SYSCTL_HANDLER_ARGS) 1259 { 1260 int error, v; 1261 1262 v = 0; 1263 error = sysctl_handle_int(oidp, &v, 0, req); 1264 if (error) 1265 return (error); 1266 if (req->newptr == NULL) 1267 return (error); 1268 if (v == 0) 1269 return (0); 1270 sleepq_prof_reset(); 1271 1272 return (0); 1273 } 1274 1275 static int 1276 dump_sleepq_prof_stats(SYSCTL_HANDLER_ARGS) 1277 { 1278 struct sleepq_prof *sp; 1279 struct sbuf *sb; 1280 int enabled; 1281 int error; 1282 int i; 1283 1284 error = sysctl_wire_old_buffer(req, 0); 1285 if (error != 0) 1286 return (error); 1287 sb = sbuf_new_for_sysctl(NULL, NULL, SLEEPQ_SBUFSIZE, req); 1288 sbuf_printf(sb, "\nwmesg\tcount\n"); 1289 enabled = prof_enabled; 1290 mtx_lock_spin(&sleepq_prof_lock); 1291 prof_enabled = 0; 1292 mtx_unlock_spin(&sleepq_prof_lock); 1293 for (i = 0; i < SC_TABLESIZE; i++) { 1294 LIST_FOREACH(sp, &sleepq_hash[i], sp_link) { 1295 sbuf_printf(sb, "%s\t%ld\n", 1296 sp->sp_wmesg, sp->sp_count); 1297 } 1298 } 1299 mtx_lock_spin(&sleepq_prof_lock); 1300 prof_enabled = enabled; 1301 mtx_unlock_spin(&sleepq_prof_lock); 1302 1303 error = sbuf_finish(sb); 1304 sbuf_delete(sb); 1305 return (error); 1306 } 1307 1308 SYSCTL_PROC(_debug_sleepq, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD, 1309 NULL, 0, dump_sleepq_prof_stats, "A", "Sleepqueue profiling statistics"); 1310 SYSCTL_PROC(_debug_sleepq, OID_AUTO, reset, CTLTYPE_INT | CTLFLAG_RW, 1311 NULL, 0, reset_sleepq_prof_stats, "I", 1312 "Reset sleepqueue profiling statistics"); 1313 SYSCTL_PROC(_debug_sleepq, OID_AUTO, enable, CTLTYPE_INT | CTLFLAG_RW, 1314 NULL, 0, enable_sleepq_prof, "I", "Enable sleepqueue profiling"); 1315 #endif 1316 1317 #ifdef DDB 1318 DB_SHOW_COMMAND(sleepq, db_show_sleepqueue) 1319 { 1320 struct sleepqueue_chain *sc; 1321 struct sleepqueue *sq; 1322 #ifdef INVARIANTS 1323 struct lock_object *lock; 1324 #endif 1325 struct thread *td; 1326 void *wchan; 1327 int i; 1328 1329 if (!have_addr) 1330 return; 1331 1332 /* 1333 * First, see if there is an active sleep queue for the wait channel 1334 * indicated by the address. 1335 */ 1336 wchan = (void *)addr; 1337 sc = SC_LOOKUP(wchan); 1338 LIST_FOREACH(sq, &sc->sc_queues, sq_hash) 1339 if (sq->sq_wchan == wchan) 1340 goto found; 1341 1342 /* 1343 * Second, see if there is an active sleep queue at the address 1344 * indicated. 1345 */ 1346 for (i = 0; i < SC_TABLESIZE; i++) 1347 LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) { 1348 if (sq == (struct sleepqueue *)addr) 1349 goto found; 1350 } 1351 1352 db_printf("Unable to locate a sleep queue via %p\n", (void *)addr); 1353 return; 1354 found: 1355 db_printf("Wait channel: %p\n", sq->sq_wchan); 1356 db_printf("Queue type: %d\n", sq->sq_type); 1357 #ifdef INVARIANTS 1358 if (sq->sq_lock) { 1359 lock = sq->sq_lock; 1360 db_printf("Associated Interlock: %p - (%s) %s\n", lock, 1361 LOCK_CLASS(lock)->lc_name, lock->lo_name); 1362 } 1363 #endif 1364 db_printf("Blocked threads:\n"); 1365 for (i = 0; i < NR_SLEEPQS; i++) { 1366 db_printf("\nQueue[%d]:\n", i); 1367 if (TAILQ_EMPTY(&sq->sq_blocked[i])) 1368 db_printf("\tempty\n"); 1369 else 1370 TAILQ_FOREACH(td, &sq->sq_blocked[0], 1371 td_slpq) { 1372 db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td, 1373 td->td_tid, td->td_proc->p_pid, 1374 td->td_name); 1375 } 1376 db_printf("(expected: %u)\n", sq->sq_blockedcnt[i]); 1377 } 1378 } 1379 1380 /* Alias 'show sleepqueue' to 'show sleepq'. */ 1381 DB_SHOW_ALIAS(sleepqueue, db_show_sleepqueue); 1382 #endif 1383