xref: /freebsd/sys/kern/subr_sleepqueue.c (revision 1670a1c2a47d10ecccd001970b859caf93cd3b6e)
1 /*-
2  * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the author nor the names of any co-contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /*
31  * Implementation of sleep queues used to hold queue of threads blocked on
32  * a wait channel.  Sleep queues different from turnstiles in that wait
33  * channels are not owned by anyone, so there is no priority propagation.
34  * Sleep queues can also provide a timeout and can also be interrupted by
35  * signals.  That said, there are several similarities between the turnstile
36  * and sleep queue implementations.  (Note: turnstiles were implemented
37  * first.)  For example, both use a hash table of the same size where each
38  * bucket is referred to as a "chain" that contains both a spin lock and
39  * a linked list of queues.  An individual queue is located by using a hash
40  * to pick a chain, locking the chain, and then walking the chain searching
41  * for the queue.  This means that a wait channel object does not need to
42  * embed it's queue head just as locks do not embed their turnstile queue
43  * head.  Threads also carry around a sleep queue that they lend to the
44  * wait channel when blocking.  Just as in turnstiles, the queue includes
45  * a free list of the sleep queues of other threads blocked on the same
46  * wait channel in the case of multiple waiters.
47  *
48  * Some additional functionality provided by sleep queues include the
49  * ability to set a timeout.  The timeout is managed using a per-thread
50  * callout that resumes a thread if it is asleep.  A thread may also
51  * catch signals while it is asleep (aka an interruptible sleep).  The
52  * signal code uses sleepq_abort() to interrupt a sleeping thread.  Finally,
53  * sleep queues also provide some extra assertions.  One is not allowed to
54  * mix the sleep/wakeup and cv APIs for a given wait channel.  Also, one
55  * must consistently use the same lock to synchronize with a wait channel,
56  * though this check is currently only a warning for sleep/wakeup due to
57  * pre-existing abuse of that API.  The same lock must also be held when
58  * awakening threads, though that is currently only enforced for condition
59  * variables.
60  */
61 
62 #include <sys/cdefs.h>
63 __FBSDID("$FreeBSD$");
64 
65 #include "opt_sleepqueue_profiling.h"
66 #include "opt_ddb.h"
67 #include "opt_sched.h"
68 
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/lock.h>
72 #include <sys/kernel.h>
73 #include <sys/ktr.h>
74 #include <sys/mutex.h>
75 #include <sys/proc.h>
76 #include <sys/sbuf.h>
77 #include <sys/sched.h>
78 #include <sys/signalvar.h>
79 #include <sys/sleepqueue.h>
80 #include <sys/sysctl.h>
81 
82 #include <vm/uma.h>
83 
84 #ifdef DDB
85 #include <ddb/ddb.h>
86 #endif
87 
88 /*
89  * Constants for the hash table of sleep queue chains.  These constants are
90  * the same ones that 4BSD (and possibly earlier versions of BSD) used.
91  * Basically, we ignore the lower 8 bits of the address since most wait
92  * channel pointers are aligned and only look at the next 7 bits for the
93  * hash.  SC_TABLESIZE must be a power of two for SC_MASK to work properly.
94  */
95 #define	SC_TABLESIZE	128			/* Must be power of 2. */
96 #define	SC_MASK		(SC_TABLESIZE - 1)
97 #define	SC_SHIFT	8
98 #define	SC_HASH(wc)	(((uintptr_t)(wc) >> SC_SHIFT) & SC_MASK)
99 #define	SC_LOOKUP(wc)	&sleepq_chains[SC_HASH(wc)]
100 #define NR_SLEEPQS      2
101 /*
102  * There two different lists of sleep queues.  Both lists are connected
103  * via the sq_hash entries.  The first list is the sleep queue chain list
104  * that a sleep queue is on when it is attached to a wait channel.  The
105  * second list is the free list hung off of a sleep queue that is attached
106  * to a wait channel.
107  *
108  * Each sleep queue also contains the wait channel it is attached to, the
109  * list of threads blocked on that wait channel, flags specific to the
110  * wait channel, and the lock used to synchronize with a wait channel.
111  * The flags are used to catch mismatches between the various consumers
112  * of the sleep queue API (e.g. sleep/wakeup and condition variables).
113  * The lock pointer is only used when invariants are enabled for various
114  * debugging checks.
115  *
116  * Locking key:
117  *  c - sleep queue chain lock
118  */
119 struct sleepqueue {
120 	TAILQ_HEAD(, thread) sq_blocked[NR_SLEEPQS];	/* (c) Blocked threads. */
121 	u_int sq_blockedcnt[NR_SLEEPQS];	/* (c) N. of blocked threads. */
122 	LIST_ENTRY(sleepqueue) sq_hash;		/* (c) Chain and free list. */
123 	LIST_HEAD(, sleepqueue) sq_free;	/* (c) Free queues. */
124 	void	*sq_wchan;			/* (c) Wait channel. */
125 	int	sq_type;			/* (c) Queue type. */
126 #ifdef INVARIANTS
127 	struct lock_object *sq_lock;		/* (c) Associated lock. */
128 #endif
129 };
130 
131 struct sleepqueue_chain {
132 	LIST_HEAD(, sleepqueue) sc_queues;	/* List of sleep queues. */
133 	struct mtx sc_lock;			/* Spin lock for this chain. */
134 #ifdef SLEEPQUEUE_PROFILING
135 	u_int	sc_depth;			/* Length of sc_queues. */
136 	u_int	sc_max_depth;			/* Max length of sc_queues. */
137 #endif
138 };
139 
140 #ifdef SLEEPQUEUE_PROFILING
141 u_int sleepq_max_depth;
142 SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling");
143 SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0,
144     "sleepq chain stats");
145 SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth,
146     0, "maxmimum depth achieved of a single chain");
147 
148 static void	sleepq_profile(const char *wmesg);
149 static int	prof_enabled;
150 #endif
151 static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE];
152 static uma_zone_t sleepq_zone;
153 
154 /*
155  * Prototypes for non-exported routines.
