1 /*- 2 * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 /* 28 * Implementation of sleep queues used to hold queue of threads blocked on 29 * a wait channel. Sleep queues different from turnstiles in that wait 30 * channels are not owned by anyone, so there is no priority propagation. 31 * Sleep queues can also provide a timeout and can also be interrupted by 32 * signals. That said, there are several similarities between the turnstile 33 * and sleep queue implementations. (Note: turnstiles were implemented 34 * first.) For example, both use a hash table of the same size where each 35 * bucket is referred to as a "chain" that contains both a spin lock and 36 * a linked list of queues. An individual queue is located by using a hash 37 * to pick a chain, locking the chain, and then walking the chain searching 38 * for the queue. This means that a wait channel object does not need to 39 * embed it's queue head just as locks do not embed their turnstile queue 40 * head. Threads also carry around a sleep queue that they lend to the 41 * wait channel when blocking. Just as in turnstiles, the queue includes 42 * a free list of the sleep queues of other threads blocked on the same 43 * wait channel in the case of multiple waiters. 44 * 45 * Some additional functionality provided by sleep queues include the 46 * ability to set a timeout. The timeout is managed using a per-thread 47 * callout that resumes a thread if it is asleep. A thread may also 48 * catch signals while it is asleep (aka an interruptible sleep). The 49 * signal code uses sleepq_abort() to interrupt a sleeping thread. Finally, 50 * sleep queues also provide some extra assertions. One is not allowed to 51 * mix the sleep/wakeup and cv APIs for a given wait channel. Also, one 52 * must consistently use the same lock to synchronize with a wait channel, 53 * though this check is currently only a warning for sleep/wakeup due to 54 * pre-existing abuse of that API. The same lock must also be held when 55 * awakening threads, though that is currently only enforced for condition 56 * variables. 57 */ 58 59 #include <sys/cdefs.h> 60 __FBSDID("$FreeBSD$"); 61 62 #include "opt_sleepqueue_profiling.h" 63 #include "opt_ddb.h" 64 #include "opt_sched.h" 65 #include "opt_stack.h" 66 67 #include <sys/param.h> 68 #include <sys/systm.h> 69 #include <sys/lock.h> 70 #include <sys/kernel.h> 71 #include <sys/ktr.h> 72 #include <sys/mutex.h> 73 #include <sys/proc.h> 74 #include <sys/sbuf.h> 75 #include <sys/sched.h> 76 #include <sys/sdt.h> 77 #include <sys/signalvar.h> 78 #include <sys/sleepqueue.h> 79 #include <sys/stack.h> 80 #include <sys/sysctl.h> 81 82 #include <vm/uma.h> 83 84 #ifdef DDB 85 #include <ddb/ddb.h> 86 #endif 87 88 89 /* 90 * Constants for the hash table of sleep queue chains. 91 * SC_TABLESIZE must be a power of two for SC_MASK to work properly. 92 */ 93 #define SC_TABLESIZE 256 /* Must be power of 2. */ 94 #define SC_MASK (SC_TABLESIZE - 1) 95 #define SC_SHIFT 8 96 #define SC_HASH(wc) ((((uintptr_t)(wc) >> SC_SHIFT) ^ (uintptr_t)(wc)) & \ 97 SC_MASK) 98 #define SC_LOOKUP(wc) &sleepq_chains[SC_HASH(wc)] 99 #define NR_SLEEPQS 2 100 /* 101 * There two different lists of sleep queues. Both lists are connected 102 * via the sq_hash entries. The first list is the sleep queue chain list 103 * that a sleep queue is on when it is attached to a wait channel. The 104 * second list is the free list hung off of a sleep queue that is attached 105 * to a wait channel. 106 * 107 * Each sleep queue also contains the wait channel it is attached to, the 108 * list of threads blocked on that wait channel, flags specific to the 109 * wait channel, and the lock used to synchronize with a wait channel. 110 * The flags are used to catch mismatches between the various consumers 111 * of the sleep queue API (e.g. sleep/wakeup and condition variables). 112 * The lock pointer is only used when invariants are enabled for various 113 * debugging checks. 114 * 115 * Locking key: 116 * c - sleep queue chain lock 117 */ 118 struct sleepqueue { 119 TAILQ_HEAD(, thread) sq_blocked[NR_SLEEPQS]; /* (c) Blocked threads. */ 120 u_int sq_blockedcnt[NR_SLEEPQS]; /* (c) N. of blocked threads. */ 121 LIST_ENTRY(sleepqueue) sq_hash; /* (c) Chain and free list. */ 122 LIST_HEAD(, sleepqueue) sq_free; /* (c) Free queues. */ 123 void *sq_wchan; /* (c) Wait channel. */ 124 int sq_type; /* (c) Queue type. */ 125 #ifdef INVARIANTS 126 struct lock_object *sq_lock; /* (c) Associated lock. */ 127 #endif 128 }; 129 130 struct sleepqueue_chain { 131 LIST_HEAD(, sleepqueue) sc_queues; /* List of sleep queues. */ 132 struct mtx sc_lock; /* Spin lock for this chain. */ 133 #ifdef SLEEPQUEUE_PROFILING 134 u_int sc_depth; /* Length of sc_queues. */ 135 u_int sc_max_depth; /* Max length of sc_queues. */ 136 #endif 137 }; 138 139 #ifdef SLEEPQUEUE_PROFILING 140 u_int sleepq_max_depth; 141 static SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling"); 142 static SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0, 143 "sleepq chain stats"); 144 SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth, 145 0, "maxmimum depth achieved of a single chain"); 146 147 static void sleepq_profile(const char *wmesg); 148 static int prof_enabled; 149 #endif 150 static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE]; 151 static uma_zone_t sleepq_zone; 152 153 /* 154 * Prototypes for non-exported routines. 