xref: /freebsd/sys/kern/subr_sleepqueue.c (revision 18849b5da0c5eaa88500b457be05b038813b51b1)
1 /*-
2  * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 /*
28  * Implementation of sleep queues used to hold queue of threads blocked on
29  * a wait channel.  Sleep queues different from turnstiles in that wait
30  * channels are not owned by anyone, so there is no priority propagation.
31  * Sleep queues can also provide a timeout and can also be interrupted by
32  * signals.  That said, there are several similarities between the turnstile
33  * and sleep queue implementations.  (Note: turnstiles were implemented
34  * first.)  For example, both use a hash table of the same size where each
35  * bucket is referred to as a "chain" that contains both a spin lock and
36  * a linked list of queues.  An individual queue is located by using a hash
37  * to pick a chain, locking the chain, and then walking the chain searching
38  * for the queue.  This means that a wait channel object does not need to
39  * embed it's queue head just as locks do not embed their turnstile queue
40  * head.  Threads also carry around a sleep queue that they lend to the
41  * wait channel when blocking.  Just as in turnstiles, the queue includes
42  * a free list of the sleep queues of other threads blocked on the same
43  * wait channel in the case of multiple waiters.
44  *
45  * Some additional functionality provided by sleep queues include the
46  * ability to set a timeout.  The timeout is managed using a per-thread
47  * callout that resumes a thread if it is asleep.  A thread may also
48  * catch signals while it is asleep (aka an interruptible sleep).  The
49  * signal code uses sleepq_abort() to interrupt a sleeping thread.  Finally,
50  * sleep queues also provide some extra assertions.  One is not allowed to
51  * mix the sleep/wakeup and cv APIs for a given wait channel.  Also, one
52  * must consistently use the same lock to synchronize with a wait channel,
53  * though this check is currently only a warning for sleep/wakeup due to
54  * pre-existing abuse of that API.  The same lock must also be held when
55  * awakening threads, though that is currently only enforced for condition
56  * variables.
57  */
58 
59 #include <sys/cdefs.h>
60 __FBSDID("$FreeBSD$");
61 
62 #include "opt_sleepqueue_profiling.h"
63 #include "opt_ddb.h"
64 #include "opt_sched.h"
65 #include "opt_stack.h"
66 
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/lock.h>
70 #include <sys/kernel.h>
71 #include <sys/ktr.h>
72 #include <sys/mutex.h>
73 #include <sys/proc.h>
74 #include <sys/sbuf.h>
75 #include <sys/sched.h>
76 #include <sys/sdt.h>
77 #include <sys/signalvar.h>
78 #include <sys/sleepqueue.h>
79 #include <sys/stack.h>
80 #include <sys/sysctl.h>
81 
82 #include <vm/uma.h>
83 
84 #ifdef DDB
85 #include <ddb/ddb.h>
86 #endif
87 
88 
89 /*
90  * Constants for the hash table of sleep queue chains.
91  * SC_TABLESIZE must be a power of two for SC_MASK to work properly.
92  */
93 #define	SC_TABLESIZE	256			/* Must be power of 2. */
94 #define	SC_MASK		(SC_TABLESIZE - 1)
95 #define	SC_SHIFT	8
96 #define	SC_HASH(wc)	((((uintptr_t)(wc) >> SC_SHIFT) ^ (uintptr_t)(wc)) & \
97 			    SC_MASK)
98 #define	SC_LOOKUP(wc)	&sleepq_chains[SC_HASH(wc)]
99 #define NR_SLEEPQS      2
100 /*
101  * There two different lists of sleep queues.  Both lists are connected
102  * via the sq_hash entries.  The first list is the sleep queue chain list
103  * that a sleep queue is on when it is attached to a wait channel.  The
104  * second list is the free list hung off of a sleep queue that is attached
105  * to a wait channel.
106  *
107  * Each sleep queue also contains the wait channel it is attached to, the
108  * list of threads blocked on that wait channel, flags specific to the
109  * wait channel, and the lock used to synchronize with a wait channel.
110  * The flags are used to catch mismatches between the various consumers
111  * of the sleep queue API (e.g. sleep/wakeup and condition variables).
112  * The lock pointer is only used when invariants are enabled for various
113  * debugging checks.
114  *
115  * Locking key:
116  *  c - sleep queue chain lock
117  */
118 struct sleepqueue {
119 	TAILQ_HEAD(, thread) sq_blocked[NR_SLEEPQS];	/* (c) Blocked threads. */
120 	u_int sq_blockedcnt[NR_SLEEPQS];	/* (c) N. of blocked threads. */
121 	LIST_ENTRY(sleepqueue) sq_hash;		/* (c) Chain and free list. */
122 	LIST_HEAD(, sleepqueue) sq_free;	/* (c) Free queues. */
123 	void	*sq_wchan;			/* (c) Wait channel. */
124 	int	sq_type;			/* (c) Queue type. */
125 #ifdef INVARIANTS
126 	struct lock_object *sq_lock;		/* (c) Associated lock. */
127 #endif
128 };
129 
130 struct sleepqueue_chain {
131 	LIST_HEAD(, sleepqueue) sc_queues;	/* List of sleep queues. */
132 	struct mtx sc_lock;			/* Spin lock for this chain. */
133 #ifdef SLEEPQUEUE_PROFILING
134 	u_int	sc_depth;			/* Length of sc_queues. */
135 	u_int	sc_max_depth;			/* Max length of sc_queues. */
136 #endif
137 };
138 
139 #ifdef SLEEPQUEUE_PROFILING
140 u_int sleepq_max_depth;
141 static SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling");
142 static SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0,
143     "sleepq chain stats");
144 SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth,
145     0, "maxmimum depth achieved of a single chain");
146 
147 static void	sleepq_profile(const char *wmesg);
148 static int	prof_enabled;
149 #endif
150 static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE];
151 static uma_zone_t sleepq_zone;
152 
153 /*
154  * Prototypes for non-exported routines.