156  */
157 static int	sleepq_catch_signals(void *wchan, int pri);
158 static int	sleepq_check_signals(void);
159 static int	sleepq_check_timeout(void);
160 #ifdef INVARIANTS
161 static void	sleepq_dtor(void *mem, int size, void *arg);
162 #endif
163 static int	sleepq_init(void *mem, int size, int flags);
164 static int	sleepq_resume_thread(struct sleepqueue *sq, struct thread *td,
165 		    int pri);
166 static void	sleepq_switch(void *wchan, int pri);
167 static void	sleepq_timeout(void *arg);
168 
169 /*
170  * Early initialization of sleep queues that is called from the sleepinit()
171  * SYSINIT.
172  */
173 void
174 init_sleepqueues(void)
175 {
176 #ifdef SLEEPQUEUE_PROFILING
177 	struct sysctl_oid *chain_oid;
178 	char chain_name[10];
179 #endif
180 	int i;
181 
182 	for (i = 0; i < SC_TABLESIZE; i++) {
183 		LIST_INIT(&sleepq_chains[i].sc_queues);
184 		mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL,
185 		    MTX_SPIN | MTX_RECURSE);
186 #ifdef SLEEPQUEUE_PROFILING
187 		snprintf(chain_name, sizeof(chain_name), "%d", i);
188 		chain_oid = SYSCTL_ADD_NODE(NULL,
189 		    SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO,
190 		    chain_name, CTLFLAG_RD, NULL, "sleepq chain stats");
191 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
192 		    "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL);
193 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
194 		    "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0,
195 		    NULL);
196 #endif
197 	}
198 	sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue),
199 #ifdef INVARIANTS
200 	    NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
201 #else
202 	    NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
203 #endif
204 
205 	thread0.td_sleepqueue = sleepq_alloc();
206 }
207 
208 /*
209  * Get a sleep queue for a new thread.
210  */
211 struct sleepqueue *
212 sleepq_alloc(void)
213 {
214 
215 	return (uma_zalloc(sleepq_zone, M_WAITOK));
216 }
217 
218 /*
219  * Free a sleep queue when a thread is destroyed.
220  */
221 void
222 sleepq_free(struct sleepqueue *sq)
223 {
224 
225 	uma_zfree(sleepq_zone, sq);
226 }
227 
228 /*
229  * Lock the sleep queue chain associated with the specified wait channel.
230  */
231 void
232 sleepq_lock(void *wchan)
233 {
234 	struct sleepqueue_chain *sc;
235 
236 	sc = SC_LOOKUP(wchan);
237 	mtx_lock_spin(&sc->sc_lock);
238 }
239 
240 /*
241  * Look up the sleep queue associated with a given wait channel in the hash
242  * table locking the associated sleep queue chain.  If no queue is found in
243  * the table, NULL is returned.
244  */
245 struct sleepqueue *
246 sleepq_lookup(void *wchan)
247 {
248 	struct sleepqueue_chain *sc;
249 	struct sleepqueue *sq;
250 
251 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
252 	sc = SC_LOOKUP(wchan);
253 	mtx_assert(&sc->sc_lock, MA_OWNED);
254 	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
255 		if (sq->sq_wchan == wchan)
256 			return (sq);
257 	return (NULL);
258 }
259 
260 /*
261  * Unlock the sleep queue chain associated with a given wait channel.
262  */
263 void
264 sleepq_release(void *wchan)
265 {
266 	struct sleepqueue_chain *sc;
267 
268 	sc = SC_LOOKUP(wchan);
269 	mtx_unlock_spin(&sc->sc_lock);
270 }
271 
272 /*
273  * Places the current thread on the sleep queue for the specified wait
274  * channel.  If INVARIANTS is enabled, then it associates the passed in
275  * lock with the sleepq to make sure it is held when that sleep queue is
276  * woken up.
277  */
278 void
279 sleepq_add(void *wchan, struct lock_object *lock, const char *wmesg, int flags,
280     int queue)
281 {
282 	struct sleepqueue_chain *sc;
283 	struct sleepqueue *sq;
284 	struct thread *td;
285 
286 	td = curthread;
287 	sc = SC_LOOKUP(wchan);
288 	mtx_assert(&sc->sc_lock, MA_OWNED);
289 	MPASS(td->td_sleepqueue != NULL);
290 	MPASS(wchan != NULL);
291 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
292 
293 	/* If this thread is not allowed to sleep, die a horrible death. */
294 	KASSERT(!(td->td_pflags & TDP_NOSLEEPING),
295 	    ("Trying sleep, but thread marked as sleeping prohibited"));
296 
297 	/* Look up the sleep queue associated with the wait channel 'wchan'. */
298 	sq = sleepq_lookup(wchan);
299 
300 	/*
301 	 * If the wait channel does not already have a sleep queue, use
302 	 * this thread's sleep queue.  Otherwise, insert the current thread
303 	 * into the sleep queue already in use by this wait channel.