155 */ 156 static int sleepq_catch_signals(void *wchan, int pri); 157 static int sleepq_check_signals(void); 158 static int sleepq_check_timeout(void); 159 #ifdef INVARIANTS 160 static void sleepq_dtor(void *mem, int size, void *arg); 161 #endif 162 static int sleepq_init(void *mem, int size, int flags); 163 static int sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, 164 int pri); 165 static void sleepq_switch(void *wchan, int pri); 166 static void sleepq_timeout(void *arg); 167 168 SDT_PROBE_DECLARE(sched, , , sleep); 169 SDT_PROBE_DECLARE(sched, , , wakeup); 170 171 /* 172 * Initialize SLEEPQUEUE_PROFILING specific sysctl nodes. 173 * Note that it must happen after sleepinit() has been fully executed, so 174 * it must happen after SI_SUB_KMEM SYSINIT() subsystem setup. 175 */ 176 #ifdef SLEEPQUEUE_PROFILING 177 static void 178 init_sleepqueue_profiling(void) 179 { 180 char chain_name[10]; 181 struct sysctl_oid *chain_oid; 182 u_int i; 183 184 for (i = 0; i < SC_TABLESIZE; i++) { 185 snprintf(chain_name, sizeof(chain_name), "%u", i); 186 chain_oid = SYSCTL_ADD_NODE(NULL, 187 SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO, 188 chain_name, CTLFLAG_RD, NULL, "sleepq chain stats"); 189 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO, 190 "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL); 191 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO, 192 "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0, 193 NULL); 194 } 195 } 196 197 SYSINIT(sleepqueue_profiling, SI_SUB_LOCK, SI_ORDER_ANY, 198 init_sleepqueue_profiling, NULL); 199 #endif 200 201 /* 202 * Early initialization of sleep queues that is called from the sleepinit() 203 * SYSINIT. 204 */ 205 void 206 init_sleepqueues(void) 207 { 208 int i; 209 210 for (i = 0; i < SC_TABLESIZE; i++) { 211 LIST_INIT(&sleepq_chains[i].sc_queues); 212 mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL, 213 MTX_SPIN | MTX_RECURSE); 214 } 215 sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue), 216 #ifdef INVARIANTS 217 NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0); 218 #else 219 NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0); 220 #endif 221 222 thread0.td_sleepqueue = sleepq_alloc(); 223 } 224 225 /* 226 * Get a sleep queue for a new thread. 227 */ 228 struct sleepqueue * 229 sleepq_alloc(void) 230 { 231 232 return (uma_zalloc(sleepq_zone, M_WAITOK)); 233 } 234 235 /* 236 * Free a sleep queue when a thread is destroyed. 237 */ 238 void 239 sleepq_free(struct sleepqueue *sq) 240 { 241 242 uma_zfree(sleepq_zone, sq); 243 } 244 245 /* 246 * Lock the sleep queue chain associated with the specified wait channel. 247 */ 248 void 249 sleepq_lock(void *wchan) 250 { 251 struct sleepqueue_chain *sc; 252 253 sc = SC_LOOKUP(wchan); 254 mtx_lock_spin(&sc->sc_lock); 255 } 256 257 /* 258 * Look up the sleep queue associated with a given wait channel in the hash 259 * table locking the associated sleep queue chain. If no queue is found in 260 * the table, NULL is returned. 261 */ 262 struct sleepqueue * 263 sleepq_lookup(void *wchan) 264 { 265 struct sleepqueue_chain *sc; 266 struct sleepqueue *sq; 267 268 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 269 sc = SC_LOOKUP(wchan); 270 mtx_assert(&sc->sc_lock, MA_OWNED); 271 LIST_FOREACH(sq, &sc->sc_queues, sq_hash) 272 if (sq->sq_wchan == wchan) 273 return (sq); 274 return (NULL); 275 } 276 277 /* 278 * Unlock the sleep queue chain associated with a given wait channel. 279 */ 280 void 281 sleepq_release(void *wchan) 282 { 283 struct sleepqueue_chain *sc; 284 285 sc = SC_LOOKUP(wchan); 286 mtx_unlock_spin(&sc->sc_lock); 287 } 288 289 /* 290 * Places the current thread on the sleep queue for the specified wait 291 * channel. If INVARIANTS is enabled, then it associates the passed in 292 * lock with the sleepq to make sure it is held when that sleep queue is 293 * woken up. 294 */ 295 void 296 sleepq_add(void *wchan, struct lock_object *lock, const char *wmesg, int flags, 297 int queue) 298 { 299 struct sleepqueue_chain *sc; 300 struct sleepqueue *sq; 301 struct thread *td; 302 303 td = curthread; 304 sc = SC_LOOKUP(wchan); 305 mtx_assert(&sc->sc_lock, MA_OWNED); 306 MPASS(td->td_sleepqueue != NULL); 307 MPASS(wchan != NULL); 308 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 309 310 /* If this thread is not allowed to sleep, die a horrible death. */ 311 KASSERT(td->td_no_sleeping == 0, 312 ("%s: td %p to sleep on wchan %p with sleeping prohibited", 313 __func__, td, wchan)); 314 315 /* Look up the sleep queue associated with the wait channel 'wchan'. */ 316 sq = sleepq_lookup(wchan); 317 318 /* 319 * If the wait channel does not already have a sleep queue, use 320 * this thread's sleep queue. Otherwise, insert the current thread 321 * into the sleep queue already in use by this wait channel. 