1 /*- 2 * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 /* 28 * Implementation of sleep queues used to hold queue of threads blocked on 29 * a wait channel. Sleep queues different from turnstiles in that wait 30 * channels are not owned by anyone, so there is no priority propagation. 31 * Sleep queues can also provide a timeout and can also be interrupted by 32 * signals. That said, there are several similarities between the turnstile 33 * and sleep queue implementations. (Note: turnstiles were implemented 34 * first.) For example, both use a hash table of the same size where each 35 * bucket is referred to as a "chain" that contains both a spin lock and 36 * a linked list of queues. An individual queue is located by using a hash 37 * to pick a chain, locking the chain, and then walking the chain searching 38 * for the queue. This means that a wait channel object does not need to 39 * embed it's queue head just as locks do not embed their turnstile queue 40 * head. Threads also carry around a sleep queue that they lend to the 41 * wait channel when blocking. Just as in turnstiles, the queue includes 42 * a free list of the sleep queues of other threads blocked on the same 43 * wait channel in the case of multiple waiters. 44 * 45 * Some additional functionality provided by sleep queues include the 46 * ability to set a timeout. The timeout is managed using a per-thread 47 * callout that resumes a thread if it is asleep. A thread may also 48 * catch signals while it is asleep (aka an interruptible sleep). The 49 * signal code uses sleepq_abort() to interrupt a sleeping thread. Finally, 50 * sleep queues also provide some extra assertions. One is not allowed to 51 * mix the sleep/wakeup and cv APIs for a given wait channel. Also, one 52 * must consistently use the same lock to synchronize with a wait channel, 53 * though this check is currently only a warning for sleep/wakeup due to 54 * pre-existing abuse of that API. The same lock must also be held when 55 * awakening threads, though that is currently only enforced for condition 56 * variables. 57 */ 58 59 #include <sys/cdefs.h> 60 __FBSDID("$FreeBSD$"); 61 62 #include "opt_sleepqueue_profiling.h" 63 #include "opt_ddb.h" 64 #include "opt_sched.h" 65 #include "opt_stack.h" 66 67 #include <sys/param.h> 68 #include <sys/systm.h> 69 #include <sys/lock.h> 70 #include <sys/kernel.h> 71 #include <sys/ktr.h> 72 #include <sys/mutex.h> 73 #include <sys/proc.h> 74 #include <sys/sbuf.h> 75 #include <sys/sched.h> 76 #include <sys/sdt.h> 77 #include <sys/signalvar.h> 78 #include <sys/sleepqueue.h> 79 #include <sys/stack.h> 80 #include <sys/sysctl.h> 81 82 #include <vm/uma.h> 83 84 #ifdef DDB 85 #include <ddb/ddb.h> 86 #endif 87 88 89 /* 90 * Constants for the hash table of sleep queue chains. 91 * SC_TABLESIZE must be a power of two for SC_MASK to work properly. 92 */ 93 #define SC_TABLESIZE 256 /* Must be power of 2. */ 94 #define SC_MASK (SC_TABLESIZE - 1) 95 #define SC_SHIFT 8 96 #define SC_HASH(wc) ((((uintptr_t)(wc) >> SC_SHIFT) ^ (uintptr_t)(wc)) & \ 97 SC_MASK) 98 #define SC_LOOKUP(wc) &sleepq_chains[SC_HASH(wc)] 99 #define NR_SLEEPQS 2 100 /* 101 * There two different lists of sleep queues. Both lists are connected 102 * via the sq_hash entries. The first list is the sleep queue chain list 103 * that a sleep queue is on when it is attached to a wait channel. The 104 * second list is the free list hung off of a sleep queue that is attached 105 * to a wait channel. 106 * 107 * Each sleep queue also contains the wait channel it is attached to, the 108 * list of threads blocked on that wait channel, flags specific to the 109 * wait channel, and the lock used to synchronize with a wait channel. 110 * The flags are used to catch mismatches between the various consumers 111 * of the sleep queue API (e.g. sleep/wakeup and condition variables). 112 * The lock pointer is only used when invariants are enabled for various 113 * debugging checks. 114 * 115 * Locking key: 116 * c - sleep queue chain lock 117 */ 118 struct sleepqueue { 119 TAILQ_HEAD(, thread) sq_blocked[NR_SLEEPQS]; /* (c) Blocked threads. */ 120 u_int sq_blockedcnt[NR_SLEEPQS]; /* (c) N. of blocked threads. */ 121 LIST_ENTRY(sleepqueue) sq_hash; /* (c) Chain and free list. */ 122 LIST_HEAD(, sleepqueue) sq_free; /* (c) Free queues. */ 123 void *sq_wchan; /* (c) Wait channel. */ 124 int sq_type; /* (c) Queue type. */ 125 #ifdef INVARIANTS 126 struct lock_object *sq_lock; /* (c) Associated lock. */ 127 #endif 128 }; 129 130 struct sleepqueue_chain { 131 LIST_HEAD(, sleepqueue) sc_queues; /* List of sleep queues. */ 132 struct mtx sc_lock; /* Spin lock for this chain. */ 133 #ifdef SLEEPQUEUE_PROFILING 134 u_int sc_depth; /* Length of sc_queues. */ 135 u_int sc_max_depth; /* Max length of sc_queues. */ 136 #endif 137 }; 138 139 #ifdef SLEEPQUEUE_PROFILING 140 u_int sleepq_max_depth; 141 static SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling"); 142 static SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0, 143 "sleepq chain stats"); 144 SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth, 145 0, "maxmimum depth achieved of a single chain"); 146 147 static void sleepq_profile(const char *wmesg); 148 static int prof_enabled; 149 #endif 150 static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE]; 151 static uma_zone_t sleepq_zone; 152 153 /* 154 * Prototypes for non-exported routines. 