304 	 */
305 	if (sq == NULL) {
306 #ifdef INVARIANTS
307 		int i;
308 
309 		sq = td->td_sleepqueue;
310 		for (i = 0; i < NR_SLEEPQS; i++) {
311 			KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]),
312 			    ("thread's sleep queue %d is not empty", i));
313 			KASSERT(sq->sq_blockedcnt[i] == 0,
314 			    ("thread's sleep queue %d count mismatches", i));
315 		}
316 		KASSERT(LIST_EMPTY(&sq->sq_free),
317 		    ("thread's sleep queue has a non-empty free list"));
318 		KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer"));
319 		sq->sq_lock = lock;
320 #endif
321 #ifdef SLEEPQUEUE_PROFILING
322 		sc->sc_depth++;
323 		if (sc->sc_depth > sc->sc_max_depth) {
324 			sc->sc_max_depth = sc->sc_depth;
325 			if (sc->sc_max_depth > sleepq_max_depth)
326 				sleepq_max_depth = sc->sc_max_depth;
327 		}
328 #endif
329 		sq = td->td_sleepqueue;
330 		LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash);
331 		sq->sq_wchan = wchan;
332 		sq->sq_type = flags & SLEEPQ_TYPE;
333 	} else {
334 		MPASS(wchan == sq->sq_wchan);
335 		MPASS(lock == sq->sq_lock);
336 		MPASS((flags & SLEEPQ_TYPE) == sq->sq_type);
337 		LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash);
338 	}
339 	thread_lock(td);
340 	TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq);
341 	sq->sq_blockedcnt[queue]++;
342 	td->td_sleepqueue = NULL;
343 	td->td_sqqueue = queue;
344 	td->td_wchan = wchan;
345 	td->td_wmesg = wmesg;
346 	if (flags & SLEEPQ_INTERRUPTIBLE) {
347 		td->td_flags |= TDF_SINTR;
348 		td->td_flags &= ~TDF_SLEEPABORT;
349 		if (flags & SLEEPQ_STOP_ON_BDRY)
350 			td->td_flags |= TDF_SBDRY;
351 	}
352 	thread_unlock(td);
353 }
354 
355 /*
356  * Sets a timeout that will remove the current thread from the specified
357  * sleep queue after timo ticks if the thread has not already been awakened.
358  */
359 void
360 sleepq_set_timeout(void *wchan, int timo)
361 {
362 	struct sleepqueue_chain *sc;
363 	struct thread *td;
364 
365 	td = curthread;
366 	sc = SC_LOOKUP(wchan);
367 	mtx_assert(&sc->sc_lock, MA_OWNED);
368 	MPASS(TD_ON_SLEEPQ(td));
369 	MPASS(td->td_sleepqueue == NULL);
370 	MPASS(wchan != NULL);
371 	callout_reset_curcpu(&td->td_slpcallout, timo, sleepq_timeout, td);
372 }
373 
374 /*
375  * Return the number of actual sleepers for the specified queue.
376  */
377 u_int
378 sleepq_sleepcnt(void *wchan, int queue)
379 {
380 	struct sleepqueue *sq;
381 
382 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
383 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
384 	sq = sleepq_lookup(wchan);
385 	if (sq == NULL)
386 		return (0);
387 	return (sq->sq_blockedcnt[queue]);
388 }
389 
390 /*
391  * Marks the pending sleep of the current thread as interruptible and
392  * makes an initial check for pending signals before putting a thread
393  * to sleep. Enters and exits with the thread lock held.  Thread lock
394  * may have transitioned from the sleepq lock to a run lock.
395  */
396 static int
397 sleepq_catch_signals(void *wchan, int pri)
398 {
399 	struct sleepqueue_chain *sc;
400 	struct sleepqueue *sq;
401 	struct thread *td;
402 	struct proc *p;
403 	struct sigacts *ps;
404 	int sig, ret, stop_allowed;
405 
406 	td = curthread;
407 	p = curproc;
408 	sc = SC_LOOKUP(wchan);
409 	mtx_assert(&sc->sc_lock, MA_OWNED);
410 	MPASS(wchan != NULL);
411 	/*
412 	 * See if there are any pending signals for this thread.  If not
413 	 * we can switch immediately.  Otherwise do the signal processing
414 	 * directly.
415 	 */
416 	thread_lock(td);
417 	if ((td->td_flags & (TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK)) == 0) {
418 		sleepq_switch(wchan, pri);
419 		return (0);
420 	}
421 	stop_allowed = (td->td_flags & TDF_SBDRY) ? SIG_STOP_NOT_ALLOWED :
422 	    SIG_STOP_ALLOWED;
423 	thread_unlock(td);
424 	mtx_unlock_spin(&sc->sc_lock);
425 	CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)",
426 		(void *)td, (long)p->p_pid, td->td_name);
427 	PROC_LOCK(p);
428 	ps = p->p_sigacts;
429 	mtx_lock(&ps->ps_mtx);
430 	sig = cursig(td, stop_allowed);
431 	if (sig == 0) {
432 		mtx_unlock(&ps->ps_mtx);
433 		ret = thread_suspend_check(1);
434 		MPASS(ret == 0 || ret == EINTR || ret == ERESTART);
435 	} else {
436 		if (SIGISMEMBER(ps->ps_sigintr, sig))
437 			ret = EINTR;
438 		else
439 			ret = ERESTART;
440 		mtx_unlock(&ps->ps_mtx);
441 	}
442 	/*
443 	 * Lock the per-process spinlock prior to dropping the PROC_LOCK
444 	 * to avoid a signal delivery race.  PROC_LOCK, PROC_SLOCK, and
445 	 * thread_lock() are currently held in tdsendsignal().