155  */
156 static int	sleepq_catch_signals(void *wchan, int pri);
157 static int	sleepq_check_signals(void);
158 static int	sleepq_check_timeout(void);
159 #ifdef INVARIANTS
160 static void	sleepq_dtor(void *mem, int size, void *arg);
161 #endif
162 static int	sleepq_init(void *mem, int size, int flags);
163 static int	sleepq_resume_thread(struct sleepqueue *sq, struct thread *td,
164 		    int pri);
165 static void	sleepq_switch(void *wchan, int pri);
166 static void	sleepq_timeout(void *arg);
167 
168 SDT_PROBE_DECLARE(sched, , , sleep);
169 SDT_PROBE_DECLARE(sched, , , wakeup);
170 
171 /*
172  * Initialize SLEEPQUEUE_PROFILING specific sysctl nodes.
173  * Note that it must happen after sleepinit() has been fully executed, so
174  * it must happen after SI_SUB_KMEM SYSINIT() subsystem setup.
175  */
176 #ifdef SLEEPQUEUE_PROFILING
177 static void
178 init_sleepqueue_profiling(void)
179 {
180 	char chain_name[10];
181 	struct sysctl_oid *chain_oid;
182 	u_int i;
183 
184 	for (i = 0; i < SC_TABLESIZE; i++) {
185 		snprintf(chain_name, sizeof(chain_name), "%u", i);
186 		chain_oid = SYSCTL_ADD_NODE(NULL,
187 		    SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO,
188 		    chain_name, CTLFLAG_RD, NULL, "sleepq chain stats");
189 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
190 		    "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL);
191 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
192 		    "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0,
193 		    NULL);
194 	}
195 }
196 
197 SYSINIT(sleepqueue_profiling, SI_SUB_LOCK, SI_ORDER_ANY,
198     init_sleepqueue_profiling, NULL);
199 #endif
200 
201 /*
202  * Early initialization of sleep queues that is called from the sleepinit()
203  * SYSINIT.
204  */
205 void
206 init_sleepqueues(void)
207 {
208 	int i;
209 
210 	for (i = 0; i < SC_TABLESIZE; i++) {
211 		LIST_INIT(&sleepq_chains[i].sc_queues);
212 		mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL,
213 		    MTX_SPIN | MTX_RECURSE);
214 	}
215 	sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue),
216 #ifdef INVARIANTS
217 	    NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
218 #else
219 	    NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
220 #endif
221 
222 	thread0.td_sleepqueue = sleepq_alloc();
223 }
224 
225 /*
226  * Get a sleep queue for a new thread.
227  */
228 struct sleepqueue *
229 sleepq_alloc(void)
230 {
231 
232 	return (uma_zalloc(sleepq_zone, M_WAITOK));
233 }
234 
235 /*
236  * Free a sleep queue when a thread is destroyed.
237  */
238 void
239 sleepq_free(struct sleepqueue *sq)
240 {
241 
242 	uma_zfree(sleepq_zone, sq);
243 }
244 
245 /*
246  * Lock the sleep queue chain associated with the specified wait channel.
247  */
248 void
249 sleepq_lock(void *wchan)
250 {
251 	struct sleepqueue_chain *sc;
252 
253 	sc = SC_LOOKUP(wchan);
254 	mtx_lock_spin(&sc->sc_lock);
255 }
256 
257 /*
258  * Look up the sleep queue associated with a given wait channel in the hash
259  * table locking the associated sleep queue chain.  If no queue is found in
260  * the table, NULL is returned.
261  */
262 struct sleepqueue *
263 sleepq_lookup(void *wchan)
264 {
265 	struct sleepqueue_chain *sc;
266 	struct sleepqueue *sq;
267 
268 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
269 	sc = SC_LOOKUP(wchan);
270 	mtx_assert(&sc->sc_lock, MA_OWNED);
271 	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
272 		if (sq->sq_wchan == wchan)
273 			return (sq);
274 	return (NULL);
275 }
276 
277 /*
278  * Unlock the sleep queue chain associated with a given wait channel.
279  */
280 void
281 sleepq_release(void *wchan)
282 {
283 	struct sleepqueue_chain *sc;
284 
285 	sc = SC_LOOKUP(wchan);
286 	mtx_unlock_spin(&sc->sc_lock);
287 }
288 
289 /*
290  * Places the current thread on the sleep queue for the specified wait
291  * channel.  If INVARIANTS is enabled, then it associates the passed in
292  * lock with the sleepq to make sure it is held when that sleep queue is
293  * woken up.
294  */
295 void
296 sleepq_add(void *wchan, struct lock_object *lock, const char *wmesg, int flags,
297     int queue)
298 {
299 	struct sleepqueue_chain *sc;
300 	struct sleepqueue *sq;
301 	struct thread *td;
302 
303 	td = curthread;
304 	sc = SC_LOOKUP(wchan);
305 	mtx_assert(&sc->sc_lock, MA_OWNED);
306 	MPASS(td->td_sleepqueue != NULL);
307 	MPASS(wchan != NULL);
308 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
309 
310 	/* If this thread is not allowed to sleep, die a horrible death. */
311 	KASSERT(td->td_no_sleeping == 0,
312 	    ("%s: td %p to sleep on wchan %p with sleeping prohibited",
313 	    __func__, td, wchan));
314 
315 	/* Look up the sleep queue associated with the wait channel 'wchan'. */
316 	sq = sleepq_lookup(wchan);
317 
318 	/*
319 	 * If the wait channel does not already have a sleep queue, use
320 	 * this thread's sleep queue.  Otherwise, insert the current thread
321 	 * into the sleep queue already in use by this wait channel.