155 */ 156 static int sleepq_catch_signals(void *wchan, int pri); 157 static int sleepq_check_signals(void); 158 static int sleepq_check_timeout(void); 159 #ifdef INVARIANTS 160 static void sleepq_dtor(void *mem, int size, void *arg); 161 #endif 162 static int sleepq_init(void *mem, int size, int flags); 163 static int sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, 164 int pri); 165 static void sleepq_switch(void *wchan, int pri); 166 static void sleepq_timeout(void *arg); 167 168 SDT_PROBE_DECLARE(sched, , , sleep); 169 SDT_PROBE_DECLARE(sched, , , wakeup); 170 171 /* 172 * Initialize SLEEPQUEUE_PROFILING specific sysctl nodes. 173 * Note that it must happen after sleepinit() has been fully executed, so 174 * it must happen after SI_SUB_KMEM SYSINIT() subsystem setup. 175 */ 176 #ifdef SLEEPQUEUE_PROFILING 177 static void 178 init_sleepqueue_profiling(void) 179 { 180 char chain_name[10]; 181 struct sysctl_oid *chain_oid; 182 u_int i; 183 184 for (i = 0; i < SC_TABLESIZE; i++) { 185 snprintf(chain_name, sizeof(chain_name), "%u", i); 186 chain_oid = SYSCTL_ADD_NODE(NULL, 187 SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO, 188 chain_name, CTLFLAG_RD, NULL, "sleepq chain stats"); 189 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO, 190 "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL); 191 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO, 192 "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0, 193 NULL); 194 } 195 } 196 197 SYSINIT(sleepqueue_profiling, SI_SUB_LOCK, SI_ORDER_ANY, 198 init_sleepqueue_profiling, NULL); 199 #endif 200 201 /* 202 * Early initialization of sleep queues that is called from the sleepinit() 203 * SYSINIT. 204 */ 205 void 206 init_sleepqueues(void) 207 { 208 int i; 209 210 for (i = 0; i < SC_TABLESIZE; i++) { 211 LIST_INIT(&sleepq_chains[i].sc_queues); 212 mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL, 213 MTX_SPIN | MTX_RECURSE); 214 } 215 sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue), 216 #ifdef INVARIANTS 217 NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0); 218 #else 219 NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0); 220 #endif 221 222 thread0.td_sleepqueue = sleepq_alloc(); 223 } 224 225 /* 226 * Get a sleep queue for a new thread. 227 */ 228 struct sleepqueue * 229 sleepq_alloc(void) 230 { 231 232 return (uma_zalloc(sleepq_zone, M_WAITOK)); 233 } 234 235 /* 236 * Free a sleep queue when a thread is destroyed. 237 */ 238 void 239 sleepq_free(struct sleepqueue *sq) 240 { 241 242 uma_zfree(sleepq_zone, sq); 243 } 244 245 /* 246 * Lock the sleep queue chain associated with the specified wait channel. 247 */ 248 void 249 sleepq_lock(void *wchan) 250 { 251 struct sleepqueue_chain *sc; 252 253 sc = SC_LOOKUP(wchan); 254 mtx_lock_spin(&sc->sc_lock); 255 } 256 257 /* 258 * Look up the sleep queue associated with a given wait channel in the hash 259 * table locking the associated sleep queue chain. If no queue is found in 260 * the table, NULL is returned. 261 */ 262 struct sleepqueue * 263 sleepq_lookup(void *wchan) 264 { 265 struct sleepqueue_chain *sc; 266 struct sleepqueue *sq; 267 268 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 269 sc = SC_LOOKUP(wchan); 270 mtx_assert(&sc->sc_lock, MA_OWNED); 271 LIST_FOREACH(sq, &sc->sc_queues, sq_hash) 272 if (sq->sq_wchan == wchan) 273 return (sq); 274 return (NULL); 275 } 276 277 /* 278 * Unlock the sleep queue chain associated with a given wait channel. 279 */ 280 void 281 sleepq_release(void *wchan) 282 { 283 struct sleepqueue_chain *sc; 284 285 sc = SC_LOOKUP(wchan); 286 mtx_unlock_spin(&sc->sc_lock); 287 } 288 289 /* 290 * Places the current thread on the sleep queue for the specified wait 291 * channel. If INVARIANTS is enabled, then it associates the passed in 292 * lock with the sleepq to make sure it is held when that sleep queue is 293 * woken up. 294 */ 295 void 296 sleepq_add(void *wchan, struct lock_object *lock, const char *wmesg, int flags, 297 int queue) 298 { 299 struct sleepqueue_chain *sc; 300 struct sleepqueue *sq; 301 struct thread *td; 302 303 td = curthread; 304 sc = SC_LOOKUP(wchan); 305 mtx_assert(&sc->sc_lock, MA_OWNED); 306 MPASS(td->td_sleepqueue != NULL); 307 MPASS(wchan != NULL); 308 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 309 310 /* If this thread is not allowed to sleep, die a horrible death. */ 311 KASSERT(td->td_no_sleeping == 0, 312 ("%s: td %p to sleep on wchan %p with sleeping prohibited", 313 __func__, td, wchan)); 314 315 /* Look up the sleep queue associated with the wait channel 'wchan'. */ 316 sq = sleepq_lookup(wchan); 317 318 /* 319 * If the wait channel does not already have a sleep queue, use 320 * this thread's sleep queue. Otherwise, insert the current thread 321 * into the sleep queue already in use by this wait channel. 