322 */ 323 if (sq == NULL) { 324 #ifdef INVARIANTS 325 int i; 326 327 sq = td->td_sleepqueue; 328 for (i = 0; i < NR_SLEEPQS; i++) { 329 KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]), 330 ("thread's sleep queue %d is not empty", i)); 331 KASSERT(sq->sq_blockedcnt[i] == 0, 332 ("thread's sleep queue %d count mismatches", i)); 333 } 334 KASSERT(LIST_EMPTY(&sq->sq_free), 335 ("thread's sleep queue has a non-empty free list")); 336 KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer")); 337 sq->sq_lock = lock; 338 #endif 339 #ifdef SLEEPQUEUE_PROFILING 340 sc->sc_depth++; 341 if (sc->sc_depth > sc->sc_max_depth) { 342 sc->sc_max_depth = sc->sc_depth; 343 if (sc->sc_max_depth > sleepq_max_depth) 344 sleepq_max_depth = sc->sc_max_depth; 345 } 346 #endif 347 sq = td->td_sleepqueue; 348 LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash); 349 sq->sq_wchan = wchan; 350 sq->sq_type = flags & SLEEPQ_TYPE; 351 } else { 352 MPASS(wchan == sq->sq_wchan); 353 MPASS(lock == sq->sq_lock); 354 MPASS((flags & SLEEPQ_TYPE) == sq->sq_type); 355 LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash); 356 } 357 thread_lock(td); 358 TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq); 359 sq->sq_blockedcnt[queue]++; 360 td->td_sleepqueue = NULL; 361 td->td_sqqueue = queue; 362 td->td_wchan = wchan; 363 td->td_wmesg = wmesg; 364 if (flags & SLEEPQ_INTERRUPTIBLE) { 365 td->td_flags |= TDF_SINTR; 366 td->td_flags &= ~TDF_SLEEPABORT; 367 } 368 thread_unlock(td); 369 } 370 371 /* 372 * Sets a timeout that will remove the current thread from the specified 373 * sleep queue after timo ticks if the thread has not already been awakened. 374 */ 375 void 376 sleepq_set_timeout_sbt(void *wchan, sbintime_t sbt, sbintime_t pr, 377 int flags) 378 { 379 struct sleepqueue_chain *sc; 380 struct thread *td; 381 382 td = curthread; 383 sc = SC_LOOKUP(wchan); 384 mtx_assert(&sc->sc_lock, MA_OWNED); 385 MPASS(TD_ON_SLEEPQ(td)); 386 MPASS(td->td_sleepqueue == NULL); 387 MPASS(wchan != NULL); 388 if (cold) 389 panic("timed sleep before timers are working"); 390 callout_reset_sbt_on(&td->td_slpcallout, sbt, pr, 391 sleepq_timeout, td, PCPU_GET(cpuid), flags | C_DIRECT_EXEC); 392 } 393 394 /* 395 * Return the number of actual sleepers for the specified queue. 396 */ 397 u_int 398 sleepq_sleepcnt(void *wchan, int queue) 399 { 400 struct sleepqueue *sq; 401 402 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 403 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 404 sq = sleepq_lookup(wchan); 405 if (sq == NULL) 406 return (0); 407 return (sq->sq_blockedcnt[queue]); 408 } 409 410 /* 411 * Marks the pending sleep of the current thread as interruptible and 412 * makes an initial check for pending signals before putting a thread 413 * to sleep. Enters and exits with the thread lock held. Thread lock 414 * may have transitioned from the sleepq lock to a run lock. 415 */ 416 static int 417 sleepq_catch_signals(void *wchan, int pri) 418 { 419 struct sleepqueue_chain *sc; 420 struct sleepqueue *sq; 421 struct thread *td; 422 struct proc *p; 423 struct sigacts *ps; 424 int sig, ret; 425 426 td = curthread; 427 p = curproc; 428 sc = SC_LOOKUP(wchan); 429 mtx_assert(&sc->sc_lock, MA_OWNED); 430 MPASS(wchan != NULL); 431 if ((td->td_pflags & TDP_WAKEUP) != 0) { 432 td->td_pflags &= ~TDP_WAKEUP; 433 ret = EINTR; 434 thread_lock(td); 435 goto out; 436 } 437 438 /* 439 * See if there are any pending signals for this thread. If not 440 * we can switch immediately. Otherwise do the signal processing 441 * directly. 442 */ 443 thread_lock(td); 444 if ((td->td_flags & (TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK)) == 0) { 445 sleepq_switch(wchan, pri); 446 return (0); 447 } 448 thread_unlock(td); 449 mtx_unlock_spin(&sc->sc_lock); 450 CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)", 451 (void *)td, (long)p->p_pid, td->td_name); 452 PROC_LOCK(p); 453 ps = p->p_sigacts; 454 mtx_lock(&ps->ps_mtx); 455 sig = cursig(td); 456 if (sig == 0) { 457 mtx_unlock(&ps->ps_mtx); 458 ret = thread_suspend_check(1); 459 MPASS(ret == 0 || ret == EINTR || ret == ERESTART); 460 } else { 461 if (SIGISMEMBER(ps->ps_sigintr, sig)) 462 ret = EINTR; 463 else 464 ret = ERESTART; 465 mtx_unlock(&ps->ps_mtx); 466 } 467 /* 468 * Lock the per-process spinlock prior to dropping the PROC_LOCK 469 * to avoid a signal delivery race. PROC_LOCK, PROC_SLOCK, and 470 * thread_lock() are currently held in tdsendsignal(). 