xref: /freebsd/sys/kern/subr_sleepqueue.c (revision 145992504973bd16cf3518af9ba5ce185fefa82a)
1 /*-
2  * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the author nor the names of any co-contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /*
31  * Implementation of sleep queues used to hold queue of threads blocked on
32  * a wait channel.  Sleep queues different from turnstiles in that wait
33  * channels are not owned by anyone, so there is no priority propagation.
34  * Sleep queues can also provide a timeout and can also be interrupted by
35  * signals.  That said, there are several similarities between the turnstile
36  * and sleep queue implementations.  (Note: turnstiles were implemented
37  * first.)  For example, both use a hash table of the same size where each
38  * bucket is referred to as a "chain" that contains both a spin lock and
39  * a linked list of queues.  An individual queue is located by using a hash
40  * to pick a chain, locking the chain, and then walking the chain searching
41  * for the queue.  This means that a wait channel object does not need to
42  * embed it's queue head just as locks do not embed their turnstile queue
43  * head.  Threads also carry around a sleep queue that they lend to the
44  * wait channel when blocking.  Just as in turnstiles, the queue includes
45  * a free list of the sleep queues of other threads blocked on the same
46  * wait channel in the case of multiple waiters.
47  *
48  * Some additional functionality provided by sleep queues include the
49  * ability to set a timeout.  The timeout is managed using a per-thread
50  * callout that resumes a thread if it is asleep.  A thread may also
51  * catch signals while it is asleep (aka an interruptible sleep).  The
52  * signal code uses sleepq_abort() to interrupt a sleeping thread.  Finally,
53  * sleep queues also provide some extra assertions.  One is not allowed to
54  * mix the sleep/wakeup and cv APIs for a given wait channel.  Also, one
55  * must consistently use the same lock to synchronize with a wait channel,
56  * though this check is currently only a warning for sleep/wakeup due to
57  * pre-existing abuse of that API.  The same lock must also be held when
58  * awakening threads, though that is currently only enforced for condition
59  * variables.
60  */
61 
62 #include <sys/cdefs.h>
63 __FBSDID("$FreeBSD$");
64 
65 #include "opt_sleepqueue_profiling.h"
66 #include "opt_ddb.h"
67 #include "opt_kdtrace.h"
68 #include "opt_sched.h"
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/lock.h>
73 #include <sys/kernel.h>
74 #include <sys/ktr.h>
75 #include <sys/mutex.h>
76 #include <sys/proc.h>
77 #include <sys/sbuf.h>
78 #include <sys/sched.h>
79 #include <sys/sdt.h>
80 #include <sys/signalvar.h>
81 #include <sys/sleepqueue.h>
82 #include <sys/sysctl.h>
83 
84 #include <vm/uma.h>
85 
86 #ifdef DDB
87 #include <ddb/ddb.h>
88 #endif
89 
90 /*
91  * Constants for the hash table of sleep queue chains.  These constants are
92  * the same ones that 4BSD (and possibly earlier versions of BSD) used.
93  * Basically, we ignore the lower 8 bits of the address since most wait
94  * channel pointers are aligned and only look at the next 7 bits for the
95  * hash.  SC_TABLESIZE must be a power of two for SC_MASK to work properly.
96  */
97 #define	SC_TABLESIZE	128			/* Must be power of 2. */
98 #define	SC_MASK		(SC_TABLESIZE - 1)
99 #define	SC_SHIFT	8
100 #define	SC_HASH(wc)	(((uintptr_t)(wc) >> SC_SHIFT) & SC_MASK)
101 #define	SC_LOOKUP(wc)	&sleepq_chains[SC_HASH(wc)]
102 #define NR_SLEEPQS      2
103 /*
104  * There two different lists of sleep queues.  Both lists are connected
105  * via the sq_hash entries.  The first list is the sleep queue chain list
106  * that a sleep queue is on when it is attached to a wait channel.  The
107  * second list is the free list hung off of a sleep queue that is attached
108  * to a wait channel.
109  *
110  * Each sleep queue also contains the wait channel it is attached to, the
111  * list of threads blocked on that wait channel, flags specific to the
112  * wait channel, and the lock used to synchronize with a wait channel.
113  * The flags are used to catch mismatches between the various consumers
114  * of the sleep queue API (e.g. sleep/wakeup and condition variables).
115  * The lock pointer is only used when invariants are enabled for various
116  * debugging checks.
117  *
118  * Locking key:
119  *  c - sleep queue chain lock
120  */
121 struct sleepqueue {
122 	TAILQ_HEAD(, thread) sq_blocked[NR_SLEEPQS];	/* (c) Blocked threads. */
123 	u_int sq_blockedcnt[NR_SLEEPQS];	/* (c) N. of blocked threads. */
124 	LIST_ENTRY(sleepqueue) sq_hash;		/* (c) Chain and free list. */
125 	LIST_HEAD(, sleepqueue) sq_free;	/* (c) Free queues. */
126 	void	*sq_wchan;			/* (c) Wait channel. */
127 	int	sq_type;			/* (c) Queue type. */
128 #ifdef INVARIANTS
129 	struct lock_object *sq_lock;		/* (c) Associated lock. */
130 #endif
131 };
132 
133 struct sleepqueue_chain {
134 	LIST_HEAD(, sleepqueue) sc_queues;	/* List of sleep queues. */
135 	struct mtx sc_lock;			/* Spin lock for this chain. */
136 #ifdef SLEEPQUEUE_PROFILING
137 	u_int	sc_depth;			/* Length of sc_queues. */
138 	u_int	sc_max_depth;			/* Max length of sc_queues. */
139 #endif
140 };
141 
142 #ifdef SLEEPQUEUE_PROFILING
143 u_int sleepq_max_depth;
144 static SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling");
145 static SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0,
146     "sleepq chain stats");
147 SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth,
148     0, "maxmimum depth achieved of a single chain");
149 
150 static void	sleepq_profile(const char *wmesg);
151 static int	prof_enabled;
152 #endif
153 static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE];
154 static uma_zone_t sleepq_zone;
155 
156 /*
157  * Prototypes for non-exported routines.