322 	 */
323 	if (sq == NULL) {
324 #ifdef INVARIANTS
325 		int i;
326 
327 		sq = td->td_sleepqueue;
328 		for (i = 0; i < NR_SLEEPQS; i++) {
329 			KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]),
330 			    ("thread's sleep queue %d is not empty", i));
331 			KASSERT(sq->sq_blockedcnt[i] == 0,
332 			    ("thread's sleep queue %d count mismatches", i));
333 		}
334 		KASSERT(LIST_EMPTY(&sq->sq_free),
335 		    ("thread's sleep queue has a non-empty free list"));
336 		KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer"));
337 		sq->sq_lock = lock;
338 #endif
339 #ifdef SLEEPQUEUE_PROFILING
340 		sc->sc_depth++;
341 		if (sc->sc_depth > sc->sc_max_depth) {
342 			sc->sc_max_depth = sc->sc_depth;
343 			if (sc->sc_max_depth > sleepq_max_depth)
344 				sleepq_max_depth = sc->sc_max_depth;
345 		}
346 #endif
347 		sq = td->td_sleepqueue;
348 		LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash);
349 		sq->sq_wchan = wchan;
350 		sq->sq_type = flags & SLEEPQ_TYPE;
351 	} else {
352 		MPASS(wchan == sq->sq_wchan);
353 		MPASS(lock == sq->sq_lock);
354 		MPASS((flags & SLEEPQ_TYPE) == sq->sq_type);
355 		LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash);
356 	}
357 	thread_lock(td);
358 	TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq);
359 	sq->sq_blockedcnt[queue]++;
360 	td->td_sleepqueue = NULL;
361 	td->td_sqqueue = queue;
362 	td->td_wchan = wchan;
363 	td->td_wmesg = wmesg;
364 	if (flags & SLEEPQ_INTERRUPTIBLE) {
365 		td->td_flags |= TDF_SINTR;
366 		td->td_flags &= ~TDF_SLEEPABORT;
367 	}
368 	thread_unlock(td);
369 }
370 
371 /*
372  * Sets a timeout that will remove the current thread from the specified
373  * sleep queue after timo ticks if the thread has not already been awakened.
374  */
375 void
376 sleepq_set_timeout_sbt(void *wchan, sbintime_t sbt, sbintime_t pr,
377     int flags)
378 {
379 	struct sleepqueue_chain *sc;
380 	struct thread *td;
381 
382 	td = curthread;
383 	sc = SC_LOOKUP(wchan);
384 	mtx_assert(&sc->sc_lock, MA_OWNED);
385 	MPASS(TD_ON_SLEEPQ(td));
386 	MPASS(td->td_sleepqueue == NULL);
387 	MPASS(wchan != NULL);
388 	if (cold)
389 		panic("timed sleep before timers are working");
390 	callout_reset_sbt_on(&td->td_slpcallout, sbt, pr,
391 	    sleepq_timeout, td, PCPU_GET(cpuid), flags | C_DIRECT_EXEC);
392 }
393 
394 /*
395  * Return the number of actual sleepers for the specified queue.
396  */
397 u_int
398 sleepq_sleepcnt(void *wchan, int queue)
399 {
400 	struct sleepqueue *sq;
401 
402 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
403 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
404 	sq = sleepq_lookup(wchan);
405 	if (sq == NULL)
406 		return (0);
407 	return (sq->sq_blockedcnt[queue]);
408 }
409 
410 /*
411  * Marks the pending sleep of the current thread as interruptible and
412  * makes an initial check for pending signals before putting a thread
413  * to sleep. Enters and exits with the thread lock held.  Thread lock
414  * may have transitioned from the sleepq lock to a run lock.
415  */
416 static int
417 sleepq_catch_signals(void *wchan, int pri)
418 {
419 	struct sleepqueue_chain *sc;
420 	struct sleepqueue *sq;
421 	struct thread *td;
422 	struct proc *p;
423 	struct sigacts *ps;
424 	int sig, ret;
425 
426 	td = curthread;
427 	p = curproc;
428 	sc = SC_LOOKUP(wchan);
429 	mtx_assert(&sc->sc_lock, MA_OWNED);
430 	MPASS(wchan != NULL);
431 	if ((td->td_pflags & TDP_WAKEUP) != 0) {
432 		td->td_pflags &= ~TDP_WAKEUP;
433 		ret = EINTR;
434 		thread_lock(td);
435 		goto out;
436 	}
437 
438 	/*
439 	 * See if there are any pending signals for this thread.  If not
440 	 * we can switch immediately.  Otherwise do the signal processing
441 	 * directly.
442 	 */
443 	thread_lock(td);
444 	if ((td->td_flags & (TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK)) == 0) {
445 		sleepq_switch(wchan, pri);
446 		return (0);
447 	}
448 	thread_unlock(td);
449 	mtx_unlock_spin(&sc->sc_lock);
450 	CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)",
451 		(void *)td, (long)p->p_pid, td->td_name);
452 	PROC_LOCK(p);
453 	ps = p->p_sigacts;
454 	mtx_lock(&ps->ps_mtx);
455 	sig = cursig(td);
456 	if (sig == 0) {
457 		mtx_unlock(&ps->ps_mtx);
458 		ret = thread_suspend_check(1);
459 		MPASS(ret == 0 || ret == EINTR || ret == ERESTART);
460 	} else {
461 		if (SIGISMEMBER(ps->ps_sigintr, sig))
462 			ret = EINTR;
463 		else
464 			ret = ERESTART;
465 		mtx_unlock(&ps->ps_mtx);
466 	}
467 	/*
468 	 * Lock the per-process spinlock prior to dropping the PROC_LOCK
469 	 * to avoid a signal delivery race.  PROC_LOCK, PROC_SLOCK, and
470 	 * thread_lock() are currently held in tdsendsignal().
471 	 */
472 	PROC_SLOCK(p);
473 	mtx_lock_spin(&sc->sc_lock);
474 	PROC_UNLOCK(p);
475 	thread_lock(td);
476 	PROC_SUNLOCK(p);
477 	if (ret == 0) {
478 		sleepq_switch(wchan, pri);
479 		return (0);
480 	}
481 out:
482 	/*
483 	 * There were pending signals and this thread is still
484 	 * on the sleep queue, remove it from the sleep queue.
485 	 */
486 	if (TD_ON_SLEEPQ(td)) {
487 		sq = sleepq_lookup(wchan);
488 		if (sleepq_resume_thread(sq, td, 0)) {
489 #ifdef INVARIANTS
490 			/*
491 			 * This thread hasn't gone to sleep yet, so it
492 			 * should not be swapped out.
493 			 */
494 			panic("not waking up swapper");
495 #endif
496 		}
497 	}
498 	mtx_unlock_spin(&sc->sc_lock);
499 	MPASS(td->td_lock != &sc->sc_lock);
500 	return (ret);
501 }
502 
503 /*
504  * Switches to another thread if we are still asleep on a sleep queue.
505  * Returns with thread lock.