446 	 */
447 	PROC_SLOCK(p);
448 	mtx_lock_spin(&sc->sc_lock);
449 	PROC_UNLOCK(p);
450 	thread_lock(td);
451 	PROC_SUNLOCK(p);
452 	if (ret == 0) {
453 		sleepq_switch(wchan, pri);
454 		return (0);
455 	}
456 	/*
457 	 * There were pending signals and this thread is still
458 	 * on the sleep queue, remove it from the sleep queue.
459 	 */
460 	if (TD_ON_SLEEPQ(td)) {
461 		sq = sleepq_lookup(wchan);
462 		if (sleepq_resume_thread(sq, td, 0)) {
463 #ifdef INVARIANTS
464 			/*
465 			 * This thread hasn't gone to sleep yet, so it
466 			 * should not be swapped out.
467 			 */
468 			panic("not waking up swapper");
469 #endif
470 		}
471 	}
472 	mtx_unlock_spin(&sc->sc_lock);
473 	MPASS(td->td_lock != &sc->sc_lock);
474 	return (ret);
475 }
476 
477 /*
478  * Switches to another thread if we are still asleep on a sleep queue.
479  * Returns with thread lock.
480  */
481 static void
482 sleepq_switch(void *wchan, int pri)
483 {
484 	struct sleepqueue_chain *sc;
485 	struct sleepqueue *sq;
486 	struct thread *td;
487 
488 	td = curthread;
489 	sc = SC_LOOKUP(wchan);
490 	mtx_assert(&sc->sc_lock, MA_OWNED);
491 	THREAD_LOCK_ASSERT(td, MA_OWNED);
492 
493 	/*
494 	 * If we have a sleep queue, then we've already been woken up, so
495 	 * just return.
496 	 */
497 	if (td->td_sleepqueue != NULL) {
498 		mtx_unlock_spin(&sc->sc_lock);
499 		return;
500 	}
501 
502 	/*
503 	 * If TDF_TIMEOUT is set, then our sleep has been timed out
504 	 * already but we are still on the sleep queue, so dequeue the
505 	 * thread and return.
506 	 */
507 	if (td->td_flags & TDF_TIMEOUT) {
508 		MPASS(TD_ON_SLEEPQ(td));
509 		sq = sleepq_lookup(wchan);
510 		if (sleepq_resume_thread(sq, td, 0)) {
511 #ifdef INVARIANTS
512 			/*
513 			 * This thread hasn't gone to sleep yet, so it
514 			 * should not be swapped out.
515 			 */
516 			panic("not waking up swapper");
517 #endif
518 		}
519 		mtx_unlock_spin(&sc->sc_lock);
520 		return;
521 	}
522 #ifdef SLEEPQUEUE_PROFILING
523 	if (prof_enabled)
524 		sleepq_profile(td->td_wmesg);
525 #endif
526 	MPASS(td->td_sleepqueue == NULL);
527 	sched_sleep(td, pri);
528 	thread_lock_set(td, &sc->sc_lock);
529 	TD_SET_SLEEPING(td);
530 	mi_switch(SW_VOL | SWT_SLEEPQ, NULL);
531 	KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
532 	CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)",
533 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
534 }
535 
536 /*
537  * Check to see if we timed out.
538  */
539 static int
540 sleepq_check_timeout(void)
541 {
542 	struct thread *td;
543 
544 	td = curthread;
545 	THREAD_LOCK_ASSERT(td, MA_OWNED);
546 
547 	/*
548 	 * If TDF_TIMEOUT is set, we timed out.
549 	 */
550 	if (td->td_flags & TDF_TIMEOUT) {
551 		td->td_flags &= ~TDF_TIMEOUT;
552 		return (EWOULDBLOCK);
553 	}
554 
555 	/*
556 	 * If TDF_TIMOFAIL is set, the timeout ran after we had
557 	 * already been woken up.
558 	 */
559 	if (td->td_flags & TDF_TIMOFAIL)
560 		td->td_flags &= ~TDF_TIMOFAIL;
561 
562 	/*
563 	 * If callout_stop() fails, then the timeout is running on
564 	 * another CPU, so synchronize with it to avoid having it
565 	 * accidentally wake up a subsequent sleep.
566 	 */
567 	else if (callout_stop(&td->td_slpcallout) == 0) {
568 		td->td_flags |= TDF_TIMEOUT;
569 		TD_SET_SLEEPING(td);
570 		mi_switch(SW_INVOL | SWT_SLEEPQTIMO, NULL);
571 	}
572 	return (0);
573 }
574 
575 /*
576  * Check to see if we were awoken by a signal.
577  */
578 static int
579 sleepq_check_signals(void)
580 {
581 	struct thread *td;
582 
583 	td = curthread;
584 	THREAD_LOCK_ASSERT(td, MA_OWNED);
585 
586 	/* We are no longer in an interruptible sleep. */
587 	if (td->td_flags & TDF_SINTR)
588 		td->td_flags &= ~(TDF_SINTR | TDF_SBDRY);
589 
590 	if (td->td_flags & TDF_SLEEPABORT) {
591 		td->td_flags &= ~TDF_SLEEPABORT;
592 		return (td->td_intrval);
593 	}
594 
595 	return (0);
596 }
597 
598 /*
599  * Block the current thread until it is awakened from its sleep queue.
600  */
601 void
602 sleepq_wait(void *wchan, int pri)
603 {
604 	struct thread *td;
605 
606 	td = curthread;
607 	MPASS(!(td->td_flags & TDF_SINTR));
608 	thread_lock(td);
609 	sleepq_switch(wchan, pri);
610 	thread_unlock(td);
611 }
612 
613 /*
614  * Block the current thread until it is awakened from its sleep queue
615  * or it is interrupted by a signal.