158  */
159 static int	sleepq_catch_signals(void *wchan, int pri);
160 static int	sleepq_check_signals(void);
161 static int	sleepq_check_timeout(void);
162 #ifdef INVARIANTS
163 static void	sleepq_dtor(void *mem, int size, void *arg);
164 #endif
165 static int	sleepq_init(void *mem, int size, int flags);
166 static int	sleepq_resume_thread(struct sleepqueue *sq, struct thread *td,
167 		    int pri);
168 static void	sleepq_switch(void *wchan, int pri);
169 static void	sleepq_timeout(void *arg);
170 
171 SDT_PROBE_DECLARE(sched, , , sleep);
172 SDT_PROBE_DECLARE(sched, , , wakeup);
173 
174 /*
175  * Early initialization of sleep queues that is called from the sleepinit()
176  * SYSINIT.
177  */
178 void
179 init_sleepqueues(void)
180 {
181 #ifdef SLEEPQUEUE_PROFILING
182 	struct sysctl_oid *chain_oid;
183 	char chain_name[10];
184 #endif
185 	int i;
186 
187 	for (i = 0; i < SC_TABLESIZE; i++) {
188 		LIST_INIT(&sleepq_chains[i].sc_queues);
189 		mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL,
190 		    MTX_SPIN | MTX_RECURSE);
191 #ifdef SLEEPQUEUE_PROFILING
192 		snprintf(chain_name, sizeof(chain_name), "%d", i);
193 		chain_oid = SYSCTL_ADD_NODE(NULL,
194 		    SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO,
195 		    chain_name, CTLFLAG_RD, NULL, "sleepq chain stats");
196 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
197 		    "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL);
198 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
199 		    "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0,
200 		    NULL);
201 #endif
202 	}
203 	sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue),
204 #ifdef INVARIANTS
205 	    NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
206 #else
207 	    NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
208 #endif
209 
210 	thread0.td_sleepqueue = sleepq_alloc();
211 }
212 
213 /*
214  * Get a sleep queue for a new thread.
215  */
216 struct sleepqueue *
217 sleepq_alloc(void)
218 {
219 
220 	return (uma_zalloc(sleepq_zone, M_WAITOK));
221 }
222 
223 /*
224  * Free a sleep queue when a thread is destroyed.
225  */
226 void
227 sleepq_free(struct sleepqueue *sq)
228 {
229 
230 	uma_zfree(sleepq_zone, sq);
231 }
232 
233 /*
234  * Lock the sleep queue chain associated with the specified wait channel.
235  */
236 void
237 sleepq_lock(void *wchan)
238 {
239 	struct sleepqueue_chain *sc;
240 
241 	sc = SC_LOOKUP(wchan);
242 	mtx_lock_spin(&sc->sc_lock);
243 }
244 
245 /*
246  * Look up the sleep queue associated with a given wait channel in the hash
247  * table locking the associated sleep queue chain.  If no queue is found in
248  * the table, NULL is returned.
249  */
250 struct sleepqueue *
251 sleepq_lookup(void *wchan)
252 {
253 	struct sleepqueue_chain *sc;
254 	struct sleepqueue *sq;
255 
256 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
257 	sc = SC_LOOKUP(wchan);
258 	mtx_assert(&sc->sc_lock, MA_OWNED);
259 	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
260 		if (sq->sq_wchan == wchan)
261 			return (sq);
262 	return (NULL);
263 }
264 
265 /*
266  * Unlock the sleep queue chain associated with a given wait channel.
267  */
268 void
269 sleepq_release(void *wchan)
270 {
271 	struct sleepqueue_chain *sc;
272 
273 	sc = SC_LOOKUP(wchan);
274 	mtx_unlock_spin(&sc->sc_lock);
275 }
276 
277 /*
278  * Places the current thread on the sleep queue for the specified wait
279  * channel.  If INVARIANTS is enabled, then it associates the passed in
280  * lock with the sleepq to make sure it is held when that sleep queue is
281  * woken up.
282  */
283 void
284 sleepq_add(void *wchan, struct lock_object *lock, const char *wmesg, int flags,
285     int queue)
286 {
287 	struct sleepqueue_chain *sc;
288 	struct sleepqueue *sq;
289 	struct thread *td;
290 
291 	td = curthread;
292 	sc = SC_LOOKUP(wchan);
293 	mtx_assert(&sc->sc_lock, MA_OWNED);
294 	MPASS(td->td_sleepqueue != NULL);
295 	MPASS(wchan != NULL);
296 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
297 
298 	/* If this thread is not allowed to sleep, die a horrible death. */
299 	KASSERT(!(td->td_pflags & TDP_NOSLEEPING),
300 	    ("%s: td %p to sleep on wchan %p with TDP_NOSLEEPING on",
301 	    __func__, td, wchan));
302 
303 	/* Look up the sleep queue associated with the wait channel 'wchan'. */
304 	sq = sleepq_lookup(wchan);
305 
306 	/*
307 	 * If the wait channel does not already have a sleep queue, use
308 	 * this thread's sleep queue.  Otherwise, insert the current thread
309 	 * into the sleep queue already in use by this wait channel.