506  */
507 static void
508 sleepq_switch(void *wchan, int pri)
509 {
510 	struct sleepqueue_chain *sc;
511 	struct sleepqueue *sq;
512 	struct thread *td;
513 
514 	td = curthread;
515 	sc = SC_LOOKUP(wchan);
516 	mtx_assert(&sc->sc_lock, MA_OWNED);
517 	THREAD_LOCK_ASSERT(td, MA_OWNED);
518 
519 	/*
520 	 * If we have a sleep queue, then we've already been woken up, so
521 	 * just return.
522 	 */
523 	if (td->td_sleepqueue != NULL) {
524 		mtx_unlock_spin(&sc->sc_lock);
525 		return;
526 	}
527 
528 	/*
529 	 * If TDF_TIMEOUT is set, then our sleep has been timed out
530 	 * already but we are still on the sleep queue, so dequeue the
531 	 * thread and return.
532 	 */
533 	if (td->td_flags & TDF_TIMEOUT) {
534 		MPASS(TD_ON_SLEEPQ(td));
535 		sq = sleepq_lookup(wchan);
536 		if (sleepq_resume_thread(sq, td, 0)) {
537 #ifdef INVARIANTS
538 			/*
539 			 * This thread hasn't gone to sleep yet, so it
540 			 * should not be swapped out.
541 			 */
542 			panic("not waking up swapper");
543 #endif
544 		}
545 		mtx_unlock_spin(&sc->sc_lock);
546 		return;
547 	}
548 #ifdef SLEEPQUEUE_PROFILING
549 	if (prof_enabled)
550 		sleepq_profile(td->td_wmesg);
551 #endif
552 	MPASS(td->td_sleepqueue == NULL);
553 	sched_sleep(td, pri);
554 	thread_lock_set(td, &sc->sc_lock);
555 	SDT_PROBE0(sched, , , sleep);
556 	TD_SET_SLEEPING(td);
557 	mi_switch(SW_VOL | SWT_SLEEPQ, NULL);
558 	KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
559 	CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)",
560 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
561 }
562 
563 /*
564  * Check to see if we timed out.
565  */
566 static int
567 sleepq_check_timeout(void)
568 {
569 	struct thread *td;
570 
571 	td = curthread;
572 	THREAD_LOCK_ASSERT(td, MA_OWNED);
573 
574 	/*
575 	 * If TDF_TIMEOUT is set, we timed out.
576 	 */
577 	if (td->td_flags & TDF_TIMEOUT) {
578 		td->td_flags &= ~TDF_TIMEOUT;
579 		return (EWOULDBLOCK);
580 	}
581 
582 	/*
583 	 * If TDF_TIMOFAIL is set, the timeout ran after we had
584 	 * already been woken up.
585 	 */
586 	if (td->td_flags & TDF_TIMOFAIL)
587 		td->td_flags &= ~TDF_TIMOFAIL;
588 
589 	/*
590 	 * If callout_stop() fails, then the timeout is running on
591 	 * another CPU, so synchronize with it to avoid having it
592 	 * accidentally wake up a subsequent sleep.
593 	 */
594 	else if (_callout_stop_safe(&td->td_slpcallout, CS_MIGRBLOCK, NULL)
595 	    == 0) {
596 		td->td_flags |= TDF_TIMEOUT;
597 		TD_SET_SLEEPING(td);
598 		mi_switch(SW_INVOL | SWT_SLEEPQTIMO, NULL);
599 	}
600 	return (0);
601 }
602 
603 /*
604  * Check to see if we were awoken by a signal.
605  */
606 static int
607 sleepq_check_signals(void)
608 {
609 	struct thread *td;
610 
611 	td = curthread;
612 	THREAD_LOCK_ASSERT(td, MA_OWNED);
613 
614 	/* We are no longer in an interruptible sleep. */
615 	if (td->td_flags & TDF_SINTR)
616 		td->td_flags &= ~TDF_SINTR;
617 
618 	if (td->td_flags & TDF_SLEEPABORT) {
619 		td->td_flags &= ~TDF_SLEEPABORT;
620 		return (td->td_intrval);
621 	}
622 
623 	return (0);
624 }
625 
626 /*
627  * Block the current thread until it is awakened from its sleep queue.
628  */
629 void
630 sleepq_wait(void *wchan, int pri)
631 {
632 	struct thread *td;
633 
634 	td = curthread;
635 	MPASS(!(td->td_flags & TDF_SINTR));
636 	thread_lock(td);
637 	sleepq_switch(wchan, pri);
638 	thread_unlock(td);
639 }
640 
641 /*
642  * Block the current thread until it is awakened from its sleep queue
643  * or it is interrupted by a signal.
644  */
645 int
646 sleepq_wait_sig(void *wchan, int pri)
647 {
648 	int rcatch;
649 	int rval;
650 
651 	rcatch = sleepq_catch_signals(wchan, pri);
652 	rval = sleepq_check_signals();
653 	thread_unlock(curthread);
654 	if (rcatch)
655 		return (rcatch);
656 	return (rval);
657 }
658 
659 /*
660  * Block the current thread until it is awakened from its sleep queue
661  * or it times out while waiting.
662  */
663 int
664 sleepq_timedwait(void *wchan, int pri)
665 {
666 	struct thread *td;
667 	int rval;
668 
669 	td = curthread;
670 	MPASS(!(td->td_flags & TDF_SINTR));
671 	thread_lock(td);
672 	sleepq_switch(wchan, pri);
673 	rval = sleepq_check_timeout();
674 	thread_unlock(td);
675 
676 	return (rval);
677 }
678 
679 /*
680  * Block the current thread until it is awakened from its sleep queue,
681  * it is interrupted by a signal, or it times out waiting to be awakened.
682  */
683 int
684 sleepq_timedwait_sig(void *wchan, int pri)
685 {
686 	int rcatch, rvalt, rvals;
687 
688 	rcatch = sleepq_catch_signals(wchan, pri);
689 	rvalt = sleepq_check_timeout();
690 	rvals = sleepq_check_signals();
691 	thread_unlock(curthread);
692 	if (rcatch)
693 		return (rcatch);
694 	if (rvals)
695 		return (rvals);
696 	return (rvalt);
697 }
698 
699 /*
700  * Returns the type of sleepqueue given a waitchannel.