322 */ 323 if (sq == NULL) { 324 #ifdef INVARIANTS 325 int i; 326 327 sq = td->td_sleepqueue; 328 for (i = 0; i < NR_SLEEPQS; i++) { 329 KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]), 330 ("thread's sleep queue %d is not empty", i)); 331 KASSERT(sq->sq_blockedcnt[i] == 0, 332 ("thread's sleep queue %d count mismatches", i)); 333 } 334 KASSERT(LIST_EMPTY(&sq->sq_free), 335 ("thread's sleep queue has a non-empty free list")); 336 KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer")); 337 sq->sq_lock = lock; 338 #endif 339 #ifdef SLEEPQUEUE_PROFILING 340 sc->sc_depth++; 341 if (sc->sc_depth > sc->sc_max_depth) { 342 sc->sc_max_depth = sc->sc_depth; 343 if (sc->sc_max_depth > sleepq_max_depth) 344 sleepq_max_depth = sc->sc_max_depth; 345 } 346 #endif 347 sq = td->td_sleepqueue; 348 LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash); 349 sq->sq_wchan = wchan; 350 sq->sq_type = flags & SLEEPQ_TYPE; 351 } else { 352 MPASS(wchan == sq->sq_wchan); 353 MPASS(lock == sq->sq_lock); 354 MPASS((flags & SLEEPQ_TYPE) == sq->sq_type); 355 LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash); 356 } 357 thread_lock(td); 358 TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq); 359 sq->sq_blockedcnt[queue]++; 360 td->td_sleepqueue = NULL; 361 td->td_sqqueue = queue; 362 td->td_wchan = wchan; 363 td->td_wmesg = wmesg; 364 if (flags & SLEEPQ_INTERRUPTIBLE) { 365 td->td_flags |= TDF_SINTR; 366 td->td_flags &= ~TDF_SLEEPABORT; 367 } 368 thread_unlock(td); 369 } 370 371 /* 372 * Sets a timeout that will remove the current thread from the specified 373 * sleep queue after timo ticks if the thread has not already been awakened. 374 */ 375 void 376 sleepq_set_timeout_sbt(void *wchan, sbintime_t sbt, sbintime_t pr, 377 int flags) 378 { 379 struct sleepqueue_chain *sc; 380 struct thread *td; 381 sbintime_t pr1; 382 383 td = curthread; 384 sc = SC_LOOKUP(wchan); 385 mtx_assert(&sc->sc_lock, MA_OWNED); 386 MPASS(TD_ON_SLEEPQ(td)); 387 MPASS(td->td_sleepqueue == NULL); 388 MPASS(wchan != NULL); 389 if (cold && td == &thread0) 390 panic("timed sleep before timers are working"); 391 KASSERT(td->td_sleeptimo == 0, ("td %d %p td_sleeptimo %jx", 392 td->td_tid, td, (uintmax_t)td->td_sleeptimo)); 393 thread_lock(td); 394 callout_when(sbt, pr, flags, &td->td_sleeptimo, &pr1); 395 thread_unlock(td); 396 callout_reset_sbt_on(&td->td_slpcallout, td->td_sleeptimo, pr1, 397 sleepq_timeout, td, PCPU_GET(cpuid), flags | C_PRECALC | 398 C_DIRECT_EXEC); 399 } 400 401 /* 402 * Return the number of actual sleepers for the specified queue. 403 */ 404 u_int 405 sleepq_sleepcnt(void *wchan, int queue) 406 { 407 struct sleepqueue *sq; 408 409 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 410 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 411 sq = sleepq_lookup(wchan); 412 if (sq == NULL) 413 return (0); 414 return (sq->sq_blockedcnt[queue]); 415 } 416 417 /* 418 * Marks the pending sleep of the current thread as interruptible and 419 * makes an initial check for pending signals before putting a thread 420 * to sleep. Enters and exits with the thread lock held. Thread lock 421 * may have transitioned from the sleepq lock to a run lock. 422 */ 423 static int 424 sleepq_catch_signals(void *wchan, int pri) 425 { 426 struct sleepqueue_chain *sc; 427 struct sleepqueue *sq; 428 struct thread *td; 429 struct proc *p; 430 struct sigacts *ps; 431 int sig, ret; 432 433 td = curthread; 434 p = curproc; 435 sc = SC_LOOKUP(wchan); 436 mtx_assert(&sc->sc_lock, MA_OWNED); 437 MPASS(wchan != NULL); 438 if ((td->td_pflags & TDP_WAKEUP) != 0) { 439 td->td_pflags &= ~TDP_WAKEUP; 440 ret = EINTR; 441 thread_lock(td); 442 goto out; 443 } 444 445 /* 446 * See if there are any pending signals for this thread. If not 447 * we can switch immediately. Otherwise do the signal processing 448 * directly. 449 */ 450 thread_lock(td); 451 if ((td->td_flags & (TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK)) == 0) { 452 sleepq_switch(wchan, pri); 453 return (0); 454 } 455 thread_unlock(td); 456 mtx_unlock_spin(&sc->sc_lock); 457 CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)", 458 (void *)td, (long)p->p_pid, td->td_name); 459 PROC_LOCK(p); 460 ps = p->p_sigacts; 461 mtx_lock(&ps->ps_mtx); 462 sig = cursig(td); 463 if (sig == -1) { 464 mtx_unlock(&ps->ps_mtx); 465 KASSERT((td->td_flags & TDF_SBDRY) != 0, ("lost TDF_SBDRY")); 466 KASSERT(TD_SBDRY_INTR(td), 467 ("lost TDF_SERESTART of TDF_SEINTR")); 468 KASSERT((td->td_flags & (TDF_SEINTR | TDF_SERESTART)) != 469 (TDF_SEINTR | TDF_SERESTART), 470 ("both TDF_SEINTR and TDF_SERESTART")); 471 ret = TD_SBDRY_ERRNO(td); 472 } else if (sig == 0) { 473 mtx_unlock(&ps->ps_mtx); 474 ret = thread_suspend_check(1); 475 MPASS(ret == 0 || ret == EINTR || ret == ERESTART); 476 } else { 477 if (SIGISMEMBER(ps->ps_sigintr, sig)) 478 ret = EINTR; 479 else 480 ret = ERESTART; 481 mtx_unlock(&ps->ps_mtx); 482 } 483 /* 484 * Lock the per-process spinlock prior to dropping the PROC_LOCK 485 * to avoid a signal delivery race. PROC_LOCK, PROC_SLOCK, and 486 * thread_lock() are currently held in tdsendsignal(). 