310 	 */
311 	if (sq == NULL) {
312 #ifdef INVARIANTS
313 		int i;
314 
315 		sq = td->td_sleepqueue;
316 		for (i = 0; i < NR_SLEEPQS; i++) {
317 			KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]),
318 			    ("thread's sleep queue %d is not empty", i));
319 			KASSERT(sq->sq_blockedcnt[i] == 0,
320 			    ("thread's sleep queue %d count mismatches", i));
321 		}
322 		KASSERT(LIST_EMPTY(&sq->sq_free),
323 		    ("thread's sleep queue has a non-empty free list"));
324 		KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer"));
325 		sq->sq_lock = lock;
326 #endif
327 #ifdef SLEEPQUEUE_PROFILING
328 		sc->sc_depth++;
329 		if (sc->sc_depth > sc->sc_max_depth) {
330 			sc->sc_max_depth = sc->sc_depth;
331 			if (sc->sc_max_depth > sleepq_max_depth)
332 				sleepq_max_depth = sc->sc_max_depth;
333 		}
334 #endif
335 		sq = td->td_sleepqueue;
336 		LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash);
337 		sq->sq_wchan = wchan;
338 		sq->sq_type = flags & SLEEPQ_TYPE;
339 	} else {
340 		MPASS(wchan == sq->sq_wchan);
341 		MPASS(lock == sq->sq_lock);
342 		MPASS((flags & SLEEPQ_TYPE) == sq->sq_type);
343 		LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash);
344 	}
345 	thread_lock(td);
346 	TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq);
347 	sq->sq_blockedcnt[queue]++;
348 	td->td_sleepqueue = NULL;
349 	td->td_sqqueue = queue;
350 	td->td_wchan = wchan;
351 	td->td_wmesg = wmesg;
352 	if (flags & SLEEPQ_INTERRUPTIBLE) {
353 		td->td_flags |= TDF_SINTR;
354 		td->td_flags &= ~TDF_SLEEPABORT;
355 		if (flags & SLEEPQ_STOP_ON_BDRY)
356 			td->td_flags |= TDF_SBDRY;
357 	}
358 	thread_unlock(td);
359 }
360 
361 /*
362  * Sets a timeout that will remove the current thread from the specified
363  * sleep queue after timo ticks if the thread has not already been awakened.
364  */
365 void
366 sleepq_set_timeout(void *wchan, int timo)
367 {
368 	struct sleepqueue_chain *sc;
369 	struct thread *td;
370 
371 	td = curthread;
372 	sc = SC_LOOKUP(wchan);
373 	mtx_assert(&sc->sc_lock, MA_OWNED);
374 	MPASS(TD_ON_SLEEPQ(td));
375 	MPASS(td->td_sleepqueue == NULL);
376 	MPASS(wchan != NULL);
377 	callout_reset_curcpu(&td->td_slpcallout, timo, sleepq_timeout, td);
378 }
379 
380 /*
381  * Return the number of actual sleepers for the specified queue.
382  */
383 u_int
384 sleepq_sleepcnt(void *wchan, int queue)
385 {
386 	struct sleepqueue *sq;
387 
388 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
389 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
390 	sq = sleepq_lookup(wchan);
391 	if (sq == NULL)
392 		return (0);
393 	return (sq->sq_blockedcnt[queue]);
394 }
395 
396 /*
397  * Marks the pending sleep of the current thread as interruptible and
398  * makes an initial check for pending signals before putting a thread
399  * to sleep. Enters and exits with the thread lock held.  Thread lock
400  * may have transitioned from the sleepq lock to a run lock.
401  */
402 static int
403 sleepq_catch_signals(void *wchan, int pri)
404 {
405 	struct sleepqueue_chain *sc;
406 	struct sleepqueue *sq;
407 	struct thread *td;
408 	struct proc *p;
409 	struct sigacts *ps;
410 	int sig, ret, stop_allowed;
411 
412 	td = curthread;
413 	p = curproc;
414 	sc = SC_LOOKUP(wchan);
415 	mtx_assert(&sc->sc_lock, MA_OWNED);
416 	MPASS(wchan != NULL);
417 	if ((td->td_pflags & TDP_WAKEUP) != 0) {
418 		td->td_pflags &= ~TDP_WAKEUP;
419 		ret = EINTR;
420 		thread_lock(td);
421 		goto out;
422 	}
423 
424 	/*
425 	 * See if there are any pending signals for this thread.  If not
426 	 * we can switch immediately.  Otherwise do the signal processing
427 	 * directly.
428 	 */
429 	thread_lock(td);
430 	if ((td->td_flags & (TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK)) == 0) {
431 		sleepq_switch(wchan, pri);
432 		return (0);
433 	}
434 	stop_allowed = (td->td_flags & TDF_SBDRY) ? SIG_STOP_NOT_ALLOWED :
435 	    SIG_STOP_ALLOWED;
436 	thread_unlock(td);
437 	mtx_unlock_spin(&sc->sc_lock);
438 	CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)",
439 		(void *)td, (long)p->p_pid, td->td_name);
440 	PROC_LOCK(p);
441 	ps = p->p_sigacts;
442 	mtx_lock(&ps->ps_mtx);
443 	sig = cursig(td, stop_allowed);
444 	if (sig == 0) {
445 		mtx_unlock(&ps->ps_mtx);
446 		ret = thread_suspend_check(1);
447 		MPASS(ret == 0 || ret == EINTR || ret == ERESTART);
448 	} else {
449 		if (SIGISMEMBER(ps->ps_sigintr, sig))
450 			ret = EINTR;
451 		else
452 			ret = ERESTART;
453 		mtx_unlock(&ps->ps_mtx);
454 	}
455 	/*
456 	 * Lock the per-process spinlock prior to dropping the PROC_LOCK
457 	 * to avoid a signal delivery race.  PROC_LOCK, PROC_SLOCK, and
458 	 * thread_lock() are currently held in tdsendsignal().