616  */
617 int
618 sleepq_wait_sig(void *wchan, int pri)
619 {
620 	int rcatch;
621 	int rval;
622 
623 	rcatch = sleepq_catch_signals(wchan, pri);
624 	rval = sleepq_check_signals();
625 	thread_unlock(curthread);
626 	if (rcatch)
627 		return (rcatch);
628 	return (rval);
629 }
630 
631 /*
632  * Block the current thread until it is awakened from its sleep queue
633  * or it times out while waiting.
634  */
635 int
636 sleepq_timedwait(void *wchan, int pri)
637 {
638 	struct thread *td;
639 	int rval;
640 
641 	td = curthread;
642 	MPASS(!(td->td_flags & TDF_SINTR));
643 	thread_lock(td);
644 	sleepq_switch(wchan, pri);
645 	rval = sleepq_check_timeout();
646 	thread_unlock(td);
647 
648 	return (rval);
649 }
650 
651 /*
652  * Block the current thread until it is awakened from its sleep queue,
653  * it is interrupted by a signal, or it times out waiting to be awakened.
654  */
655 int
656 sleepq_timedwait_sig(void *wchan, int pri)
657 {
658 	int rcatch, rvalt, rvals;
659 
660 	rcatch = sleepq_catch_signals(wchan, pri);
661 	rvalt = sleepq_check_timeout();
662 	rvals = sleepq_check_signals();
663 	thread_unlock(curthread);
664 	if (rcatch)
665 		return (rcatch);
666 	if (rvals)
667 		return (rvals);
668 	return (rvalt);
669 }
670 
671 /*
672  * Returns the type of sleepqueue given a waitchannel.
673  */
674 int
675 sleepq_type(void *wchan)
676 {
677 	struct sleepqueue *sq;
678 	int type;
679 
680 	MPASS(wchan != NULL);
681 
682 	sleepq_lock(wchan);
683 	sq = sleepq_lookup(wchan);
684 	if (sq == NULL) {
685 		sleepq_release(wchan);
686 		return (-1);
687 	}
688 	type = sq->sq_type;
689 	sleepq_release(wchan);
690 	return (type);
691 }
692 
693 /*
694  * Removes a thread from a sleep queue and makes it
695  * runnable.
696  */
697 static int
698 sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri)
699 {
700 	struct sleepqueue_chain *sc;
701 
702 	MPASS(td != NULL);
703 	MPASS(sq->sq_wchan != NULL);
704 	MPASS(td->td_wchan == sq->sq_wchan);
705 	MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0);
706 	THREAD_LOCK_ASSERT(td, MA_OWNED);
707 	sc = SC_LOOKUP(sq->sq_wchan);
708 	mtx_assert(&sc->sc_lock, MA_OWNED);
709 
710 	/* Remove the thread from the queue. */
711 	sq->sq_blockedcnt[td->td_sqqueue]--;
712 	TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq);
713 
714 	/*
715 	 * Get a sleep queue for this thread.  If this is the last waiter,
716 	 * use the queue itself and take it out of the chain, otherwise,
717 	 * remove a queue from the free list.
718 	 */
719 	if (LIST_EMPTY(&sq->sq_free)) {
720 		td->td_sleepqueue = sq;
721 #ifdef INVARIANTS
722 		sq->sq_wchan = NULL;
723 #endif
724 #ifdef SLEEPQUEUE_PROFILING
725 		sc->sc_depth--;
726 #endif
727 	} else
728 		td->td_sleepqueue = LIST_FIRST(&sq->sq_free);
729 	LIST_REMOVE(td->td_sleepqueue, sq_hash);
730 
731 	td->td_wmesg = NULL;
732 	td->td_wchan = NULL;
733 	td->td_flags &= ~(TDF_SINTR | TDF_SBDRY);
734 
735 	CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)",
736 	    (void *)td, (long)td->td_proc->p_pid, td->td_name);
737 
738 	/* Adjust priority if requested. */
739 	MPASS(pri == 0 || (pri >= PRI_MIN && pri <= PRI_MAX));
740 	if (pri != 0 && td->td_priority > pri)
741 		sched_prio(td, pri);
742 
743 	/*
744 	 * Note that thread td might not be sleeping if it is running
745 	 * sleepq_catch_signals() on another CPU or is blocked on its
746 	 * proc lock to check signals.  There's no need to mark the
747 	 * thread runnable in that case.
748 	 */
749 	if (TD_IS_SLEEPING(td)) {
750 		TD_CLR_SLEEPING(td);
751 		return (setrunnable(td));
752 	}
753 	return (0);
754 }
755 
756 #ifdef INVARIANTS
757 /*
758  * UMA zone item deallocator.
759  */
760 static void
761 sleepq_dtor(void *mem, int size, void *arg)
762 {
763 	struct sleepqueue *sq;
764 	int i;
765 
766 	sq = mem;
767 	for (i = 0; i < NR_SLEEPQS; i++) {
768 		MPASS(TAILQ_EMPTY(&sq->sq_blocked[i]));
769 		MPASS(sq->sq_blockedcnt[i] == 0);
770 	}
771 }
772 #endif
773 
774 /*
775  * UMA zone item initializer.
776  */
777 static int
778 sleepq_init(void *mem, int size, int flags)
779 {
780 	struct sleepqueue *sq;
781 	int i;
782 
783 	bzero(mem, size);
784 	sq = mem;
785 	for (i = 0; i < NR_SLEEPQS; i++) {
786 		TAILQ_INIT(&sq->sq_blocked[i]);
787 		sq->sq_blockedcnt[i] = 0;
788 	}
789 	LIST_INIT(&sq->sq_free);
790 	return (0);
791 }
792 
793 /*
794  * Find the highest priority thread sleeping on a wait channel and resume it.