471 */ 472 PROC_SLOCK(p); 473 mtx_lock_spin(&sc->sc_lock); 474 PROC_UNLOCK(p); 475 thread_lock(td); 476 PROC_SUNLOCK(p); 477 if (ret == 0) { 478 sleepq_switch(wchan, pri); 479 return (0); 480 } 481 out: 482 /* 483 * There were pending signals and this thread is still 484 * on the sleep queue, remove it from the sleep queue. 485 */ 486 if (TD_ON_SLEEPQ(td)) { 487 sq = sleepq_lookup(wchan); 488 if (sleepq_resume_thread(sq, td, 0)) { 489 #ifdef INVARIANTS 490 /* 491 * This thread hasn't gone to sleep yet, so it 492 * should not be swapped out. 493 */ 494 panic("not waking up swapper"); 495 #endif 496 } 497 } 498 mtx_unlock_spin(&sc->sc_lock); 499 MPASS(td->td_lock != &sc->sc_lock); 500 return (ret); 501 } 502 503 /* 504 * Switches to another thread if we are still asleep on a sleep queue. 505 * Returns with thread lock. 506 */ 507 static void 508 sleepq_switch(void *wchan, int pri) 509 { 510 struct sleepqueue_chain *sc; 511 struct sleepqueue *sq; 512 struct thread *td; 513 514 td = curthread; 515 sc = SC_LOOKUP(wchan); 516 mtx_assert(&sc->sc_lock, MA_OWNED); 517 THREAD_LOCK_ASSERT(td, MA_OWNED); 518 519 /* 520 * If we have a sleep queue, then we've already been woken up, so 521 * just return. 522 */ 523 if (td->td_sleepqueue != NULL) { 524 mtx_unlock_spin(&sc->sc_lock); 525 return; 526 } 527 528 /* 529 * If TDF_TIMEOUT is set, then our sleep has been timed out 530 * already but we are still on the sleep queue, so dequeue the 531 * thread and return. 532 */ 533 if (td->td_flags & TDF_TIMEOUT) { 534 MPASS(TD_ON_SLEEPQ(td)); 535 sq = sleepq_lookup(wchan); 536 if (sleepq_resume_thread(sq, td, 0)) { 537 #ifdef INVARIANTS 538 /* 539 * This thread hasn't gone to sleep yet, so it 540 * should not be swapped out. 541 */ 542 panic("not waking up swapper"); 543 #endif 544 } 545 mtx_unlock_spin(&sc->sc_lock); 546 return; 547 } 548 #ifdef SLEEPQUEUE_PROFILING 549 if (prof_enabled) 550 sleepq_profile(td->td_wmesg); 551 #endif 552 MPASS(td->td_sleepqueue == NULL); 553 sched_sleep(td, pri); 554 thread_lock_set(td, &sc->sc_lock); 555 SDT_PROBE0(sched, , , sleep); 556 TD_SET_SLEEPING(td); 557 mi_switch(SW_VOL | SWT_SLEEPQ, NULL); 558 KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING")); 559 CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)", 560 (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name); 561 } 562 563 /* 564 * Check to see if we timed out. 565 */ 566 static int 567 sleepq_check_timeout(void) 568 { 569 struct thread *td; 570 571 td = curthread; 572 THREAD_LOCK_ASSERT(td, MA_OWNED); 573 574 /* 575 * If TDF_TIMEOUT is set, we timed out. 576 */ 577 if (td->td_flags & TDF_TIMEOUT) { 578 td->td_flags &= ~TDF_TIMEOUT; 579 return (EWOULDBLOCK); 580 } 581 582 /* 583 * If TDF_TIMOFAIL is set, the timeout ran after we had 584 * already been woken up. 585 */ 586 if (td->td_flags & TDF_TIMOFAIL) 587 td->td_flags &= ~TDF_TIMOFAIL; 588 589 /* 590 * If callout_stop() fails, then the timeout is running on 591 * another CPU, so synchronize with it to avoid having it 592 * accidentally wake up a subsequent sleep. 593 */ 594 else if (_callout_stop_safe(&td->td_slpcallout, CS_MIGRBLOCK, NULL) 595 == 0) { 596 td->td_flags |= TDF_TIMEOUT; 597 TD_SET_SLEEPING(td); 598 mi_switch(SW_INVOL | SWT_SLEEPQTIMO, NULL); 599 } 600 return (0); 601 } 602 603 /* 604 * Check to see if we were awoken by a signal. 605 */ 606 static int 607 sleepq_check_signals(void) 608 { 609 struct thread *td; 610 611 td = curthread; 612 THREAD_LOCK_ASSERT(td, MA_OWNED); 613 614 /* We are no longer in an interruptible sleep. */ 615 if (td->td_flags & TDF_SINTR) 616 td->td_flags &= ~TDF_SINTR; 617 618 if (td->td_flags & TDF_SLEEPABORT) { 619 td->td_flags &= ~TDF_SLEEPABORT; 620 return (td->td_intrval); 621 } 622 623 return (0); 624 } 625 626 /* 627 * Block the current thread until it is awakened from its sleep queue. 628 */ 629 void 630 sleepq_wait(void *wchan, int pri) 631 { 632 struct thread *td; 633 634 td = curthread; 635 MPASS(!(td->td_flags & TDF_SINTR)); 636 thread_lock(td); 637 sleepq_switch(wchan, pri); 638 thread_unlock(td); 639 } 640 641 /* 642 * Block the current thread until it is awakened from its sleep queue 643 * or it is interrupted by a signal. 644 */ 645 int 646 sleepq_wait_sig(void *wchan, int pri) 647 { 648 int rcatch; 649 int rval; 650 651 rcatch = sleepq_catch_signals(wchan, pri); 652 rval = sleepq_check_signals(); 653 thread_unlock(curthread); 654 if (rcatch) 655 return (rcatch); 656 return (rval); 657 } 658 659 /* 660 * Block the current thread until it is awakened from its sleep queue 661 * or it times out while waiting. 662 */ 663 int 664 sleepq_timedwait(void *wchan, int pri) 665 { 666 struct thread *td; 667 int rval; 668 669 td = curthread; 670 MPASS(!(td->td_flags & TDF_SINTR)); 671 thread_lock(td); 672 sleepq_switch(wchan, pri); 673 rval = sleepq_check_timeout(); 674 thread_unlock(td); 675 676 return (rval); 677 } 678 679 /* 680 * Block the current thread until it is awakened from its sleep queue, 681 * it is interrupted by a signal, or it times out waiting to be awakened. 