487 */ 488 PROC_SLOCK(p); 489 mtx_lock_spin(&sc->sc_lock); 490 PROC_UNLOCK(p); 491 thread_lock(td); 492 PROC_SUNLOCK(p); 493 if (ret == 0) { 494 sleepq_switch(wchan, pri); 495 return (0); 496 } 497 out: 498 /* 499 * There were pending signals and this thread is still 500 * on the sleep queue, remove it from the sleep queue. 501 */ 502 if (TD_ON_SLEEPQ(td)) { 503 sq = sleepq_lookup(wchan); 504 if (sleepq_resume_thread(sq, td, 0)) { 505 #ifdef INVARIANTS 506 /* 507 * This thread hasn't gone to sleep yet, so it 508 * should not be swapped out. 509 */ 510 panic("not waking up swapper"); 511 #endif 512 } 513 } 514 mtx_unlock_spin(&sc->sc_lock); 515 MPASS(td->td_lock != &sc->sc_lock); 516 return (ret); 517 } 518 519 /* 520 * Switches to another thread if we are still asleep on a sleep queue. 521 * Returns with thread lock. 522 */ 523 static void 524 sleepq_switch(void *wchan, int pri) 525 { 526 struct sleepqueue_chain *sc; 527 struct sleepqueue *sq; 528 struct thread *td; 529 530 td = curthread; 531 sc = SC_LOOKUP(wchan); 532 mtx_assert(&sc->sc_lock, MA_OWNED); 533 THREAD_LOCK_ASSERT(td, MA_OWNED); 534 535 /* 536 * If we have a sleep queue, then we've already been woken up, so 537 * just return. 538 */ 539 if (td->td_sleepqueue != NULL) { 540 mtx_unlock_spin(&sc->sc_lock); 541 return; 542 } 543 544 /* 545 * If TDF_TIMEOUT is set, then our sleep has been timed out 546 * already but we are still on the sleep queue, so dequeue the 547 * thread and return. 548 */ 549 if (td->td_flags & TDF_TIMEOUT) { 550 MPASS(TD_ON_SLEEPQ(td)); 551 sq = sleepq_lookup(wchan); 552 if (sleepq_resume_thread(sq, td, 0)) { 553 #ifdef INVARIANTS 554 /* 555 * This thread hasn't gone to sleep yet, so it 556 * should not be swapped out. 557 */ 558 panic("not waking up swapper"); 559 #endif 560 } 561 mtx_unlock_spin(&sc->sc_lock); 562 return; 563 } 564 #ifdef SLEEPQUEUE_PROFILING 565 if (prof_enabled) 566 sleepq_profile(td->td_wmesg); 567 #endif 568 MPASS(td->td_sleepqueue == NULL); 569 sched_sleep(td, pri); 570 thread_lock_set(td, &sc->sc_lock); 571 SDT_PROBE0(sched, , , sleep); 572 TD_SET_SLEEPING(td); 573 mi_switch(SW_VOL | SWT_SLEEPQ, NULL); 574 KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING")); 575 CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)", 576 (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name); 577 } 578 579 /* 580 * Check to see if we timed out. 581 */ 582 static int 583 sleepq_check_timeout(void) 584 { 585 struct thread *td; 586 int res; 587 588 td = curthread; 589 THREAD_LOCK_ASSERT(td, MA_OWNED); 590 591 /* 592 * If TDF_TIMEOUT is set, we timed out. But recheck 593 * td_sleeptimo anyway. 594 */ 595 res = 0; 596 if (td->td_sleeptimo != 0) { 597 if (td->td_sleeptimo <= sbinuptime()) 598 res = EWOULDBLOCK; 599 td->td_sleeptimo = 0; 600 } 601 if (td->td_flags & TDF_TIMEOUT) 602 td->td_flags &= ~TDF_TIMEOUT; 603 else 604 /* 605 * We ignore the situation where timeout subsystem was 606 * unable to stop our callout. The struct thread is 607 * type-stable, the callout will use the correct 608 * memory when running. The checks of the 609 * td_sleeptimo value in this function and in 610 * sleepq_timeout() ensure that the thread does not 611 * get spurious wakeups, even if the callout was reset 612 * or thread reused. 613 */ 614 callout_stop(&td->td_slpcallout); 615 return (res); 616 } 617 618 /* 619 * Check to see if we were awoken by a signal. 620 */ 621 static int 622 sleepq_check_signals(void) 623 { 624 struct thread *td; 625 626 td = curthread; 627 THREAD_LOCK_ASSERT(td, MA_OWNED); 628 629 /* We are no longer in an interruptible sleep. */ 630 if (td->td_flags & TDF_SINTR) 631 td->td_flags &= ~TDF_SINTR; 632 633 if (td->td_flags & TDF_SLEEPABORT) { 634 td->td_flags &= ~TDF_SLEEPABORT; 635 return (td->td_intrval); 636 } 637 638 return (0); 639 } 640 641 /* 642 * Block the current thread until it is awakened from its sleep queue. 643 */ 644 void 645 sleepq_wait(void *wchan, int pri) 646 { 647 struct thread *td; 648 649 td = curthread; 650 MPASS(!(td->td_flags & TDF_SINTR)); 651 thread_lock(td); 652 sleepq_switch(wchan, pri); 653 thread_unlock(td); 654 } 655 656 /* 657 * Block the current thread until it is awakened from its sleep queue 658 * or it is interrupted by a signal. 