459 	 */
460 	PROC_SLOCK(p);
461 	mtx_lock_spin(&sc->sc_lock);
462 	PROC_UNLOCK(p);
463 	thread_lock(td);
464 	PROC_SUNLOCK(p);
465 	if (ret == 0) {
466 		sleepq_switch(wchan, pri);
467 		return (0);
468 	}
469 out:
470 	/*
471 	 * There were pending signals and this thread is still
472 	 * on the sleep queue, remove it from the sleep queue.
473 	 */
474 	if (TD_ON_SLEEPQ(td)) {
475 		sq = sleepq_lookup(wchan);
476 		if (sleepq_resume_thread(sq, td, 0)) {
477 #ifdef INVARIANTS
478 			/*
479 			 * This thread hasn't gone to sleep yet, so it
480 			 * should not be swapped out.
481 			 */
482 			panic("not waking up swapper");
483 #endif
484 		}
485 	}
486 	mtx_unlock_spin(&sc->sc_lock);
487 	MPASS(td->td_lock != &sc->sc_lock);
488 	return (ret);
489 }
490 
491 /*
492  * Switches to another thread if we are still asleep on a sleep queue.
493  * Returns with thread lock.
494  */
495 static void
496 sleepq_switch(void *wchan, int pri)
497 {
498 	struct sleepqueue_chain *sc;
499 	struct sleepqueue *sq;
500 	struct thread *td;
501 
502 	td = curthread;
503 	sc = SC_LOOKUP(wchan);
504 	mtx_assert(&sc->sc_lock, MA_OWNED);
505 	THREAD_LOCK_ASSERT(td, MA_OWNED);
506 
507 	/*
508 	 * If we have a sleep queue, then we've already been woken up, so
509 	 * just return.
510 	 */
511 	if (td->td_sleepqueue != NULL) {
512 		mtx_unlock_spin(&sc->sc_lock);
513 		return;
514 	}
515 
516 	/*
517 	 * If TDF_TIMEOUT is set, then our sleep has been timed out
518 	 * already but we are still on the sleep queue, so dequeue the
519 	 * thread and return.
520 	 */
521 	if (td->td_flags & TDF_TIMEOUT) {
522 		MPASS(TD_ON_SLEEPQ(td));
523 		sq = sleepq_lookup(wchan);
524 		if (sleepq_resume_thread(sq, td, 0)) {
525 #ifdef INVARIANTS
526 			/*
527 			 * This thread hasn't gone to sleep yet, so it
528 			 * should not be swapped out.
529 			 */
530 			panic("not waking up swapper");
531 #endif
532 		}
533 		mtx_unlock_spin(&sc->sc_lock);
534 		return;
535 	}
536 #ifdef SLEEPQUEUE_PROFILING
537 	if (prof_enabled)
538 		sleepq_profile(td->td_wmesg);
539 #endif
540 	MPASS(td->td_sleepqueue == NULL);
541 	sched_sleep(td, pri);
542 	thread_lock_set(td, &sc->sc_lock);
543 	SDT_PROBE0(sched, , , sleep);
544 	TD_SET_SLEEPING(td);
545 	mi_switch(SW_VOL | SWT_SLEEPQ, NULL);
546 	KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
547 	CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)",
548 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
549 }
550 
551 /*
552  * Check to see if we timed out.
553  */
554 static int
555 sleepq_check_timeout(void)
556 {
557 	struct thread *td;
558 
559 	td = curthread;
560 	THREAD_LOCK_ASSERT(td, MA_OWNED);
561 
562 	/*
563 	 * If TDF_TIMEOUT is set, we timed out.
564 	 */
565 	if (td->td_flags & TDF_TIMEOUT) {
566 		td->td_flags &= ~TDF_TIMEOUT;
567 		return (EWOULDBLOCK);
568 	}
569 
570 	/*
571 	 * If TDF_TIMOFAIL is set, the timeout ran after we had
572 	 * already been woken up.
573 	 */
574 	if (td->td_flags & TDF_TIMOFAIL)
575 		td->td_flags &= ~TDF_TIMOFAIL;
576 
577 	/*
578 	 * If callout_stop() fails, then the timeout is running on
579 	 * another CPU, so synchronize with it to avoid having it
580 	 * accidentally wake up a subsequent sleep.
581 	 */
582 	else if (callout_stop(&td->td_slpcallout) == 0) {
583 		td->td_flags |= TDF_TIMEOUT;
584 		TD_SET_SLEEPING(td);
585 		mi_switch(SW_INVOL | SWT_SLEEPQTIMO, NULL);
586 	}
587 	return (0);
588 }
589 
590 /*
591  * Check to see if we were awoken by a signal.
592  */
593 static int
594 sleepq_check_signals(void)
595 {
596 	struct thread *td;
597 
598 	td = curthread;
599 	THREAD_LOCK_ASSERT(td, MA_OWNED);
600 
601 	/* We are no longer in an interruptible sleep. */
602 	if (td->td_flags & TDF_SINTR)
603 		td->td_flags &= ~(TDF_SINTR | TDF_SBDRY);
604 
605 	if (td->td_flags & TDF_SLEEPABORT) {
606 		td->td_flags &= ~TDF_SLEEPABORT;
607 		return (td->td_intrval);
608 	}
609 
610 	return (0);
611 }
612 
613 /*
614  * Block the current thread until it is awakened from its sleep queue.