701  */
702 int
703 sleepq_type(void *wchan)
704 {
705 	struct sleepqueue *sq;
706 	int type;
707 
708 	MPASS(wchan != NULL);
709 
710 	sleepq_lock(wchan);
711 	sq = sleepq_lookup(wchan);
712 	if (sq == NULL) {
713 		sleepq_release(wchan);
714 		return (-1);
715 	}
716 	type = sq->sq_type;
717 	sleepq_release(wchan);
718 	return (type);
719 }
720 
721 /*
722  * Removes a thread from a sleep queue and makes it
723  * runnable.
724  */
725 static int
726 sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri)
727 {
728 	struct sleepqueue_chain *sc;
729 
730 	MPASS(td != NULL);
731 	MPASS(sq->sq_wchan != NULL);
732 	MPASS(td->td_wchan == sq->sq_wchan);
733 	MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0);
734 	THREAD_LOCK_ASSERT(td, MA_OWNED);
735 	sc = SC_LOOKUP(sq->sq_wchan);
736 	mtx_assert(&sc->sc_lock, MA_OWNED);
737 
738 	SDT_PROBE2(sched, , , wakeup, td, td->td_proc);
739 
740 	/* Remove the thread from the queue. */
741 	sq->sq_blockedcnt[td->td_sqqueue]--;
742 	TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq);
743 
744 	/*
745 	 * Get a sleep queue for this thread.  If this is the last waiter,
746 	 * use the queue itself and take it out of the chain, otherwise,
747 	 * remove a queue from the free list.
748 	 */
749 	if (LIST_EMPTY(&sq->sq_free)) {
750 		td->td_sleepqueue = sq;
751 #ifdef INVARIANTS
752 		sq->sq_wchan = NULL;
753 #endif
754 #ifdef SLEEPQUEUE_PROFILING
755 		sc->sc_depth--;
756 #endif
757 	} else
758 		td->td_sleepqueue = LIST_FIRST(&sq->sq_free);
759 	LIST_REMOVE(td->td_sleepqueue, sq_hash);
760 
761 	td->td_wmesg = NULL;
762 	td->td_wchan = NULL;
763 	td->td_flags &= ~TDF_SINTR;
764 
765 	CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)",
766 	    (void *)td, (long)td->td_proc->p_pid, td->td_name);
767 
768 	/* Adjust priority if requested. */
769 	MPASS(pri == 0 || (pri >= PRI_MIN && pri <= PRI_MAX));
770 	if (pri != 0 && td->td_priority > pri &&
771 	    PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
772 		sched_prio(td, pri);
773 
774 	/*
775 	 * Note that thread td might not be sleeping if it is running
776 	 * sleepq_catch_signals() on another CPU or is blocked on its
777 	 * proc lock to check signals.  There's no need to mark the
778 	 * thread runnable in that case.
779 	 */
780 	if (TD_IS_SLEEPING(td)) {
781 		TD_CLR_SLEEPING(td);
782 		return (setrunnable(td));
783 	}
784 	return (0);
785 }
786 
787 #ifdef INVARIANTS
788 /*
789  * UMA zone item deallocator.
790  */
791 static void
792 sleepq_dtor(void *mem, int size, void *arg)
793 {
794 	struct sleepqueue *sq;
795 	int i;
796 
797 	sq = mem;
798 	for (i = 0; i < NR_SLEEPQS; i++) {
799 		MPASS(TAILQ_EMPTY(&sq->sq_blocked[i]));
800 		MPASS(sq->sq_blockedcnt[i] == 0);
801 	}
802 }
803 #endif
804 
805 /*
806  * UMA zone item initializer.
807  */
808 static int
809 sleepq_init(void *mem, int size, int flags)
810 {
811 	struct sleepqueue *sq;
812 	int i;
813 
814 	bzero(mem, size);
815 	sq = mem;
816 	for (i = 0; i < NR_SLEEPQS; i++) {
817 		TAILQ_INIT(&sq->sq_blocked[i]);
818 		sq->sq_blockedcnt[i] = 0;
819 	}
820 	LIST_INIT(&sq->sq_free);
821 	return (0);
822 }
823 
824 /*
825  * Find the highest priority thread sleeping on a wait channel and resume it.
826  */
827 int
828 sleepq_signal(void *wchan, int flags, int pri, int queue)
829 {
830 	struct sleepqueue *sq;
831 	struct thread *td, *besttd;
832 	int wakeup_swapper;
833 
834 	CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags);
835 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
836 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
837 	sq = sleepq_lookup(wchan);
838 	if (sq == NULL)
839 		return (0);
840 	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
841 	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
842 
843 	/*
844 	 * Find the highest priority thread on the queue.  If there is a
845 	 * tie, use the thread that first appears in the queue as it has
846 	 * been sleeping the longest since threads are always added to
847 	 * the tail of sleep queues.
848 	 */
849 	besttd = NULL;
850 	TAILQ_FOREACH(td, &sq->sq_blocked[queue], td_slpq) {
851 		if (besttd == NULL || td->td_priority < besttd->td_priority)
852 			besttd = td;
853 	}
854 	MPASS(besttd != NULL);
855 	thread_lock(besttd);
856 	wakeup_swapper = sleepq_resume_thread(sq, besttd, pri);
857 	thread_unlock(besttd);
858 	return (wakeup_swapper);
859 }
860 
861 /*
862  * Resume all threads sleeping on a specified wait channel.
863  */
864 int
865 sleepq_broadcast(void *wchan, int flags, int pri, int queue)
866 {
867 	struct sleepqueue *sq;
868 	struct thread *td;
869 	int wakeup_swapper;
870 
871 	CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags);
872 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
873 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
874 	sq = sleepq_lookup(wchan);
875 	if (sq == NULL)
876 		return (0);
877 	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
878 	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
879 
880 	/* Resume all blocked threads on the sleep queue. */
881 	wakeup_swapper = 0;
882 	while ((td = TAILQ_FIRST(&sq->sq_blocked[queue])) != NULL) {
883 		thread_lock(td);
884 		wakeup_swapper |= sleepq_resume_thread(sq, td, pri);
885 		thread_unlock(td);
886 	}
887 	return (wakeup_swapper);
888 }
889 
890 /*
891  * Time sleeping threads out.  When the timeout expires, the thread is
892  * removed from the sleep queue and made runnable if it is still asleep.