659 */ 660 int 661 sleepq_wait_sig(void *wchan, int pri) 662 { 663 int rcatch; 664 int rval; 665 666 rcatch = sleepq_catch_signals(wchan, pri); 667 rval = sleepq_check_signals(); 668 thread_unlock(curthread); 669 if (rcatch) 670 return (rcatch); 671 return (rval); 672 } 673 674 /* 675 * Block the current thread until it is awakened from its sleep queue 676 * or it times out while waiting. 677 */ 678 int 679 sleepq_timedwait(void *wchan, int pri) 680 { 681 struct thread *td; 682 int rval; 683 684 td = curthread; 685 MPASS(!(td->td_flags & TDF_SINTR)); 686 thread_lock(td); 687 sleepq_switch(wchan, pri); 688 rval = sleepq_check_timeout(); 689 thread_unlock(td); 690 691 return (rval); 692 } 693 694 /* 695 * Block the current thread until it is awakened from its sleep queue, 696 * it is interrupted by a signal, or it times out waiting to be awakened. 697 */ 698 int 699 sleepq_timedwait_sig(void *wchan, int pri) 700 { 701 int rcatch, rvalt, rvals; 702 703 rcatch = sleepq_catch_signals(wchan, pri); 704 rvalt = sleepq_check_timeout(); 705 rvals = sleepq_check_signals(); 706 thread_unlock(curthread); 707 if (rcatch) 708 return (rcatch); 709 if (rvals) 710 return (rvals); 711 return (rvalt); 712 } 713 714 /* 715 * Returns the type of sleepqueue given a waitchannel. 716 */ 717 int 718 sleepq_type(void *wchan) 719 { 720 struct sleepqueue *sq; 721 int type; 722 723 MPASS(wchan != NULL); 724 725 sleepq_lock(wchan); 726 sq = sleepq_lookup(wchan); 727 if (sq == NULL) { 728 sleepq_release(wchan); 729 return (-1); 730 } 731 type = sq->sq_type; 732 sleepq_release(wchan); 733 return (type); 734 } 735 736 /* 737 * Removes a thread from a sleep queue and makes it 738 * runnable. 739 */ 740 static int 741 sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri) 742 { 743 struct sleepqueue_chain *sc; 744 745 MPASS(td != NULL); 746 MPASS(sq->sq_wchan != NULL); 747 MPASS(td->td_wchan == sq->sq_wchan); 748 MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0); 749 THREAD_LOCK_ASSERT(td, MA_OWNED); 750 sc = SC_LOOKUP(sq->sq_wchan); 751 mtx_assert(&sc->sc_lock, MA_OWNED); 752 753 SDT_PROBE2(sched, , , wakeup, td, td->td_proc); 754 755 /* Remove the thread from the queue. */ 756 sq->sq_blockedcnt[td->td_sqqueue]--; 757 TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq); 758 759 /* 760 * Get a sleep queue for this thread. If this is the last waiter, 761 * use the queue itself and take it out of the chain, otherwise, 762 * remove a queue from the free list. 763 */ 764 if (LIST_EMPTY(&sq->sq_free)) { 765 td->td_sleepqueue = sq; 766 #ifdef INVARIANTS 767 sq->sq_wchan = NULL; 768 #endif 769 #ifdef SLEEPQUEUE_PROFILING 770 sc->sc_depth--; 771 #endif 772 } else 773 td->td_sleepqueue = LIST_FIRST(&sq->sq_free); 774 LIST_REMOVE(td->td_sleepqueue, sq_hash); 775 776 td->td_wmesg = NULL; 777 td->td_wchan = NULL; 778 td->td_flags &= ~TDF_SINTR; 779 780 CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)", 781 (void *)td, (long)td->td_proc->p_pid, td->td_name); 782 783 /* Adjust priority if requested. */ 784 MPASS(pri == 0 || (pri >= PRI_MIN && pri <= PRI_MAX)); 785 if (pri != 0 && td->td_priority > pri && 786 PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) 787 sched_prio(td, pri); 788 789 /* 790 * Note that thread td might not be sleeping if it is running 791 * sleepq_catch_signals() on another CPU or is blocked on its 792 * proc lock to check signals. There's no need to mark the 793 * thread runnable in that case. 794 */ 795 if (TD_IS_SLEEPING(td)) { 796 TD_CLR_SLEEPING(td); 797 return (setrunnable(td)); 798 } 799 return (0); 800 } 801 802 #ifdef INVARIANTS 803 /* 804 * UMA zone item deallocator. 805 */ 806 static void 807 sleepq_dtor(void *mem, int size, void *arg) 808 { 809 struct sleepqueue *sq; 810 int i; 811 812 sq = mem; 813 for (i = 0; i < NR_SLEEPQS; i++) { 814 MPASS(TAILQ_EMPTY(&sq->sq_blocked[i])); 815 MPASS(sq->sq_blockedcnt[i] == 0); 816 } 817 } 818 #endif 819 820 /* 821 * UMA zone item initializer. 822 */ 823 static int 824 sleepq_init(void *mem, int size, int flags) 825 { 826 struct sleepqueue *sq; 827 int i; 828 829 bzero(mem, size); 830 sq = mem; 831 for (i = 0; i < NR_SLEEPQS; i++) { 832 TAILQ_INIT(&sq->sq_blocked[i]); 833 sq->sq_blockedcnt[i] = 0; 834 } 835 LIST_INIT(&sq->sq_free); 836 return (0); 837 } 838 839 /* 840 * Find the highest priority thread sleeping on a wait channel and resume it. 841 */ 842 int 843 sleepq_signal(void *wchan, int flags, int pri, int queue) 844 { 845 struct sleepqueue *sq; 846 struct thread *td, *besttd; 847 int wakeup_swapper; 848 849 CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags); 850 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 851 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 852 sq = sleepq_lookup(wchan); 853 if (sq == NULL) 854 return (0); 855 KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE), 856 ("%s: mismatch between sleep/wakeup and cv_*", __func__)); 857 858 /* 859 * Find the highest priority thread on the queue. If there is a 860 * tie, use the thread that first appears in the queue as it has 861 * been sleeping the longest since threads are always added to 862 * the tail of sleep queues. 