615  */
616 void
617 sleepq_wait(void *wchan, int pri)
618 {
619 	struct thread *td;
620 
621 	td = curthread;
622 	MPASS(!(td->td_flags & TDF_SINTR));
623 	thread_lock(td);
624 	sleepq_switch(wchan, pri);
625 	thread_unlock(td);
626 }
627 
628 /*
629  * Block the current thread until it is awakened from its sleep queue
630  * or it is interrupted by a signal.
631  */
632 int
633 sleepq_wait_sig(void *wchan, int pri)
634 {
635 	int rcatch;
636 	int rval;
637 
638 	rcatch = sleepq_catch_signals(wchan, pri);
639 	rval = sleepq_check_signals();
640 	thread_unlock(curthread);
641 	if (rcatch)
642 		return (rcatch);
643 	return (rval);
644 }
645 
646 /*
647  * Block the current thread until it is awakened from its sleep queue
648  * or it times out while waiting.
649  */
650 int
651 sleepq_timedwait(void *wchan, int pri)
652 {
653 	struct thread *td;
654 	int rval;
655 
656 	td = curthread;
657 	MPASS(!(td->td_flags & TDF_SINTR));
658 	thread_lock(td);
659 	sleepq_switch(wchan, pri);
660 	rval = sleepq_check_timeout();
661 	thread_unlock(td);
662 
663 	return (rval);
664 }
665 
666 /*
667  * Block the current thread until it is awakened from its sleep queue,
668  * it is interrupted by a signal, or it times out waiting to be awakened.
669  */
670 int
671 sleepq_timedwait_sig(void *wchan, int pri)
672 {
673 	int rcatch, rvalt, rvals;
674 
675 	rcatch = sleepq_catch_signals(wchan, pri);
676 	rvalt = sleepq_check_timeout();
677 	rvals = sleepq_check_signals();
678 	thread_unlock(curthread);
679 	if (rcatch)
680 		return (rcatch);
681 	if (rvals)
682 		return (rvals);
683 	return (rvalt);
684 }
685 
686 /*
687  * Returns the type of sleepqueue given a waitchannel.
688  */
689 int
690 sleepq_type(void *wchan)
691 {
692 	struct sleepqueue *sq;
693 	int type;
694 
695 	MPASS(wchan != NULL);
696 
697 	sleepq_lock(wchan);
698 	sq = sleepq_lookup(wchan);
699 	if (sq == NULL) {
700 		sleepq_release(wchan);
701 		return (-1);
702 	}
703 	type = sq->sq_type;
704 	sleepq_release(wchan);
705 	return (type);
706 }
707 
708 /*
709  * Removes a thread from a sleep queue and makes it
710  * runnable.
711  */
712 static int
713 sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri)
714 {
715 	struct sleepqueue_chain *sc;
716 
717 	MPASS(td != NULL);
718 	MPASS(sq->sq_wchan != NULL);
719 	MPASS(td->td_wchan == sq->sq_wchan);
720 	MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0);
721 	THREAD_LOCK_ASSERT(td, MA_OWNED);
722 	sc = SC_LOOKUP(sq->sq_wchan);
723 	mtx_assert(&sc->sc_lock, MA_OWNED);
724 
725 	SDT_PROBE2(sched, , , wakeup, td, td->td_proc);
726 
727 	/* Remove the thread from the queue. */
728 	sq->sq_blockedcnt[td->td_sqqueue]--;
729 	TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq);
730 
731 	/*
732 	 * Get a sleep queue for this thread.  If this is the last waiter,
733 	 * use the queue itself and take it out of the chain, otherwise,
734 	 * remove a queue from the free list.
735 	 */
736 	if (LIST_EMPTY(&sq->sq_free)) {
737 		td->td_sleepqueue = sq;
738 #ifdef INVARIANTS
739 		sq->sq_wchan = NULL;
740 #endif
741 #ifdef SLEEPQUEUE_PROFILING
742 		sc->sc_depth--;
743 #endif
744 	} else
745 		td->td_sleepqueue = LIST_FIRST(&sq->sq_free);
746 	LIST_REMOVE(td->td_sleepqueue, sq_hash);
747 
748 	td->td_wmesg = NULL;
749 	td->td_wchan = NULL;
750 	td->td_flags &= ~(TDF_SINTR | TDF_SBDRY);
751 
752 	CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)",
753 	    (void *)td, (long)td->td_proc->p_pid, td->td_name);
754 
755 	/* Adjust priority if requested. */
756 	MPASS(pri == 0 || (pri >= PRI_MIN && pri <= PRI_MAX));
757 	if (pri != 0 && td->td_priority > pri &&
758 	    PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
759 		sched_prio(td, pri);
760 
761 	/*
762 	 * Note that thread td might not be sleeping if it is running
763 	 * sleepq_catch_signals() on another CPU or is blocked on its
764 	 * proc lock to check signals.  There's no need to mark the
765 	 * thread runnable in that case.
766 	 */
767 	if (TD_IS_SLEEPING(td)) {
768 		TD_CLR_SLEEPING(td);
769 		return (setrunnable(td));
770 	}
771 	return (0);
772 }
773 
774 #ifdef INVARIANTS
775 /*
776  * UMA zone item deallocator.
777  */
778 static void
779 sleepq_dtor(void *mem, int size, void *arg)
780 {
781 	struct sleepqueue *sq;
782 	int i;
783 
784 	sq = mem;
785 	for (i = 0; i < NR_SLEEPQS; i++) {
786 		MPASS(TAILQ_EMPTY(&sq->sq_blocked[i]));
787 		MPASS(sq->sq_blockedcnt[i] == 0);
788 	}
789 }
790 #endif
791 
792 /*
793  * UMA zone item initializer.