682 */ 683 int 684 sleepq_timedwait_sig(void *wchan, int pri) 685 { 686 int rcatch, rvalt, rvals; 687 688 rcatch = sleepq_catch_signals(wchan, pri); 689 rvalt = sleepq_check_timeout(); 690 rvals = sleepq_check_signals(); 691 thread_unlock(curthread); 692 if (rcatch) 693 return (rcatch); 694 if (rvals) 695 return (rvals); 696 return (rvalt); 697 } 698 699 /* 700 * Returns the type of sleepqueue given a waitchannel. 701 */ 702 int 703 sleepq_type(void *wchan) 704 { 705 struct sleepqueue *sq; 706 int type; 707 708 MPASS(wchan != NULL); 709 710 sleepq_lock(wchan); 711 sq = sleepq_lookup(wchan); 712 if (sq == NULL) { 713 sleepq_release(wchan); 714 return (-1); 715 } 716 type = sq->sq_type; 717 sleepq_release(wchan); 718 return (type); 719 } 720 721 /* 722 * Removes a thread from a sleep queue and makes it 723 * runnable. 724 */ 725 static int 726 sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri) 727 { 728 struct sleepqueue_chain *sc; 729 730 MPASS(td != NULL); 731 MPASS(sq->sq_wchan != NULL); 732 MPASS(td->td_wchan == sq->sq_wchan); 733 MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0); 734 THREAD_LOCK_ASSERT(td, MA_OWNED); 735 sc = SC_LOOKUP(sq->sq_wchan); 736 mtx_assert(&sc->sc_lock, MA_OWNED); 737 738 SDT_PROBE2(sched, , , wakeup, td, td->td_proc); 739 740 /* Remove the thread from the queue. */ 741 sq->sq_blockedcnt[td->td_sqqueue]--; 742 TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq); 743 744 /* 745 * Get a sleep queue for this thread. If this is the last waiter, 746 * use the queue itself and take it out of the chain, otherwise, 747 * remove a queue from the free list. 748 */ 749 if (LIST_EMPTY(&sq->sq_free)) { 750 td->td_sleepqueue = sq; 751 #ifdef INVARIANTS 752 sq->sq_wchan = NULL; 753 #endif 754 #ifdef SLEEPQUEUE_PROFILING 755 sc->sc_depth--; 756 #endif 757 } else 758 td->td_sleepqueue = LIST_FIRST(&sq->sq_free); 759 LIST_REMOVE(td->td_sleepqueue, sq_hash); 760 761 td->td_wmesg = NULL; 762 td->td_wchan = NULL; 763 td->td_flags &= ~TDF_SINTR; 764 765 CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)", 766 (void *)td, (long)td->td_proc->p_pid, td->td_name); 767 768 /* Adjust priority if requested. */ 769 MPASS(pri == 0 || (pri >= PRI_MIN && pri <= PRI_MAX)); 770 if (pri != 0 && td->td_priority > pri && 771 PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) 772 sched_prio(td, pri); 773 774 /* 775 * Note that thread td might not be sleeping if it is running 776 * sleepq_catch_signals() on another CPU or is blocked on its 777 * proc lock to check signals. There's no need to mark the 778 * thread runnable in that case. 779 */ 780 if (TD_IS_SLEEPING(td)) { 781 TD_CLR_SLEEPING(td); 782 return (setrunnable(td)); 783 } 784 return (0); 785 } 786 787 #ifdef INVARIANTS 788 /* 789 * UMA zone item deallocator. 790 */ 791 static void 792 sleepq_dtor(void *mem, int size, void *arg) 793 { 794 struct sleepqueue *sq; 795 int i; 796 797 sq = mem; 798 for (i = 0; i < NR_SLEEPQS; i++) { 799 MPASS(TAILQ_EMPTY(&sq->sq_blocked[i])); 800 MPASS(sq->sq_blockedcnt[i] == 0); 801 } 802 } 803 #endif 804 805 /* 806 * UMA zone item initializer. 807 */ 808 static int 809 sleepq_init(void *mem, int size, int flags) 810 { 811 struct sleepqueue *sq; 812 int i; 813 814 bzero(mem, size); 815 sq = mem; 816 for (i = 0; i < NR_SLEEPQS; i++) { 817 TAILQ_INIT(&sq->sq_blocked[i]); 818 sq->sq_blockedcnt[i] = 0; 819 } 820 LIST_INIT(&sq->sq_free); 821 return (0); 822 } 823 824 /* 825 * Find the highest priority thread sleeping on a wait channel and resume it. 826 */ 827 int 828 sleepq_signal(void *wchan, int flags, int pri, int queue) 829 { 830 struct sleepqueue *sq; 831 struct thread *td, *besttd; 832 int wakeup_swapper; 833 834 CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags); 835 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 836 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 837 sq = sleepq_lookup(wchan); 838 if (sq == NULL) 839 return (0); 840 KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE), 841 ("%s: mismatch between sleep/wakeup and cv_*", __func__)); 842 843 /* 844 * Find the highest priority thread on the queue. If there is a 845 * tie, use the thread that first appears in the queue as it has 846 * been sleeping the longest since threads are always added to 847 * the tail of sleep queues. 848 */ 849 besttd = NULL; 850 TAILQ_FOREACH(td, &sq->sq_blocked[queue], td_slpq) { 851 if (besttd == NULL || td->td_priority < besttd->td_priority) 852 besttd = td; 853 } 854 MPASS(besttd != NULL); 855 thread_lock(besttd); 856 wakeup_swapper = sleepq_resume_thread(sq, besttd, pri); 857 thread_unlock(besttd); 858 return (wakeup_swapper); 859 } 860 861 /* 862 * Resume all threads sleeping on a specified wait channel. 