863 */ 864 besttd = TAILQ_FIRST(&sq->sq_blocked[queue]); 865 TAILQ_FOREACH(td, &sq->sq_blocked[queue], td_slpq) { 866 if (td->td_priority < besttd->td_priority) 867 besttd = td; 868 } 869 MPASS(besttd != NULL); 870 thread_lock(besttd); 871 wakeup_swapper = sleepq_resume_thread(sq, besttd, pri); 872 thread_unlock(besttd); 873 return (wakeup_swapper); 874 } 875 876 /* 877 * Resume all threads sleeping on a specified wait channel. 878 */ 879 int 880 sleepq_broadcast(void *wchan, int flags, int pri, int queue) 881 { 882 struct sleepqueue *sq; 883 struct thread *td, *tdn; 884 int wakeup_swapper; 885 886 CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags); 887 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 888 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 889 sq = sleepq_lookup(wchan); 890 if (sq == NULL) 891 return (0); 892 KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE), 893 ("%s: mismatch between sleep/wakeup and cv_*", __func__)); 894 895 /* 896 * Resume all blocked threads on the sleep queue. The last thread will 897 * be given ownership of sq and may re-enqueue itself before 898 * sleepq_resume_thread() returns, so we must cache the "next" queue 899 * item at the beginning of the final iteration. 900 */ 901 wakeup_swapper = 0; 902 TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, tdn) { 903 thread_lock(td); 904 wakeup_swapper |= sleepq_resume_thread(sq, td, pri); 905 thread_unlock(td); 906 } 907 return (wakeup_swapper); 908 } 909 910 /* 911 * Time sleeping threads out. When the timeout expires, the thread is 912 * removed from the sleep queue and made runnable if it is still asleep. 913 */ 914 static void 915 sleepq_timeout(void *arg) 916 { 917 struct sleepqueue_chain *sc; 918 struct sleepqueue *sq; 919 struct thread *td; 920 void *wchan; 921 int wakeup_swapper; 922 923 td = arg; 924 wakeup_swapper = 0; 925 CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)", 926 (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name); 927 928 thread_lock(td); 929 930 if (td->td_sleeptimo > sbinuptime() || td->td_sleeptimo == 0) { 931 /* 932 * The thread does not want a timeout (yet). 933 */ 934 } else if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) { 935 /* 936 * See if the thread is asleep and get the wait 937 * channel if it is. 938 */ 939 wchan = td->td_wchan; 940 sc = SC_LOOKUP(wchan); 941 THREAD_LOCKPTR_ASSERT(td, &sc->sc_lock); 942 sq = sleepq_lookup(wchan); 943 MPASS(sq != NULL); 944 td->td_flags |= TDF_TIMEOUT; 945 wakeup_swapper = sleepq_resume_thread(sq, td, 0); 946 } else if (TD_ON_SLEEPQ(td)) { 947 /* 948 * If the thread is on the SLEEPQ but isn't sleeping 949 * yet, it can either be on another CPU in between 950 * sleepq_add() and one of the sleepq_*wait*() 951 * routines or it can be in sleepq_catch_signals(). 952 */ 953 td->td_flags |= TDF_TIMEOUT; 954 } 955 956 thread_unlock(td); 957 if (wakeup_swapper) 958 kick_proc0(); 959 } 960 961 /* 962 * Resumes a specific thread from the sleep queue associated with a specific 963 * wait channel if it is on that queue. 964 */ 965 void 966 sleepq_remove(struct thread *td, void *wchan) 967 { 968 struct sleepqueue *sq; 969 int wakeup_swapper; 970 971 /* 972 * Look up the sleep queue for this wait channel, then re-check 973 * that the thread is asleep on that channel, if it is not, then 974 * bail. 975 */ 976 MPASS(wchan != NULL); 977 sleepq_lock(wchan); 978 sq = sleepq_lookup(wchan); 979 /* 980 * We can not lock the thread here as it may be sleeping on a 981 * different sleepq. However, holding the sleepq lock for this 982 * wchan can guarantee that we do not miss a wakeup for this 983 * channel. The asserts below will catch any false positives. 984 */ 985 if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) { 986 sleepq_release(wchan); 987 return; 988 } 989 /* Thread is asleep on sleep queue sq, so wake it up. */ 990 thread_lock(td); 991 MPASS(sq != NULL); 992 MPASS(td->td_wchan == wchan); 993 wakeup_swapper = sleepq_resume_thread(sq, td, 0); 994 thread_unlock(td); 995 sleepq_release(wchan); 996 if (wakeup_swapper) 997 kick_proc0(); 998 } 999 1000 /* 1001 * Abort a thread as if an interrupt had occurred. Only abort 1002 * interruptible waits (unfortunately it isn't safe to abort others). 1003 */ 1004 int 1005 sleepq_abort(struct thread *td, int intrval) 1006 { 1007 struct sleepqueue *sq; 1008 void *wchan; 1009 1010 THREAD_LOCK_ASSERT(td, MA_OWNED); 1011 MPASS(TD_ON_SLEEPQ(td)); 1012 MPASS(td->td_flags & TDF_SINTR); 1013 MPASS(intrval == EINTR || intrval == ERESTART); 1014 1015 /* 1016 * If the TDF_TIMEOUT flag is set, just leave. A 1017 * timeout is scheduled anyhow. 