794  */
795 static int
796 sleepq_init(void *mem, int size, int flags)
797 {
798 	struct sleepqueue *sq;
799 	int i;
800 
801 	bzero(mem, size);
802 	sq = mem;
803 	for (i = 0; i < NR_SLEEPQS; i++) {
804 		TAILQ_INIT(&sq->sq_blocked[i]);
805 		sq->sq_blockedcnt[i] = 0;
806 	}
807 	LIST_INIT(&sq->sq_free);
808 	return (0);
809 }
810 
811 /*
812  * Find the highest priority thread sleeping on a wait channel and resume it.
813  */
814 int
815 sleepq_signal(void *wchan, int flags, int pri, int queue)
816 {
817 	struct sleepqueue *sq;
818 	struct thread *td, *besttd;
819 	int wakeup_swapper;
820 
821 	CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags);
822 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
823 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
824 	sq = sleepq_lookup(wchan);
825 	if (sq == NULL)
826 		return (0);
827 	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
828 	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
829 
830 	/*
831 	 * Find the highest priority thread on the queue.  If there is a
832 	 * tie, use the thread that first appears in the queue as it has
833 	 * been sleeping the longest since threads are always added to
834 	 * the tail of sleep queues.
835 	 */
836 	besttd = NULL;
837 	TAILQ_FOREACH(td, &sq->sq_blocked[queue], td_slpq) {
838 		if (besttd == NULL || td->td_priority < besttd->td_priority)
839 			besttd = td;
840 	}
841 	MPASS(besttd != NULL);
842 	thread_lock(besttd);
843 	wakeup_swapper = sleepq_resume_thread(sq, besttd, pri);
844 	thread_unlock(besttd);
845 	return (wakeup_swapper);
846 }
847 
848 /*
849  * Resume all threads sleeping on a specified wait channel.
850  */
851 int
852 sleepq_broadcast(void *wchan, int flags, int pri, int queue)
853 {
854 	struct sleepqueue *sq;
855 	struct thread *td, *tdn;
856 	int wakeup_swapper;
857 
858 	CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags);
859 	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
860 	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
861 	sq = sleepq_lookup(wchan);
862 	if (sq == NULL)
863 		return (0);
864 	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
865 	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
866 
867 	/* Resume all blocked threads on the sleep queue. */
868 	wakeup_swapper = 0;
869 	TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, tdn) {
870 		thread_lock(td);
871 		if (sleepq_resume_thread(sq, td, pri))
872 			wakeup_swapper = 1;
873 		thread_unlock(td);
874 	}
875 	return (wakeup_swapper);
876 }
877 
878 /*
879  * Time sleeping threads out.  When the timeout expires, the thread is
880  * removed from the sleep queue and made runnable if it is still asleep.
881  */
882 static void
883 sleepq_timeout(void *arg)
884 {
885 	struct sleepqueue_chain *sc;
886 	struct sleepqueue *sq;
887 	struct thread *td;
888 	void *wchan;
889 	int wakeup_swapper;
890 
891 	td = arg;
892 	wakeup_swapper = 0;
893 	CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)",
894 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
895 
896 	/*
897 	 * First, see if the thread is asleep and get the wait channel if
898 	 * it is.
899 	 */
900 	thread_lock(td);
901 	if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) {
902 		wchan = td->td_wchan;
903 		sc = SC_LOOKUP(wchan);
904 		THREAD_LOCKPTR_ASSERT(td, &sc->sc_lock);
905 		sq = sleepq_lookup(wchan);
906 		MPASS(sq != NULL);
907 		td->td_flags |= TDF_TIMEOUT;
908 		wakeup_swapper = sleepq_resume_thread(sq, td, 0);
909 		thread_unlock(td);
910 		if (wakeup_swapper)
911 			kick_proc0();
912 		return;
913 	}
914 
915 	/*
916 	 * If the thread is on the SLEEPQ but isn't sleeping yet, it
917 	 * can either be on another CPU in between sleepq_add() and
918 	 * one of the sleepq_*wait*() routines or it can be in
919 	 * sleepq_catch_signals().
920 	 */
921 	if (TD_ON_SLEEPQ(td)) {
922 		td->td_flags |= TDF_TIMEOUT;
923 		thread_unlock(td);
924 		return;
925 	}
926 
927 	/*
928 	 * Now check for the edge cases.  First, if TDF_TIMEOUT is set,
929 	 * then the other thread has already yielded to us, so clear
930 	 * the flag and resume it.  If TDF_TIMEOUT is not set, then the
931 	 * we know that the other thread is not on a sleep queue, but it
932 	 * hasn't resumed execution yet.  In that case, set TDF_TIMOFAIL
933 	 * to let it know that the timeout has already run and doesn't
934 	 * need to be canceled.
935 	 */
936 	if (td->td_flags & TDF_TIMEOUT) {
937 		MPASS(TD_IS_SLEEPING(td));
938 		td->td_flags &= ~TDF_TIMEOUT;
939 		TD_CLR_SLEEPING(td);
940 		wakeup_swapper = setrunnable(td);
941 	} else
942 		td->td_flags |= TDF_TIMOFAIL;
943 	thread_unlock(td);
944 	if (wakeup_swapper)
945 		kick_proc0();
946 }
947 
948 /*
949  * Resumes a specific thread from the sleep queue associated with a specific
950  * wait channel if it is on that queue.
951  */
952 void
953 sleepq_remove(struct thread *td, void *wchan)
954 {
955 	struct sleepqueue *sq;
956 	int wakeup_swapper;
957 
958 	/*
959 	 * Look up the sleep queue for this wait channel, then re-check
960 	 * that the thread is asleep on that channel, if it is not, then
961 	 * bail.