795  */
796 int
797 sleepq_signal(void *wchan, int flags, int pri, int queue)
798 {
799 	struct sleepqueue *sq;
800 	struct thread *td, *besttd;
801 	int wakeup_swapper;
802 
803 	CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags);
804 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
805 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
806 	sq = sleepq_lookup(wchan);
807 	if (sq == NULL)
808 		return (0);
809 	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
810 	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
811 
812 	/*
813 	 * Find the highest priority thread on the queue.  If there is a
814 	 * tie, use the thread that first appears in the queue as it has
815 	 * been sleeping the longest since threads are always added to
816 	 * the tail of sleep queues.
817 	 */
818 	besttd = NULL;
819 	TAILQ_FOREACH(td, &sq->sq_blocked[queue], td_slpq) {
820 		if (besttd == NULL || td->td_priority < besttd->td_priority)
821 			besttd = td;
822 	}
823 	MPASS(besttd != NULL);
824 	thread_lock(besttd);
825 	wakeup_swapper = sleepq_resume_thread(sq, besttd, pri);
826 	thread_unlock(besttd);
827 	return (wakeup_swapper);
828 }
829 
830 /*
831  * Resume all threads sleeping on a specified wait channel.
832  */
833 int
834 sleepq_broadcast(void *wchan, int flags, int pri, int queue)
835 {
836 	struct sleepqueue *sq;
837 	struct thread *td, *tdn;
838 	int wakeup_swapper;
839 
840 	CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags);
841 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
842 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
843 	sq = sleepq_lookup(wchan);
844 	if (sq == NULL)
845 		return (0);
846 	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
847 	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
848 
849 	/* Resume all blocked threads on the sleep queue. */
850 	wakeup_swapper = 0;
851 	TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, tdn) {
852 		thread_lock(td);
853 		if (sleepq_resume_thread(sq, td, pri))
854 			wakeup_swapper = 1;
855 		thread_unlock(td);
856 	}
857 	return (wakeup_swapper);
858 }
859 
860 /*
861  * Time sleeping threads out.  When the timeout expires, the thread is
862  * removed from the sleep queue and made runnable if it is still asleep.
863  */
864 static void
865 sleepq_timeout(void *arg)
866 {
867 	struct sleepqueue_chain *sc;
868 	struct sleepqueue *sq;
869 	struct thread *td;
870 	void *wchan;
871 	int wakeup_swapper;
872 
873 	td = arg;
874 	wakeup_swapper = 0;
875 	CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)",
876 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
877 
878 	/*
879 	 * First, see if the thread is asleep and get the wait channel if
880 	 * it is.
881 	 */
882 	thread_lock(td);
883 	if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) {
884 		wchan = td->td_wchan;
885 		sc = SC_LOOKUP(wchan);
886 		THREAD_LOCKPTR_ASSERT(td, &sc->sc_lock);
887 		sq = sleepq_lookup(wchan);
888 		MPASS(sq != NULL);
889 		td->td_flags |= TDF_TIMEOUT;
890 		wakeup_swapper = sleepq_resume_thread(sq, td, 0);
891 		thread_unlock(td);
892 		if (wakeup_swapper)
893 			kick_proc0();
894 		return;
895 	}
896 
897 	/*
898 	 * If the thread is on the SLEEPQ but isn't sleeping yet, it
899 	 * can either be on another CPU in between sleepq_add() and
900 	 * one of the sleepq_*wait*() routines or it can be in
901 	 * sleepq_catch_signals().
902 	 */
903 	if (TD_ON_SLEEPQ(td)) {
904 		td->td_flags |= TDF_TIMEOUT;
905 		thread_unlock(td);
906 		return;
907 	}
908 
909 	/*
910 	 * Now check for the edge cases.  First, if TDF_TIMEOUT is set,
911 	 * then the other thread has already yielded to us, so clear
912 	 * the flag and resume it.  If TDF_TIMEOUT is not set, then the
913 	 * we know that the other thread is not on a sleep queue, but it
914 	 * hasn't resumed execution yet.  In that case, set TDF_TIMOFAIL
915 	 * to let it know that the timeout has already run and doesn't
916 	 * need to be canceled.
917 	 */
918 	if (td->td_flags & TDF_TIMEOUT) {
919 		MPASS(TD_IS_SLEEPING(td));
920 		td->td_flags &= ~TDF_TIMEOUT;
921 		TD_CLR_SLEEPING(td);
922 		wakeup_swapper = setrunnable(td);
923 	} else
924 		td->td_flags |= TDF_TIMOFAIL;
925 	thread_unlock(td);
926 	if (wakeup_swapper)
927 		kick_proc0();
928 }
929 
930 /*
931  * Resumes a specific thread from the sleep queue associated with a specific
932  * wait channel if it is on that queue.
933  */
934 void
935 sleepq_remove(struct thread *td, void *wchan)
936 {
937 	struct sleepqueue *sq;
938 	int wakeup_swapper;
939 
940 	/*
941 	 * Look up the sleep queue for this wait channel, then re-check
942 	 * that the thread is asleep on that channel, if it is not, then
943 	 * bail.
944 	 */
945 	MPASS(wchan != NULL);
946 	sleepq_lock(wchan);
947 	sq = sleepq_lookup(wchan);
948 	/*
949 	 * We can not lock the thread here as it may be sleeping on a
950 	 * different sleepq.  However, holding the sleepq lock for this
951 	 * wchan can guarantee that we do not miss a wakeup for this
952 	 * channel.  The asserts below will catch any false positives.