863 */ 864 int 865 sleepq_broadcast(void *wchan, int flags, int pri, int queue) 866 { 867 struct sleepqueue *sq; 868 struct thread *td; 869 int wakeup_swapper; 870 871 CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags); 872 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 873 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 874 sq = sleepq_lookup(wchan); 875 if (sq == NULL) 876 return (0); 877 KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE), 878 ("%s: mismatch between sleep/wakeup and cv_*", __func__)); 879 880 /* Resume all blocked threads on the sleep queue. */ 881 wakeup_swapper = 0; 882 while ((td = TAILQ_FIRST(&sq->sq_blocked[queue])) != NULL) { 883 thread_lock(td); 884 wakeup_swapper |= sleepq_resume_thread(sq, td, pri); 885 thread_unlock(td); 886 } 887 return (wakeup_swapper); 888 } 889 890 /* 891 * Time sleeping threads out. When the timeout expires, the thread is 892 * removed from the sleep queue and made runnable if it is still asleep. 893 */ 894 static void 895 sleepq_timeout(void *arg) 896 { 897 struct sleepqueue_chain *sc; 898 struct sleepqueue *sq; 899 struct thread *td; 900 void *wchan; 901 int wakeup_swapper; 902 903 td = arg; 904 wakeup_swapper = 0; 905 CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)", 906 (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name); 907 908 /* 909 * First, see if the thread is asleep and get the wait channel if 910 * it is. 911 */ 912 thread_lock(td); 913 if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) { 914 wchan = td->td_wchan; 915 sc = SC_LOOKUP(wchan); 916 THREAD_LOCKPTR_ASSERT(td, &sc->sc_lock); 917 sq = sleepq_lookup(wchan); 918 MPASS(sq != NULL); 919 td->td_flags |= TDF_TIMEOUT; 920 wakeup_swapper = sleepq_resume_thread(sq, td, 0); 921 thread_unlock(td); 922 if (wakeup_swapper) 923 kick_proc0(); 924 return; 925 } 926 927 /* 928 * If the thread is on the SLEEPQ but isn't sleeping yet, it 929 * can either be on another CPU in between sleepq_add() and 930 * one of the sleepq_*wait*() routines or it can be in 931 * sleepq_catch_signals(). 932 */ 933 if (TD_ON_SLEEPQ(td)) { 934 td->td_flags |= TDF_TIMEOUT; 935 thread_unlock(td); 936 return; 937 } 938 939 /* 940 * Now check for the edge cases. First, if TDF_TIMEOUT is set, 941 * then the other thread has already yielded to us, so clear 942 * the flag and resume it. If TDF_TIMEOUT is not set, then the 943 * we know that the other thread is not on a sleep queue, but it 944 * hasn't resumed execution yet. In that case, set TDF_TIMOFAIL 945 * to let it know that the timeout has already run and doesn't 946 * need to be canceled. 947 */ 948 if (td->td_flags & TDF_TIMEOUT) { 949 MPASS(TD_IS_SLEEPING(td)); 950 td->td_flags &= ~TDF_TIMEOUT; 951 TD_CLR_SLEEPING(td); 952 wakeup_swapper = setrunnable(td); 953 } else 954 td->td_flags |= TDF_TIMOFAIL; 955 thread_unlock(td); 956 if (wakeup_swapper) 957 kick_proc0(); 958 } 959 960 /* 961 * Resumes a specific thread from the sleep queue associated with a specific 962 * wait channel if it is on that queue. 963 */ 964 void 965 sleepq_remove(struct thread *td, void *wchan) 966 { 967 struct sleepqueue *sq; 968 int wakeup_swapper; 969 970 /* 971 * Look up the sleep queue for this wait channel, then re-check 972 * that the thread is asleep on that channel, if it is not, then 973 * bail. 974 */ 975 MPASS(wchan != NULL); 976 sleepq_lock(wchan); 977 sq = sleepq_lookup(wchan); 978 /* 979 * We can not lock the thread here as it may be sleeping on a 980 * different sleepq. However, holding the sleepq lock for this 981 * wchan can guarantee that we do not miss a wakeup for this 982 * channel. The asserts below will catch any false positives. 983 */ 984 if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) { 985 sleepq_release(wchan); 986 return; 987 } 988 /* Thread is asleep on sleep queue sq, so wake it up. */ 989 thread_lock(td); 990 MPASS(sq != NULL); 991 MPASS(td->td_wchan == wchan); 992 wakeup_swapper = sleepq_resume_thread(sq, td, 0); 993 thread_unlock(td); 994 sleepq_release(wchan); 995 if (wakeup_swapper) 996 kick_proc0(); 997 } 998 999 /* 1000 * Abort a thread as if an interrupt had occurred. Only abort 1001 * interruptible waits (unfortunately it isn't safe to abort others). 1002 */ 1003 int 1004 sleepq_abort(struct thread *td, int intrval) 1005 { 1006 struct sleepqueue *sq; 1007 void *wchan; 1008 1009 THREAD_LOCK_ASSERT(td, MA_OWNED); 1010 MPASS(TD_ON_SLEEPQ(td)); 1011 MPASS(td->td_flags & TDF_SINTR); 1012 MPASS(intrval == EINTR || intrval == ERESTART); 1013 1014 /* 1015 * If the TDF_TIMEOUT flag is set, just leave. A 1016 * timeout is scheduled anyhow. 