962 	 */
963 	MPASS(wchan != NULL);
964 	sleepq_lock(wchan);
965 	sq = sleepq_lookup(wchan);
966 	/*
967 	 * We can not lock the thread here as it may be sleeping on a
968 	 * different sleepq.  However, holding the sleepq lock for this
969 	 * wchan can guarantee that we do not miss a wakeup for this
970 	 * channel.  The asserts below will catch any false positives.
971 	 */
972 	if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) {
973 		sleepq_release(wchan);
974 		return;
975 	}
976 	/* Thread is asleep on sleep queue sq, so wake it up. */
977 	thread_lock(td);
978 	MPASS(sq != NULL);
979 	MPASS(td->td_wchan == wchan);
980 	wakeup_swapper = sleepq_resume_thread(sq, td, 0);
981 	thread_unlock(td);
982 	sleepq_release(wchan);
983 	if (wakeup_swapper)
984 		kick_proc0();
985 }
986 
987 /*
988  * Abort a thread as if an interrupt had occurred.  Only abort
989  * interruptible waits (unfortunately it isn't safe to abort others).
990  */
991 int
992 sleepq_abort(struct thread *td, int intrval)
993 {
994 	struct sleepqueue *sq;
995 	void *wchan;
996 
997 	THREAD_LOCK_ASSERT(td, MA_OWNED);
998 	MPASS(TD_ON_SLEEPQ(td));
999 	MPASS(td->td_flags & TDF_SINTR);
1000 	MPASS(intrval == EINTR || intrval == ERESTART);
1001 
1002 	/*
1003 	 * If the TDF_TIMEOUT flag is set, just leave. A
1004 	 * timeout is scheduled anyhow.
1005 	 */
1006 	if (td->td_flags & TDF_TIMEOUT)
1007 		return (0);
1008 
1009 	CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)",
1010 	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
1011 	td->td_intrval = intrval;
1012 	td->td_flags |= TDF_SLEEPABORT;
1013 	/*
1014 	 * If the thread has not slept yet it will find the signal in
1015 	 * sleepq_catch_signals() and call sleepq_resume_thread.  Otherwise
1016 	 * we have to do it here.
1017 	 */
1018 	if (!TD_IS_SLEEPING(td))
1019 		return (0);
1020 	wchan = td->td_wchan;
1021 	MPASS(wchan != NULL);
1022 	sq = sleepq_lookup(wchan);
1023 	MPASS(sq != NULL);
1024 
1025 	/* Thread is asleep on sleep queue sq, so wake it up. */
1026 	return (sleepq_resume_thread(sq, td, 0));
1027 }
1028 
1029 #ifdef SLEEPQUEUE_PROFILING
1030 #define	SLEEPQ_PROF_LOCATIONS	1024
1031 #define	SLEEPQ_SBUFSIZE		512
1032 struct sleepq_prof {
1033 	LIST_ENTRY(sleepq_prof) sp_link;
1034 	const char	*sp_wmesg;
1035 	long		sp_count;
1036 };
1037 
1038 LIST_HEAD(sqphead, sleepq_prof);
1039 
1040 struct sqphead sleepq_prof_free;
1041 struct sqphead sleepq_hash[SC_TABLESIZE];
1042 static struct sleepq_prof sleepq_profent[SLEEPQ_PROF_LOCATIONS];
1043 static struct mtx sleepq_prof_lock;
1044 MTX_SYSINIT(sleepq_prof_lock, &sleepq_prof_lock, "sleepq_prof", MTX_SPIN);
1045 
1046 static void
1047 sleepq_profile(const char *wmesg)
1048 {
1049 	struct sleepq_prof *sp;
1050 
1051 	mtx_lock_spin(&sleepq_prof_lock);
1052 	if (prof_enabled == 0)
1053 		goto unlock;
1054 	LIST_FOREACH(sp, &sleepq_hash[SC_HASH(wmesg)], sp_link)
1055 		if (sp->sp_wmesg == wmesg)
1056 			goto done;
1057 	sp = LIST_FIRST(&sleepq_prof_free);
1058 	if (sp == NULL)
1059 		goto unlock;
1060 	sp->sp_wmesg = wmesg;
1061 	LIST_REMOVE(sp, sp_link);
1062 	LIST_INSERT_HEAD(&sleepq_hash[SC_HASH(wmesg)], sp, sp_link);
1063 done:
1064 	sp->sp_count++;
1065 unlock:
1066 	mtx_unlock_spin(&sleepq_prof_lock);
1067 	return;
1068 }
1069 
1070 static void
1071 sleepq_prof_reset(void)
1072 {
1073 	struct sleepq_prof *sp;
1074 	int enabled;
1075 	int i;
1076 
1077 	mtx_lock_spin(&sleepq_prof_lock);
1078 	enabled = prof_enabled;
1079 	prof_enabled = 0;
1080 	for (i = 0; i < SC_TABLESIZE; i++)
1081 		LIST_INIT(&sleepq_hash[i]);
1082 	LIST_INIT(&sleepq_prof_free);
1083 	for (i = 0; i < SLEEPQ_PROF_LOCATIONS; i++) {
1084 		sp = &sleepq_profent[i];
1085 		sp->sp_wmesg = NULL;
1086 		sp->sp_count = 0;
1087 		LIST_INSERT_HEAD(&sleepq_prof_free, sp, sp_link);
1088 	}
1089 	prof_enabled = enabled;
1090 	mtx_unlock_spin(&sleepq_prof_lock);
1091 }
1092 
1093 static int
1094 enable_sleepq_prof(SYSCTL_HANDLER_ARGS)
1095 {
1096 	int error, v;
1097 
1098 	v = prof_enabled;
1099 	error = sysctl_handle_int(oidp, &v, v, req);
1100 	if (error)