953 	 */
954 	if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) {
955 		sleepq_release(wchan);
956 		return;
957 	}
958 	/* Thread is asleep on sleep queue sq, so wake it up. */
959 	thread_lock(td);
960 	MPASS(sq != NULL);
961 	MPASS(td->td_wchan == wchan);
962 	wakeup_swapper = sleepq_resume_thread(sq, td, 0);
963 	thread_unlock(td);
964 	sleepq_release(wchan);
965 	if (wakeup_swapper)
966 		kick_proc0();
967 }
968 
969 /*
970  * Abort a thread as if an interrupt had occurred.  Only abort
971  * interruptible waits (unfortunately it isn't safe to abort others).
972  */
973 int
974 sleepq_abort(struct thread *td, int intrval)
975 {
976 	struct sleepqueue *sq;
977 	void *wchan;
978 
979 	THREAD_LOCK_ASSERT(td, MA_OWNED);
980 	MPASS(TD_ON_SLEEPQ(td));
981 	MPASS(td->td_flags & TDF_SINTR);
982 	MPASS(intrval == EINTR || intrval == ERESTART);
983 
984 	/*
985 	 * If the TDF_TIMEOUT flag is set, just leave. A
986 	 * timeout is scheduled anyhow.
987 	 */
988 	if (td->td_flags & TDF_TIMEOUT)
989 		return (0);
990 
991 	CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)",
992 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
993 	td->td_intrval = intrval;
994 	td->td_flags |= TDF_SLEEPABORT;
995 	/*
996 	 * If the thread has not slept yet it will find the signal in
997 	 * sleepq_catch_signals() and call sleepq_resume_thread.  Otherwise
998 	 * we have to do it here.
999 	 */
1000 	if (!TD_IS_SLEEPING(td))
1001 		return (0);
1002 	wchan = td->td_wchan;
1003 	MPASS(wchan != NULL);
1004 	sq = sleepq_lookup(wchan);
1005 	MPASS(sq != NULL);
1006 
1007 	/* Thread is asleep on sleep queue sq, so wake it up. */
1008 	return (sleepq_resume_thread(sq, td, 0));
1009 }
1010 
1011 #ifdef SLEEPQUEUE_PROFILING
1012 #define	SLEEPQ_PROF_LOCATIONS	1024
1013 #define	SLEEPQ_SBUFSIZE		(40 * 512)
1014 struct sleepq_prof {
1015 	LIST_ENTRY(sleepq_prof) sp_link;
1016 	const char	*sp_wmesg;
1017 	long		sp_count;
1018 };
1019 
1020 LIST_HEAD(sqphead, sleepq_prof);
1021 
1022 struct sqphead sleepq_prof_free;
1023 struct sqphead sleepq_hash[SC_TABLESIZE];
1024 static struct sleepq_prof sleepq_profent[SLEEPQ_PROF_LOCATIONS];
1025 static struct mtx sleepq_prof_lock;
1026 MTX_SYSINIT(sleepq_prof_lock, &sleepq_prof_lock, "sleepq_prof", MTX_SPIN);
1027 
1028 static void
1029 sleepq_profile(const char *wmesg)
1030 {
1031 	struct sleepq_prof *sp;
1032 
1033 	mtx_lock_spin(&sleepq_prof_lock);
1034 	if (prof_enabled == 0)
1035 		goto unlock;
1036 	LIST_FOREACH(sp, &sleepq_hash[SC_HASH(wmesg)], sp_link)
1037 		if (sp->sp_wmesg == wmesg)
1038 			goto done;
1039 	sp = LIST_FIRST(&sleepq_prof_free);
1040 	if (sp == NULL)
1041 		goto unlock;
1042 	sp->sp_wmesg = wmesg;
1043 	LIST_REMOVE(sp, sp_link);
1044 	LIST_INSERT_HEAD(&sleepq_hash[SC_HASH(wmesg)], sp, sp_link);
1045 done:
1046 	sp->sp_count++;
1047 unlock:
1048 	mtx_unlock_spin(&sleepq_prof_lock);
1049 	return;
1050 }
1051 
1052 static void
1053 sleepq_prof_reset(void)
1054 {
1055 	struct sleepq_prof *sp;
1056 	int enabled;
1057 	int i;
1058 
1059 	mtx_lock_spin(&sleepq_prof_lock);
1060 	enabled = prof_enabled;
1061 	prof_enabled = 0;
1062 	for (i = 0; i < SC_TABLESIZE; i++)
1063 		LIST_INIT(&sleepq_hash[i]);
1064 	LIST_INIT(&sleepq_prof_free);
1065 	for (i = 0; i < SLEEPQ_PROF_LOCATIONS; i++) {
1066 		sp = &sleepq_profent[i];
1067 		sp->sp_wmesg = NULL;
1068 		sp->sp_count = 0;
1069 		LIST_INSERT_HEAD(&sleepq_prof_free, sp, sp_link);
1070 	}
1071 	prof_enabled = enabled;
1072 	mtx_unlock_spin(&sleepq_prof_lock);
1073 }
1074 
1075 static int
1076 enable_sleepq_prof(SYSCTL_HANDLER_ARGS)
1077 {
1078 	int error, v;
1079 
1080 	v = prof_enabled;
1081 	error = sysctl_handle_int(oidp, &v, v, req);
1082 	if (error)
1083 		return (error);
1084 	if (req->newptr == NULL)
1085 		return (error);
1086 	if (v == prof_enabled)
1087 		return (0);
1088 	if (v == 1)
1089 		sleepq_prof_reset();
1090 	mtx_lock_spin(&sleepq_prof_lock);
1091 	prof_enabled = !!v;
1092 	mtx_unlock_spin(&sleepq_prof_lock);