1017 */ 1018 if (td->td_flags & TDF_TIMEOUT) 1019 return (0); 1020 1021 CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)", 1022 (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name); 1023 td->td_intrval = intrval; 1024 td->td_flags |= TDF_SLEEPABORT; 1025 /* 1026 * If the thread has not slept yet it will find the signal in 1027 * sleepq_catch_signals() and call sleepq_resume_thread. Otherwise 1028 * we have to do it here. 1029 */ 1030 if (!TD_IS_SLEEPING(td)) 1031 return (0); 1032 wchan = td->td_wchan; 1033 MPASS(wchan != NULL); 1034 sq = sleepq_lookup(wchan); 1035 MPASS(sq != NULL); 1036 1037 /* Thread is asleep on sleep queue sq, so wake it up. */ 1038 return (sleepq_resume_thread(sq, td, 0)); 1039 } 1040 1041 /* 1042 * Prints the stacks of all threads presently sleeping on wchan/queue to 1043 * the sbuf sb. Sets count_stacks_printed to the number of stacks actually 1044 * printed. Typically, this will equal the number of threads sleeping on the 1045 * queue, but may be less if sb overflowed before all stacks were printed. 1046 */ 1047 #ifdef STACK 1048 int 1049 sleepq_sbuf_print_stacks(struct sbuf *sb, void *wchan, int queue, 1050 int *count_stacks_printed) 1051 { 1052 struct thread *td, *td_next; 1053 struct sleepqueue *sq; 1054 struct stack **st; 1055 struct sbuf **td_infos; 1056 int i, stack_idx, error, stacks_to_allocate; 1057 bool finished, partial_print; 1058 1059 error = 0; 1060 finished = false; 1061 partial_print = false; 1062 1063 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 1064 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 1065 1066 stacks_to_allocate = 10; 1067 for (i = 0; i < 3 && !finished ; i++) { 1068 /* We cannot malloc while holding the queue's spinlock, so 1069 * we do our mallocs now, and hope it is enough. If it 1070 * isn't, we will free these, drop the lock, malloc more, 1071 * and try again, up to a point. After that point we will 1072 * give up and report ENOMEM. We also cannot write to sb 1073 * during this time since the client may have set the 1074 * SBUF_AUTOEXTEND flag on their sbuf, which could cause a 1075 * malloc as we print to it. So we defer actually printing 1076 * to sb until after we drop the spinlock. 1077 */ 1078 1079 /* Where we will store the stacks. */ 1080 st = malloc(sizeof(struct stack *) * stacks_to_allocate, 1081 M_TEMP, M_WAITOK); 1082 for (stack_idx = 0; stack_idx < stacks_to_allocate; 1083 stack_idx++) 1084 st[stack_idx] = stack_create(); 1085 1086 /* Where we will store the td name, tid, etc. */ 1087 td_infos = malloc(sizeof(struct sbuf *) * stacks_to_allocate, 1088 M_TEMP, M_WAITOK); 1089 for (stack_idx = 0; stack_idx < stacks_to_allocate; 1090 stack_idx++) 1091 td_infos[stack_idx] = sbuf_new(NULL, NULL, 1092 MAXCOMLEN + sizeof(struct thread *) * 2 + 40, 1093 SBUF_FIXEDLEN); 1094 1095 sleepq_lock(wchan); 1096 sq = sleepq_lookup(wchan); 1097 if (sq == NULL) { 1098 /* This sleepq does not exist; exit and return ENOENT. */ 1099 error = ENOENT; 1100 finished = true; 1101 sleepq_release(wchan); 1102 goto loop_end; 1103 } 1104 1105 stack_idx = 0; 1106 /* Save thread info */ 1107 TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, 1108 td_next) { 1109 if (stack_idx >= stacks_to_allocate) 1110 goto loop_end; 1111 1112 /* Note the td_lock is equal to the sleepq_lock here. */ 1113 stack_save_td(st[stack_idx], td); 1114 1115 sbuf_printf(td_infos[stack_idx], "%d: %s %p", 1116 td->td_tid, td->td_name, td); 1117 1118 ++stack_idx; 1119 } 1120 1121 finished = true; 1122 sleepq_release(wchan); 1123 1124 /* Print the stacks */ 1125 for (i = 0; i < stack_idx; i++) { 1126 sbuf_finish(td_infos[i]); 1127 sbuf_printf(sb, "--- thread %s: ---\n", sbuf_data(td_infos[i])); 1128 stack_sbuf_print(sb, st[i]); 1129 sbuf_printf(sb, "\n"); 1130 1131 error = sbuf_error(sb); 1132 if (error == 0) 1133 *count_stacks_printed = stack_idx; 1134 } 1135 1136 loop_end: 1137 if (!finished) 1138 sleepq_release(wchan); 1139 for (stack_idx = 0; stack_idx < stacks_to_allocate; 1140 stack_idx++) 1141 stack_destroy(st[stack_idx]); 1142 for (stack_idx = 0; stack_idx < stacks_to_allocate; 1143 stack_idx++) 1144 sbuf_delete(td_infos[stack_idx]); 1145 free(st, M_TEMP); 1146 free(td_infos, M_TEMP); 1147 stacks_to_allocate *= 10; 1148 } 1149 1150 if (!finished && error == 0) 1151 error = ENOMEM; 1152 1153 return (error); 1154 } 1155 #endif 1156 1157 #ifdef SLEEPQUEUE_PROFILING 1158 #define SLEEPQ_PROF_LOCATIONS 1024 1159 #define SLEEPQ_SBUFSIZE 512 1160 struct sleepq_prof { 1161 LIST_ENTRY(sleepq_prof) sp_link; 1162 const char *sp_wmesg; 1163 long sp_count; 1164 }; 1165 1166 LIST_HEAD(sqphead, sleepq_prof); 1167 1168 struct sqphead sleepq_prof_free; 1169 struct sqphead sleepq_hash[SC_TABLESIZE]; 1170 static struct sleepq_prof sleepq_profent[SLEEPQ_PROF_LOCATIONS]; 1171 static struct mtx sleepq_prof_lock; 1172 MTX_SYSINIT(sleepq_prof_lock, &sleepq_prof_lock, "sleepq_prof", MTX_SPIN); 1173 1174 static void 1175 sleepq_profile(const char *wmesg) 1176 { 1177 struct sleepq_prof *sp; 1178 1179 mtx_lock_spin(&sleepq_prof_lock); 1180 if (prof_enabled == 0) 1181 goto unlock; 1182 LIST_FOREACH(sp, &sleepq_hash[SC_HASH(wmesg)], sp_link) 1183 if (sp->sp_wmesg == wmesg) 1184 goto done; 1185 sp = LIST_FIRST(&sleepq_prof_free); 1186 if (sp == NULL) 1187 goto unlock; 1188 sp->sp_wmesg = wmesg; 1189 LIST_REMOVE(sp, sp_link); 1190 LIST_INSERT_HEAD(&sleepq_hash[SC_HASH(wmesg)], sp, sp_link); 1191 done: 1192 sp->sp_count++; 1193 unlock: 1194 mtx_unlock_spin(&sleepq_prof_lock); 1195 return; 1196 } 1197 1198 static void 1199 sleepq_prof_reset(void) 1200 { 1201 struct sleepq_prof *sp; 1202 int enabled; 1203 int i; 1204 1205 mtx_lock_spin(&sleepq_prof_lock); 1206 enabled = prof_enabled; 1207 prof_enabled = 0; 1208 for (i = 0; i < SC_TABLESIZE; i++) 1209 LIST_INIT(&sleepq_hash[i]); 1210 LIST_INIT(&sleepq_prof_free); 1211 for (i = 0; i < SLEEPQ_PROF_LOCATIONS; i++) { 1212 sp = &sleepq_profent[i]; 1213 sp->sp_wmesg = NULL; 1214 sp->sp_count = 0; 1215 LIST_INSERT_HEAD(&sleepq_prof_free, sp, sp_link); 1216 } 1217 prof_enabled = enabled; 1218 mtx_unlock_spin(&sleepq_prof_lock); 1219 } 1220 1221 static int 1222 enable_sleepq_prof(SYSCTL_HANDLER_ARGS) 1223 { 1224 int error, v; 1225 1226 v = prof_enabled; 1227 error = sysctl_handle_int(oidp, &v, v, req); 1228 if (error) 1229 return (error); 1230 if (req->newptr == NULL) 1231 return (error); 1232 if (v == prof_enabled) 1233 return (0); 1234 if (v == 1) 1235 sleepq_prof_reset(); 1236 mtx_lock_spin(&sleepq_prof_lock); 1237 prof_enabled = !!v; 1238 mtx_unlock_spin(&sleepq_prof_lock); 1239 1240 return (0); 1241 } 1242 1243 static int 1244 reset_sleepq_prof_stats(SYSCTL_HANDLER_ARGS) 1245 { 1246 int error, v; 1247 1248 v = 0; 1249 error = sysctl_handle_int(oidp, &v, 0, req); 1250 if (error) 1251 return (error); 1252 if (req->newptr == NULL) 1253 return (error); 1254 if (v == 0) 1255 return (0); 1256 sleepq_prof_reset(); 1257 1258 return (0); 1259 } 1260 1261 static int 1262 dump_sleepq_prof_stats(SYSCTL_HANDLER_ARGS) 1263 { 1264 struct sleepq_prof *sp; 1265 struct sbuf *sb; 1266 int enabled; 1267 int error; 1268 int i; 1269 1270 error = sysctl_wire_old_buffer(req, 0); 1271 if (error != 0) 1272 return (error); 1273 sb = sbuf_new_for_sysctl(NULL, NULL, SLEEPQ_SBUFSIZE, req); 1274 sbuf_printf(sb, "\nwmesg\tcount\n"); 1275 enabled = prof_enabled; 1276 mtx_lock_spin(&sleepq_prof_lock); 1277 prof_enabled = 0; 1278 mtx_unlock_spin(&sleepq_prof_lock); 1279 for (i = 0; i < SC_TABLESIZE; i++) { 1280 LIST_FOREACH(sp, &sleepq_hash[i], sp_link) { 1281 sbuf_printf(sb, "%s\t%ld\n", 1282 sp->sp_wmesg, sp->sp_count); 1283 } 1284 } 1285 mtx_lock_spin(&sleepq_prof_lock); 1286 prof_enabled = enabled; 1287 mtx_unlock_spin(&sleepq_prof_lock); 1288 1289 error = sbuf_finish(sb); 1290 sbuf_delete(sb); 1291 return (error); 1292 } 1293 1294 SYSCTL_PROC(_debug_sleepq, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD, 1295 NULL, 0, dump_sleepq_prof_stats, "A", "Sleepqueue profiling statistics"); 1296 SYSCTL_PROC(_debug_sleepq, OID_AUTO, reset, CTLTYPE_INT | CTLFLAG_RW, 1297 NULL, 0, reset_sleepq_prof_stats, "I", 1298 "Reset sleepqueue profiling statistics"); 1299 SYSCTL_PROC(_debug_sleepq, OID_AUTO, enable, CTLTYPE_INT | CTLFLAG_RW, 1300 NULL, 0, enable_sleepq_prof, "I", "Enable sleepqueue profiling"); 1301 #endif 1302 1303 #ifdef DDB 1304 DB_SHOW_COMMAND(sleepq, db_show_sleepqueue) 1305 { 1306 struct sleepqueue_chain *sc; 1307 struct sleepqueue *sq; 1308 #ifdef INVARIANTS 1309 struct lock_object *lock; 1310 #endif 1311 struct thread *td; 1312 void *wchan; 1313 int i; 1314 1315 if (!have_addr) 1316 return; 1317 1318 /* 1319 * First, see if there is an active sleep queue for the wait channel 1320 * indicated by the address. 1321 */ 1322 wchan = (void *)addr; 1323 sc = SC_LOOKUP(wchan); 1324 LIST_FOREACH(sq, &sc->sc_queues, sq_hash) 1325 if (sq->sq_wchan == wchan) 1326 goto found; 1327 1328 /* 1329 * Second, see if there is an active sleep queue at the address 1330 * indicated. 1331 */ 1332 for (i = 0; i < SC_TABLESIZE; i++) 1333 LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) { 1334 if (sq == (struct sleepqueue *)addr) 1335 goto found; 1336 } 1337 1338 db_printf("Unable to locate a sleep queue via %p\n", (void *)addr); 1339 return; 1340 found: 1341 db_printf("Wait channel: %p\n", sq->sq_wchan); 1342 db_printf("Queue type: %d\n", sq->sq_type); 1343 #ifdef INVARIANTS 1344 if (sq->sq_lock) { 1345 lock = sq->sq_lock; 1346 db_printf("Associated Interlock: %p - (%s) %s\n", lock, 1347 LOCK_CLASS(lock)->lc_name, lock->lo_name); 1348 } 1349 #endif 1350 db_printf("Blocked threads:\n"); 1351 for (i = 0; i < NR_SLEEPQS; i++) { 1352 db_printf("\nQueue[%d]:\n", i); 1353 if (TAILQ_EMPTY(&sq->sq_blocked[i])) 1354 db_printf("\tempty\n"); 1355 else 1356 TAILQ_FOREACH(td, &sq->sq_blocked[0], 1357 td_slpq) { 1358 db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td, 1359 td->td_tid, td->td_proc->p_pid, 1360 td->td_name); 1361 } 1362 db_printf("(expected: %u)\n", sq->sq_blockedcnt[i]); 1363 } 1364 } 1365 1366 /* Alias 'show sleepqueue' to 'show sleepq'. */ 1367 DB_SHOW_ALIAS(sleepqueue, db_show_sleepqueue); 1368 #endif 1369