1018 */ 1019 if (td->td_flags & TDF_TIMEOUT) 1020 return (0); 1021 1022 CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)", 1023 (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name); 1024 td->td_intrval = intrval; 1025 td->td_flags |= TDF_SLEEPABORT; 1026 /* 1027 * If the thread has not slept yet it will find the signal in 1028 * sleepq_catch_signals() and call sleepq_resume_thread. Otherwise 1029 * we have to do it here. 1030 */ 1031 if (!TD_IS_SLEEPING(td)) 1032 return (0); 1033 wchan = td->td_wchan; 1034 MPASS(wchan != NULL); 1035 sq = sleepq_lookup(wchan); 1036 MPASS(sq != NULL); 1037 1038 /* Thread is asleep on sleep queue sq, so wake it up. */ 1039 return (sleepq_resume_thread(sq, td, 0)); 1040 } 1041 1042 /* 1043 * Prints the stacks of all threads presently sleeping on wchan/queue to 1044 * the sbuf sb. Sets count_stacks_printed to the number of stacks actually 1045 * printed. Typically, this will equal the number of threads sleeping on the 1046 * queue, but may be less if sb overflowed before all stacks were printed. 1047 */ 1048 #ifdef STACK 1049 int 1050 sleepq_sbuf_print_stacks(struct sbuf *sb, void *wchan, int queue, 1051 int *count_stacks_printed) 1052 { 1053 struct thread *td, *td_next; 1054 struct sleepqueue *sq; 1055 struct stack **st; 1056 struct sbuf **td_infos; 1057 int i, stack_idx, error, stacks_to_allocate; 1058 bool finished, partial_print; 1059 1060 error = 0; 1061 finished = false; 1062 partial_print = false; 1063 1064 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 1065 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 1066 1067 stacks_to_allocate = 10; 1068 for (i = 0; i < 3 && !finished ; i++) { 1069 /* We cannot malloc while holding the queue's spinlock, so 1070 * we do our mallocs now, and hope it is enough. If it 1071 * isn't, we will free these, drop the lock, malloc more, 1072 * and try again, up to a point. After that point we will 1073 * give up and report ENOMEM. We also cannot write to sb 1074 * during this time since the client may have set the 1075 * SBUF_AUTOEXTEND flag on their sbuf, which could cause a 1076 * malloc as we print to it. So we defer actually printing 1077 * to sb until after we drop the spinlock. 1078 */ 1079 1080 /* Where we will store the stacks. */ 1081 st = malloc(sizeof(struct stack *) * stacks_to_allocate, 1082 M_TEMP, M_WAITOK); 1083 for (stack_idx = 0; stack_idx < stacks_to_allocate; 1084 stack_idx++) 1085 st[stack_idx] = stack_create(); 1086 1087 /* Where we will store the td name, tid, etc. */ 1088 td_infos = malloc(sizeof(struct sbuf *) * stacks_to_allocate, 1089 M_TEMP, M_WAITOK); 1090 for (stack_idx = 0; stack_idx < stacks_to_allocate; 1091 stack_idx++) 1092 td_infos[stack_idx] = sbuf_new(NULL, NULL, 1093 MAXCOMLEN + sizeof(struct thread *) * 2 + 40, 1094 SBUF_FIXEDLEN); 1095 1096 sleepq_lock(wchan); 1097 sq = sleepq_lookup(wchan); 1098 if (sq == NULL) { 1099 /* This sleepq does not exist; exit and return ENOENT. */ 1100 error = ENOENT; 1101 finished = true; 1102 sleepq_release(wchan); 1103 goto loop_end; 1104 } 1105 1106 stack_idx = 0; 1107 /* Save thread info */ 1108 TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, 1109 td_next) { 1110 if (stack_idx >= stacks_to_allocate) 1111 goto loop_end; 1112 1113 /* Note the td_lock is equal to the sleepq_lock here. */ 1114 stack_save_td(st[stack_idx], td); 1115 1116 sbuf_printf(td_infos[stack_idx], "%d: %s %p", 1117 td->td_tid, td->td_name, td); 1118 1119 ++stack_idx; 1120 } 1121 1122 finished = true; 1123 sleepq_release(wchan); 1124 1125 /* Print the stacks */ 1126 for (i = 0; i < stack_idx; i++) { 1127 sbuf_finish(td_infos[i]); 1128 sbuf_printf(sb, "--- thread %s: ---\n", sbuf_data(td_infos[i])); 1129 stack_sbuf_print(sb, st[i]); 1130 sbuf_printf(sb, "\n"); 1131 1132 error = sbuf_error(sb); 1133 if (error == 0) 1134 *count_stacks_printed = stack_idx; 1135 } 1136 1137 loop_end: 1138 if (!finished) 1139 sleepq_release(wchan); 1140 for (stack_idx = 0; stack_idx < stacks_to_allocate; 1141 stack_idx++) 1142 stack_destroy(st[stack_idx]); 1143 for (stack_idx = 0; stack_idx < stacks_to_allocate; 1144 stack_idx++) 1145 sbuf_delete(td_infos[stack_idx]); 1146 free(st, M_TEMP); 1147 free(td_infos, M_TEMP); 1148 stacks_to_allocate *= 10; 1149 } 1150 1151 if (!finished && error == 0) 1152 error = ENOMEM; 1153 1154 return (error); 1155 } 1156 #endif 1157 1158 #ifdef SLEEPQUEUE_PROFILING 1159 #define SLEEPQ_PROF_LOCATIONS 1024 1160 #define SLEEPQ_SBUFSIZE 512 1161 struct sleepq_prof { 1162 LIST_ENTRY(sleepq_prof) sp_link; 1163 const char *sp_wmesg; 1164 long sp_count; 1165 }; 1166 1167 LIST_HEAD(sqphead, sleepq_prof); 1168 1169 struct sqphead sleepq_prof_free; 1170 struct sqphead sleepq_hash[SC_TABLESIZE]; 1171 static struct sleepq_prof sleepq_profent[SLEEPQ_PROF_LOCATIONS]; 1172 static struct mtx sleepq_prof_lock; 1173 MTX_SYSINIT(sleepq_prof_lock, &sleepq_prof_lock, "sleepq_prof", MTX_SPIN); 1174 1175 static void 1176 sleepq_profile(const char *wmesg) 1177 { 1178 struct sleepq_prof *sp; 1179 1180 mtx_lock_spin(&sleepq_prof_lock); 1181 if (prof_enabled == 0) 1182 goto unlock; 1183 LIST_FOREACH(sp, &sleepq_hash[SC_HASH(wmesg)], sp_link) 1184 if (sp->sp_wmesg == wmesg) 