1093 
1094 	return (0);
1095 }
1096 
1097 static int
1098 reset_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1099 {
1100 	int error, v;
1101 
1102 	v = 0;
1103 	error = sysctl_handle_int(oidp, &v, 0, req);
1104 	if (error)
1105 		return (error);
1106 	if (req->newptr == NULL)
1107 		return (error);
1108 	if (v == 0)
1109 		return (0);
1110 	sleepq_prof_reset();
1111 
1112 	return (0);
1113 }
1114 
1115 static int
1116 dump_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1117 {
1118 	static int multiplier = 1;
1119 	struct sleepq_prof *sp;
1120 	struct sbuf *sb;
1121 	int enabled;
1122 	int error;
1123 	int i;
1124 
1125 retry_sbufops:
1126 	sb = sbuf_new(NULL, NULL, SLEEPQ_SBUFSIZE * multiplier, SBUF_FIXEDLEN);
1127 	sbuf_printf(sb, "\nwmesg\tcount\n");
1128 	enabled = prof_enabled;
1129 	mtx_lock_spin(&sleepq_prof_lock);
1130 	prof_enabled = 0;
1131 	mtx_unlock_spin(&sleepq_prof_lock);
1132 	for (i = 0; i < SC_TABLESIZE; i++) {
1133 		LIST_FOREACH(sp, &sleepq_hash[i], sp_link) {
1134 			sbuf_printf(sb, "%s\t%ld\n",
1135 			    sp->sp_wmesg, sp->sp_count);
1136 			if (sbuf_overflowed(sb)) {
1137 				sbuf_delete(sb);
1138 				multiplier++;
1139 				goto retry_sbufops;
1140 			}
1141 		}
1142 	}
1143 	mtx_lock_spin(&sleepq_prof_lock);
1144 	prof_enabled = enabled;
1145 	mtx_unlock_spin(&sleepq_prof_lock);
1146 
1147 	sbuf_finish(sb);
1148 	error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
1149 	sbuf_delete(sb);
1150 	return (error);
1151 }
1152 
1153 SYSCTL_PROC(_debug_sleepq, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD,
1154     NULL, 0, dump_sleepq_prof_stats, "A", "Sleepqueue profiling statistics");
1155 SYSCTL_PROC(_debug_sleepq, OID_AUTO, reset, CTLTYPE_INT | CTLFLAG_RW,
1156     NULL, 0, reset_sleepq_prof_stats, "I",
1157     "Reset sleepqueue profiling statistics");
1158 SYSCTL_PROC(_debug_sleepq, OID_AUTO, enable, CTLTYPE_INT | CTLFLAG_RW,
1159     NULL, 0, enable_sleepq_prof, "I", "Enable sleepqueue profiling");
1160 #endif
1161 
1162 #ifdef DDB
1163 DB_SHOW_COMMAND(sleepq, db_show_sleepqueue)
1164 {
1165 	struct sleepqueue_chain *sc;
1166 	struct sleepqueue *sq;
1167 #ifdef INVARIANTS
1168 	struct lock_object *lock;
1169 #endif
1170 	struct thread *td;
1171 	void *wchan;
1172 	int i;
1173 
1174 	if (!have_addr)
1175 		return;
1176 
1177 	/*
1178 	 * First, see if there is an active sleep queue for the wait channel
1179 	 * indicated by the address.
1180 	 */
1181 	wchan = (void *)addr;
1182 	sc = SC_LOOKUP(wchan);
1183 	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
1184 		if (sq->sq_wchan == wchan)
1185 			goto found;
1186 
1187 	/*
1188 	 * Second, see if there is an active sleep queue at the address
1189 	 * indicated.
1190 	 */
1191 	for (i = 0; i < SC_TABLESIZE; i++)
1192 		LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) {
1193 			if (sq == (struct sleepqueue *)addr)
1194 				goto found;
1195 		}
1196 
1197 	db_printf("Unable to locate a sleep queue via %p\n", (void *)addr);
1198 	return;
1199 found:
1200 	db_printf("Wait channel: %p\n", sq->sq_wchan);
1201 	db_printf("Queue type: %d\n", sq->sq_type);
1202 #ifdef INVARIANTS
1203 	if (sq->sq_lock) {
1204 		lock = sq->sq_lock;
1205 		db_printf("Associated Interlock: %p - (%s) %s\n", lock,
1206 		    LOCK_CLASS(lock)->lc_name, lock->lo_name);
1207 	}
1208 #endif
1209 	db_printf("Blocked threads:\n");
1210 	for (i = 0; i < NR_SLEEPQS; i++) {
1211 		db_printf("\nQueue[%d]:\n", i);
1212 		if (TAILQ_EMPTY(&sq->sq_blocked[i]))
1213 			db_printf("\tempty\n");
1214 		else
1215 			TAILQ_FOREACH(td, &sq->sq_blocked[0],
1216 				      td_slpq) {
1217 				db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td,
1218 					  td->td_tid, td->td_proc->p_pid,
1219 					  td->td_name);
1220 			}
1221 		db_printf("(expected: %u)\n", sq->sq_blockedcnt[i]);
1222 	}
1223 }
1224 
1225 /* Alias 'show sleepqueue' to 'show sleepq'. */
1226 DB_SHOW_ALIAS(sleepqueue, db_show_sleepqueue);
1227 #endif
1228