893  */
894 static void
895 sleepq_timeout(void *arg)
896 {
897 	struct sleepqueue_chain *sc;
898 	struct sleepqueue *sq;
899 	struct thread *td;
900 	void *wchan;
901 	int wakeup_swapper;
902 
903 	td = arg;
904 	wakeup_swapper = 0;
905 	CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)",
906 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
907 
908 	/*
909 	 * First, see if the thread is asleep and get the wait channel if
910 	 * it is.
911 	 */
912 	thread_lock(td);
913 	if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) {
914 		wchan = td->td_wchan;
915 		sc = SC_LOOKUP(wchan);
916 		THREAD_LOCKPTR_ASSERT(td, &sc->sc_lock);
917 		sq = sleepq_lookup(wchan);
918 		MPASS(sq != NULL);
919 		td->td_flags |= TDF_TIMEOUT;
920 		wakeup_swapper = sleepq_resume_thread(sq, td, 0);
921 		thread_unlock(td);
922 		if (wakeup_swapper)
923 			kick_proc0();
924 		return;
925 	}
926 
927 	/*
928 	 * If the thread is on the SLEEPQ but isn't sleeping yet, it
929 	 * can either be on another CPU in between sleepq_add() and
930 	 * one of the sleepq_*wait*() routines or it can be in
931 	 * sleepq_catch_signals().
932 	 */
933 	if (TD_ON_SLEEPQ(td)) {
934 		td->td_flags |= TDF_TIMEOUT;
935 		thread_unlock(td);
936 		return;
937 	}
938 
939 	/*
940 	 * Now check for the edge cases.  First, if TDF_TIMEOUT is set,
941 	 * then the other thread has already yielded to us, so clear
942 	 * the flag and resume it.  If TDF_TIMEOUT is not set, then the
943 	 * we know that the other thread is not on a sleep queue, but it
944 	 * hasn't resumed execution yet.  In that case, set TDF_TIMOFAIL
945 	 * to let it know that the timeout has already run and doesn't
946 	 * need to be canceled.
947 	 */
948 	if (td->td_flags & TDF_TIMEOUT) {
949 		MPASS(TD_IS_SLEEPING(td));
950 		td->td_flags &= ~TDF_TIMEOUT;
951 		TD_CLR_SLEEPING(td);
952 		wakeup_swapper = setrunnable(td);
953 	} else
954 		td->td_flags |= TDF_TIMOFAIL;
955 	thread_unlock(td);
956 	if (wakeup_swapper)
957 		kick_proc0();
958 }
959 
960 /*
961  * Resumes a specific thread from the sleep queue associated with a specific
962  * wait channel if it is on that queue.
963  */
964 void
965 sleepq_remove(struct thread *td, void *wchan)
966 {
967 	struct sleepqueue *sq;
968 	int wakeup_swapper;
969 
970 	/*
971 	 * Look up the sleep queue for this wait channel, then re-check
972 	 * that the thread is asleep on that channel, if it is not, then
973 	 * bail.
974 	 */
975 	MPASS(wchan != NULL);
976 	sleepq_lock(wchan);
977 	sq = sleepq_lookup(wchan);
978 	/*
979 	 * We can not lock the thread here as it may be sleeping on a
980 	 * different sleepq.  However, holding the sleepq lock for this
981 	 * wchan can guarantee that we do not miss a wakeup for this
982 	 * channel.  The asserts below will catch any false positives.
983 	 */
984 	if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) {
985 		sleepq_release(wchan);
986 		return;
987 	}
988 	/* Thread is asleep on sleep queue sq, so wake it up. */
989 	thread_lock(td);
990 	MPASS(sq != NULL);
991 	MPASS(td->td_wchan == wchan);
992 	wakeup_swapper = sleepq_resume_thread(sq, td, 0);
993 	thread_unlock(td);
994 	sleepq_release(wchan);
995 	if (wakeup_swapper)
996 		kick_proc0();
997 }
998 
999 /*
1000  * Abort a thread as if an interrupt had occurred.  Only abort
1001  * interruptible waits (unfortunately it isn't safe to abort others).
1002  */
1003 int
1004 sleepq_abort(struct thread *td, int intrval)
1005 {
1006 	struct sleepqueue *sq;
1007 	void *wchan;
1008 
1009 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1010 	MPASS(TD_ON_SLEEPQ(td));
1011 	MPASS(td->td_flags & TDF_SINTR);
1012 	MPASS(intrval == EINTR || intrval == ERESTART);
1013 
1014 	/*
1015 	 * If the TDF_TIMEOUT flag is set, just leave. A
1016 	 * timeout is scheduled anyhow.
1017 	 */
1018 	if (td->td_flags & TDF_TIMEOUT)
1019 		return (0);
1020 
1021 	CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)",
1022 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
1023 	td->td_intrval = intrval;
1024 	td->td_flags |= TDF_SLEEPABORT;
1025 	/*
1026 	 * If the thread has not slept yet it will find the signal in
1027 	 * sleepq_catch_signals() and call sleepq_resume_thread.  Otherwise
1028 	 * we have to do it here.
1029 	 */
1030 	if (!TD_IS_SLEEPING(td))
1031 		return (0);
1032 	wchan = td->td_wchan;
1033 	MPASS(wchan != NULL);
1034 	sq = sleepq_lookup(wchan);
1035 	MPASS(sq != NULL);
1036 
1037 	/* Thread is asleep on sleep queue sq, so wake it up. */
1038 	return (sleepq_resume_thread(sq, td, 0));
1039 }
1040 
1041 /*
1042  * Prints the stacks of all threads presently sleeping on wchan/queue to
1043  * the sbuf sb.  Sets count_stacks_printed to the number of stacks actually
1044  * printed.  Typically, this will equal the number of threads sleeping on the
1045  * queue, but may be less if sb overflowed before all stacks were printed.