1185 goto done; 1186 sp = LIST_FIRST(&sleepq_prof_free); 1187 if (sp == NULL) 1188 goto unlock; 1189 sp->sp_wmesg = wmesg; 1190 LIST_REMOVE(sp, sp_link); 1191 LIST_INSERT_HEAD(&sleepq_hash[SC_HASH(wmesg)], sp, sp_link); 1192 done: 1193 sp->sp_count++; 1194 unlock: 1195 mtx_unlock_spin(&sleepq_prof_lock); 1196 return; 1197 } 1198 1199 static void 1200 sleepq_prof_reset(void) 1201 { 1202 struct sleepq_prof *sp; 1203 int enabled; 1204 int i; 1205 1206 mtx_lock_spin(&sleepq_prof_lock); 1207 enabled = prof_enabled; 1208 prof_enabled = 0; 1209 for (i = 0; i < SC_TABLESIZE; i++) 1210 LIST_INIT(&sleepq_hash[i]); 1211 LIST_INIT(&sleepq_prof_free); 1212 for (i = 0; i < SLEEPQ_PROF_LOCATIONS; i++) { 1213 sp = &sleepq_profent[i]; 1214 sp->sp_wmesg = NULL; 1215 sp->sp_count = 0; 1216 LIST_INSERT_HEAD(&sleepq_prof_free, sp, sp_link); 1217 } 1218 prof_enabled = enabled; 1219 mtx_unlock_spin(&sleepq_prof_lock); 1220 } 1221 1222 static int 1223 enable_sleepq_prof(SYSCTL_HANDLER_ARGS) 1224 { 1225 int error, v; 1226 1227 v = prof_enabled; 1228 error = sysctl_handle_int(oidp, &v, v, req); 1229 if (error) 1230 return (error); 1231 if (req->newptr == NULL) 1232 return (error); 1233 if (v == prof_enabled) 1234 return (0); 1235 if (v == 1) 1236 sleepq_prof_reset(); 1237 mtx_lock_spin(&sleepq_prof_lock); 1238 prof_enabled = !!v; 1239 mtx_unlock_spin(&sleepq_prof_lock); 1240 1241 return (0); 1242 } 1243 1244 static int 1245 reset_sleepq_prof_stats(SYSCTL_HANDLER_ARGS) 1246 { 1247 int error, v; 1248 1249 v = 0; 1250 error = sysctl_handle_int(oidp, &v, 0, req); 1251 if (error) 1252 return (error); 1253 if (req->newptr == NULL) 1254 return (error); 1255 if (v == 0) 1256 return (0); 1257 sleepq_prof_reset(); 1258 1259 return (0); 1260 } 1261 1262 static int 1263 dump_sleepq_prof_stats(SYSCTL_HANDLER_ARGS) 1264 { 1265 struct sleepq_prof *sp; 1266 struct sbuf *sb; 1267 int enabled; 1268 int error; 1269 int i; 1270 1271 error = sysctl_wire_old_buffer(req, 0); 1272 if (error != 0) 1273 return (error); 1274 sb = sbuf_new_for_sysctl(NULL, NULL, SLEEPQ_SBUFSIZE, req); 1275 sbuf_printf(sb, "\nwmesg\tcount\n"); 1276 enabled = prof_enabled; 1277 mtx_lock_spin(&sleepq_prof_lock); 1278 prof_enabled = 0; 1279 mtx_unlock_spin(&sleepq_prof_lock); 1280 for (i = 0; i < SC_TABLESIZE; i++) { 1281 LIST_FOREACH(sp, &sleepq_hash[i], sp_link) { 1282 sbuf_printf(sb, "%s\t%ld\n", 1283 sp->sp_wmesg, sp->sp_count); 1284 } 1285 } 1286 mtx_lock_spin(&sleepq_prof_lock); 1287 prof_enabled = enabled; 1288 mtx_unlock_spin(&sleepq_prof_lock); 1289 1290 error = sbuf_finish(sb); 1291 sbuf_delete(sb); 1292 return (error); 1293 } 1294 1295 SYSCTL_PROC(_debug_sleepq, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD, 1296 NULL, 0, dump_sleepq_prof_stats, "A", "Sleepqueue profiling statistics"); 1297 SYSCTL_PROC(_debug_sleepq, OID_AUTO, reset, CTLTYPE_INT | CTLFLAG_RW, 1298 NULL, 0, reset_sleepq_prof_stats, "I", 1299 "Reset sleepqueue profiling statistics"); 1300 SYSCTL_PROC(_debug_sleepq, OID_AUTO, enable, CTLTYPE_INT | CTLFLAG_RW, 1301 NULL, 0, enable_sleepq_prof, "I", "Enable sleepqueue profiling"); 1302 #endif 1303 1304 #ifdef DDB 1305 DB_SHOW_COMMAND(sleepq, db_show_sleepqueue) 1306 { 1307 struct sleepqueue_chain *sc; 1308 struct sleepqueue *sq; 1309 #ifdef INVARIANTS 1310 struct lock_object *lock; 1311 #endif 1312 struct thread *td; 1313 void *wchan; 1314 int i; 1315 1316 if (!have_addr) 1317 return; 1318 1319 /* 1320 * First, see if there is an active sleep queue for the wait channel 1321 * indicated by the address. 1322 */ 1323 wchan = (void *)addr; 1324 sc = SC_LOOKUP(wchan); 1325 LIST_FOREACH(sq, &sc->sc_queues, sq_hash) 1326 if (sq->sq_wchan == wchan) 1327 goto found; 1328 1329 /* 1330 * Second, see if there is an active sleep queue at the address 1331 * indicated. 1332 */ 1333 for (i = 0; i < SC_TABLESIZE; i++) 1334 LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) { 1335 if (sq == (struct sleepqueue *)addr) 1336 goto found; 1337 } 1338 1339 db_printf("Unable to locate a sleep queue via %p\n", (void *)addr); 1340 return; 1341 found: 1342 db_printf("Wait channel: %p\n", sq->sq_wchan); 1343 db_printf("Queue type: %d\n", sq->sq_type); 1344 #ifdef INVARIANTS 1345 if (sq->sq_lock) { 1346 lock = sq->sq_lock; 1347 db_printf("Associated Interlock: %p - (%s) %s\n", lock, 1348 LOCK_CLASS(lock)->lc_name, lock->lo_name); 1349 } 1350 #endif 1351 db_printf("Blocked threads:\n"); 1352 for (i = 0; i < NR_SLEEPQS; i++) { 1353 db_printf("\nQueue[%d]:\n", i); 1354 if (TAILQ_EMPTY(&sq->sq_blocked[i])) 1355 db_printf("\tempty\n"); 1356 else 1357 TAILQ_FOREACH(td, &sq->sq_blocked[0], 1358 td_slpq) { 1359 db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td, 1360 td->td_tid, td->td_proc->p_pid, 1361 td->td_name); 1362 } 1363 db_printf("(expected: %u)\n", sq->sq_blockedcnt[i]); 1364 } 1365 } 1366 1367 /* Alias 'show sleepqueue' to 'show sleepq'. */ 1368 DB_SHOW_ALIAS(sleepqueue, db_show_sleepqueue); 1369 #endif 1370