1101 		return (error);
1102 	if (req->newptr == NULL)
1103 		return (error);
1104 	if (v == prof_enabled)
1105 		return (0);
1106 	if (v == 1)
1107 		sleepq_prof_reset();
1108 	mtx_lock_spin(&sleepq_prof_lock);
1109 	prof_enabled = !!v;
1110 	mtx_unlock_spin(&sleepq_prof_lock);
1111 
1112 	return (0);
1113 }
1114 
1115 static int
1116 reset_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1117 {
1118 	int error, v;
1119 
1120 	v = 0;
1121 	error = sysctl_handle_int(oidp, &v, 0, req);
1122 	if (error)
1123 		return (error);
1124 	if (req->newptr == NULL)
1125 		return (error);
1126 	if (v == 0)
1127 		return (0);
1128 	sleepq_prof_reset();
1129 
1130 	return (0);
1131 }
1132 
1133 static int
1134 dump_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1135 {
1136 	struct sleepq_prof *sp;
1137 	struct sbuf *sb;
1138 	int enabled;
1139 	int error;
1140 	int i;
1141 
1142 	error = sysctl_wire_old_buffer(req, 0);
1143 	if (error != 0)
1144 		return (error);
1145 	sb = sbuf_new_for_sysctl(NULL, NULL, SLEEPQ_SBUFSIZE, req);
1146 	sbuf_printf(sb, "\nwmesg\tcount\n");
1147 	enabled = prof_enabled;
1148 	mtx_lock_spin(&sleepq_prof_lock);
1149 	prof_enabled = 0;
1150 	mtx_unlock_spin(&sleepq_prof_lock);
1151 	for (i = 0; i < SC_TABLESIZE; i++) {
1152 		LIST_FOREACH(sp, &sleepq_hash[i], sp_link) {
1153 			sbuf_printf(sb, "%s\t%ld\n",
1154 			    sp->sp_wmesg, sp->sp_count);
1155 		}
1156 	}
1157 	mtx_lock_spin(&sleepq_prof_lock);
1158 	prof_enabled = enabled;
1159 	mtx_unlock_spin(&sleepq_prof_lock);
1160 
1161 	error = sbuf_finish(sb);
1162 	sbuf_delete(sb);
1163 	return (error);
1164 }
1165 
1166 SYSCTL_PROC(_debug_sleepq, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD,
1167     NULL, 0, dump_sleepq_prof_stats, "A", "Sleepqueue profiling statistics");
1168 SYSCTL_PROC(_debug_sleepq, OID_AUTO, reset, CTLTYPE_INT | CTLFLAG_RW,
1169     NULL, 0, reset_sleepq_prof_stats, "I",
1170     "Reset sleepqueue profiling statistics");
1171 SYSCTL_PROC(_debug_sleepq, OID_AUTO, enable, CTLTYPE_INT | CTLFLAG_RW,
1172     NULL, 0, enable_sleepq_prof, "I", "Enable sleepqueue profiling");
1173 #endif
1174 
1175 #ifdef DDB
1176 DB_SHOW_COMMAND(sleepq, db_show_sleepqueue)
1177 {
1178 	struct sleepqueue_chain *sc;
1179 	struct sleepqueue *sq;
1180 #ifdef INVARIANTS
1181 	struct lock_object *lock;
1182 #endif
1183 	struct thread *td;
1184 	void *wchan;
1185 	int i;
1186 
1187 	if (!have_addr)
1188 		return;
1189 
1190 	/*
1191 	 * First, see if there is an active sleep queue for the wait channel
1192 	 * indicated by the address.
1193 	 */
1194 	wchan = (void *)addr;
1195 	sc = SC_LOOKUP(wchan);
1196 	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
1197 		if (sq->sq_wchan == wchan)
1198 			goto found;
1199 
1200 	/*
1201 	 * Second, see if there is an active sleep queue at the address
1202 	 * indicated.
1203 	 */
1204 	for (i = 0; i < SC_TABLESIZE; i++)
1205 		LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) {
1206 			if (sq == (struct sleepqueue *)addr)
1207 				goto found;
1208 		}
1209 
1210 	db_printf("Unable to locate a sleep queue via %p\n", (void *)addr);
1211 	return;
1212 found:
1213 	db_printf("Wait channel: %p\n", sq->sq_wchan);
1214 	db_printf("Queue type: %d\n", sq->sq_type);
1215 #ifdef INVARIANTS
1216 	if (sq->sq_lock) {
1217 		lock = sq->sq_lock;
1218 		db_printf("Associated Interlock: %p - (%s) %s\n", lock,
1219 		    LOCK_CLASS(lock)->lc_name, lock->lo_name);
1220 	}
1221 #endif
1222 	db_printf("Blocked threads:\n");
1223 	for (i = 0; i < NR_SLEEPQS; i++) {
1224 		db_printf("\nQueue[%d]:\n", i);
1225 		if (TAILQ_EMPTY(&sq->sq_blocked[i]))
1226 			db_printf("\tempty\n");
1227 		else
1228 			TAILQ_FOREACH(td, &sq->sq_blocked[0],
1229 				      td_slpq) {
1230 				db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td,
1231 					  td->td_tid, td->td_proc->p_pid,
1232 					  td->td_name);
1233 			}
1234 		db_printf("(expected: %u)\n", sq->sq_blockedcnt[i]);
1235 	}
1236 }
1237 
1238 /* Alias 'show sleepqueue' to 'show sleepq'. */
1239 DB_SHOW_ALIAS(sleepqueue, db_show_sleepqueue);
1240 #endif
1241