1046  */
1047 #ifdef STACK
1048 int
1049 sleepq_sbuf_print_stacks(struct sbuf *sb, void *wchan, int queue,
1050     int *count_stacks_printed)
1051 {
1052 	struct thread *td, *td_next;
1053 	struct sleepqueue *sq;
1054 	struct stack **st;
1055 	struct sbuf **td_infos;
1056 	int i, stack_idx, error, stacks_to_allocate;
1057 	bool finished, partial_print;
1058 
1059 	error = 0;
1060 	finished = false;
1061 	partial_print = false;
1062 
1063 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
1064 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
1065 
1066 	stacks_to_allocate = 10;
1067 	for (i = 0; i < 3 && !finished ; i++) {
1068 		/* We cannot malloc while holding the queue's spinlock, so
1069 		 * we do our mallocs now, and hope it is enough.  If it
1070 		 * isn't, we will free these, drop the lock, malloc more,
1071 		 * and try again, up to a point.  After that point we will
1072 		 * give up and report ENOMEM. We also cannot write to sb
1073 		 * during this time since the client may have set the
1074 		 * SBUF_AUTOEXTEND flag on their sbuf, which could cause a
1075 		 * malloc as we print to it.  So we defer actually printing
1076 		 * to sb until after we drop the spinlock.
1077 		 */
1078 
1079 		/* Where we will store the stacks. */
1080 		st = malloc(sizeof(struct stack *) * stacks_to_allocate,
1081 		    M_TEMP, M_WAITOK);
1082 		for (stack_idx = 0; stack_idx < stacks_to_allocate;
1083 		    stack_idx++)
1084 			st[stack_idx] = stack_create();
1085 
1086 		/* Where we will store the td name, tid, etc. */
1087 		td_infos = malloc(sizeof(struct sbuf *) * stacks_to_allocate,
1088 		    M_TEMP, M_WAITOK);
1089 		for (stack_idx = 0; stack_idx < stacks_to_allocate;
1090 		    stack_idx++)
1091 			td_infos[stack_idx] = sbuf_new(NULL, NULL,
1092 			    MAXCOMLEN + sizeof(struct thread *) * 2 + 40,
1093 			    SBUF_FIXEDLEN);
1094 
1095 		sleepq_lock(wchan);
1096 		sq = sleepq_lookup(wchan);
1097 		if (sq == NULL) {
1098 			/* This sleepq does not exist; exit and return ENOENT. */
1099 			error = ENOENT;
1100 			finished = true;
1101 			sleepq_release(wchan);
1102 			goto loop_end;
1103 		}
1104 
1105 		stack_idx = 0;
1106 		/* Save thread info */
1107 		TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq,
1108 		    td_next) {
1109 			if (stack_idx >= stacks_to_allocate)
1110 				goto loop_end;
1111 
1112 			/* Note the td_lock is equal to the sleepq_lock here. */
1113 			stack_save_td(st[stack_idx], td);
1114 
1115 			sbuf_printf(td_infos[stack_idx], "%d: %s %p",
1116 			    td->td_tid, td->td_name, td);
1117 
1118 			++stack_idx;
1119 		}
1120 
1121 		finished = true;
1122 		sleepq_release(wchan);
1123 
1124 		/* Print the stacks */
1125 		for (i = 0; i < stack_idx; i++) {
1126 			sbuf_finish(td_infos[i]);
1127 			sbuf_printf(sb, "--- thread %s: ---\n", sbuf_data(td_infos[i]));
1128 			stack_sbuf_print(sb, st[i]);
1129 			sbuf_printf(sb, "\n");
1130 
1131 			error = sbuf_error(sb);
1132 			if (error == 0)
1133 				*count_stacks_printed = stack_idx;
1134 		}
1135 
1136 loop_end:
1137 		if (!finished)
1138 			sleepq_release(wchan);
1139 		for (stack_idx = 0; stack_idx < stacks_to_allocate;
1140 		    stack_idx++)
1141 			stack_destroy(st[stack_idx]);
1142 		for (stack_idx = 0; stack_idx < stacks_to_allocate;
1143 		    stack_idx++)
1144 			sbuf_delete(td_infos[stack_idx]);
1145 		free(st, M_TEMP);
1146 		free(td_infos, M_TEMP);
1147 		stacks_to_allocate *= 10;
1148 	}
1149 
1150 	if (!finished && error == 0)
1151 		error = ENOMEM;
1152 
1153 	return (error);
1154 }
1155 #endif
1156 
1157 #ifdef SLEEPQUEUE_PROFILING
1158 #define	SLEEPQ_PROF_LOCATIONS	1024
1159 #define	SLEEPQ_SBUFSIZE		512
1160 struct sleepq_prof {
1161 	LIST_ENTRY(sleepq_prof) sp_link;
1162 	const char	*sp_wmesg;
1163 	long		sp_count;
1164 };
1165 
1166 LIST_HEAD(sqphead, sleepq_prof);
1167 
1168 struct sqphead sleepq_prof_free;
1169 struct sqphead sleepq_hash[SC_TABLESIZE];
1170 static struct sleepq_prof sleepq_profent[SLEEPQ_PROF_LOCATIONS];
1171 static struct mtx sleepq_prof_lock;
1172 MTX_SYSINIT(sleepq_prof_lock, &sleepq_prof_lock, "sleepq_prof", MTX_SPIN);
1173 
1174 static void
1175 sleepq_profile(const char *wmesg)
1176 {
1177 	struct sleepq_prof *sp;
1178 
1179 	mtx_lock_spin(&sleepq_prof_lock);
1180 	if (prof_enabled == 0)
1181 		goto unlock;
1182 	LIST_FOREACH(sp, &sleepq_hash[SC_HASH(wmesg)], sp_link)
1183 		if (sp->sp_wmesg == wmesg)
1184 			goto done;
1185 	sp = LIST_FIRST(&sleepq_prof_free);
1186 	if (sp == NULL)
1187 		goto unlock;
1188 	sp->sp_wmesg = wmesg;
1189 	LIST_REMOVE(sp, sp_link);
1190 	LIST_INSERT_HEAD(&sleepq_hash[SC_HASH(wmesg)], sp, sp_link);
1191 done:
1192 	sp->sp_count++;
1193 unlock:
1194 	mtx_unlock_spin(&sleepq_prof_lock);
1195 	return;
1196 }
1197 
1198 static void
1199 sleepq_prof_reset(void)
1200 {
1201 	struct sleepq_prof *sp;
1202 	int enabled;
1203 	int i;
1204 
1205 	mtx_lock_spin(&sleepq_prof_lock);
1206 	enabled = prof_enabled;
1207 	prof_enabled = 0;
1208 	for (i = 0; i < SC_TABLESIZE; i++)
1209 		LIST_INIT(&sleepq_hash[i]);
1210 	LIST_INIT(&sleepq_prof_free);
1211 	for (i = 0; i < SLEEPQ_PROF_LOCATIONS; i++) {
1212 		sp = &sleepq_profent[i];
1213 		sp->sp_wmesg = NULL;
1214 		sp->sp_count = 0;
1215 		LIST_INSERT_HEAD(&sleepq_prof_free, sp, sp_link);
1216 	}
1217 	prof_enabled = enabled;
1218 	mtx_unlock_spin(&sleepq_prof_lock);
1219 }
1220 
1221 static int
1222 enable_sleepq_prof(SYSCTL_HANDLER_ARGS)
1223 {
1224 	int error, v;
1225 
1226 	v = prof_enabled;
1227 	error = sysctl_handle_int(oidp, &v, v, req);
1228 	if (error)
1229 		return (error);
1230 	if (req->newptr == NULL)
1231 		return (error);
1232 	if (v == prof_enabled)
1233 		return (0);
1234 	if (v == 1)
1235 		sleepq_prof_reset();
1236 	mtx_lock_spin(&sleepq_prof_lock);
1237 	prof_enabled = !!v;
1238 	mtx_unlock_spin(&sleepq_prof_lock);
1239 
1240 	return (0);
1241 }
1242 
1243 static int
1244 reset_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1245 {
1246 	int error, v;
1247 
1248 	v = 0;
1249 	error = sysctl_handle_int(oidp, &v, 0, req);
1250 	if (error)
1251 		return (error);
1252 	if (req->newptr == NULL)
1253 		return (error);
1254 	if (v == 0)
1255 		return (0);
1256 	sleepq_prof_reset();
1257 
1258 	return (0);
1259 }
1260 
1261 static int
1262 dump_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1263 {
1264 	struct sleepq_prof *sp;
1265 	struct sbuf *sb;
1266 	int enabled;
1267 	int error;
1268 	int i;
1269 
1270 	error = sysctl_wire_old_buffer(req, 0);
1271 	if (error != 0)
1272 		return (error);
1273 	sb = sbuf_new_for_sysctl(NULL, NULL, SLEEPQ_SBUFSIZE, req);
1274 	sbuf_printf(sb, "\nwmesg\tcount\n");
1275 	enabled = prof_enabled;
1276 	mtx_lock_spin(&sleepq_prof_lock);
1277 	prof_enabled = 0;
1278 	mtx_unlock_spin(&sleepq_prof_lock);
1279 	for (i = 0; i < SC_TABLESIZE; i++) {
1280 		LIST_FOREACH(sp, &sleepq_hash[i], sp_link) {
1281 			sbuf_printf(sb, "%s\t%ld\n",
1282 			    sp->sp_wmesg, sp->sp_count);
1283 		}
1284 	}
1285 	mtx_lock_spin(&sleepq_prof_lock);
1286 	prof_enabled = enabled;
1287 	mtx_unlock_spin(&sleepq_prof_lock);
1288 
1289 	error = sbuf_finish(sb);
1290 	sbuf_delete(sb);
1291 	return (error);
1292 }
1293 
1294 SYSCTL_PROC(_debug_sleepq, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD,
1295     NULL, 0, dump_sleepq_prof_stats, "A", "Sleepqueue profiling statistics");
1296 SYSCTL_PROC(_debug_sleepq, OID_AUTO, reset, CTLTYPE_INT | CTLFLAG_RW,
1297     NULL, 0, reset_sleepq_prof_stats, "I",
1298     "Reset sleepqueue profiling statistics");
1299 SYSCTL_PROC(_debug_sleepq, OID_AUTO, enable, CTLTYPE_INT | CTLFLAG_RW,
1300     NULL, 0, enable_sleepq_prof, "I", "Enable sleepqueue profiling");
1301 #endif
1302 
1303 #ifdef DDB
1304 DB_SHOW_COMMAND(sleepq, db_show_sleepqueue)
1305 {
1306 	struct sleepqueue_chain *sc;
1307 	struct sleepqueue *sq;
1308 #ifdef INVARIANTS
1309 	struct lock_object *lock;
1310 #endif
1311 	struct thread *td;
1312 	void *wchan;
1313 	int i;
1314 
1315 	if (!have_addr)
1316 		return;
1317 
1318 	/*
1319 	 * First, see if there is an active sleep queue for the wait channel
1320 	 * indicated by the address.
1321 	 */
1322 	wchan = (void *)addr;
1323 	sc = SC_LOOKUP(wchan);
1324 	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
1325 		if (sq->sq_wchan == wchan)
1326 			goto found;
1327 
1328 	/*
1329 	 * Second, see if there is an active sleep queue at the address
1330 	 * indicated.
1331 	 */
1332 	for (i = 0; i < SC_TABLESIZE; i++)
1333 		LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) {
1334 			if (sq == (struct sleepqueue *)addr)
1335 				goto found;
1336 		}
1337 
1338 	db_printf("Unable to locate a sleep queue via %p\n", (void *)addr);
1339 	return;
1340 found:
1341 	db_printf("Wait channel: %p\n", sq->sq_wchan);
1342 	db_printf("Queue type: %d\n", sq->sq_type);
1343 #ifdef INVARIANTS
1344 	if (sq->sq_lock) {
1345 		lock = sq->sq_lock;
1346 		db_printf("Associated Interlock: %p - (%s) %s\n", lock,
1347 		    LOCK_CLASS(lock)->lc_name, lock->lo_name);
1348 	}
1349 #endif
1350 	db_printf("Blocked threads:\n");
1351 	for (i = 0; i < NR_SLEEPQS; i++) {
1352 		db_printf("\nQueue[%d]:\n", i);
1353 		if (TAILQ_EMPTY(&sq->sq_blocked[i]))
1354 			db_printf("\tempty\n");
1355 		else
1356 			TAILQ_FOREACH(td, &sq->sq_blocked[0],
1357 				      td_slpq) {
1358 				db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td,
1359 					  td->td_tid, td->td_proc->p_pid,
1360 					  td->td_name);
1361 			}
1362 		db_printf("(expected: %u)\n", sq->sq_blockedcnt[i]);
1363 	}
1364 }
1365 
1366 /* Alias 'show sleepqueue' to 'show sleepq'. */
1367 DB_SHOW_ALIAS(sleepqueue, db_show_sleepqueue);
1368 #endif
1369