1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org> 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 /* 29 * Implementation of sleep queues used to hold queue of threads blocked on 30 * a wait channel. Sleep queues are different from turnstiles in that wait 31 * channels are not owned by anyone, so there is no priority propagation. 32 * Sleep queues can also provide a timeout and can also be interrupted by 33 * signals. That said, there are several similarities between the turnstile 34 * and sleep queue implementations. (Note: turnstiles were implemented 35 * first.) For example, both use a hash table of the same size where each 36 * bucket is referred to as a "chain" that contains both a spin lock and 37 * a linked list of queues. An individual queue is located by using a hash 38 * to pick a chain, locking the chain, and then walking the chain searching 39 * for the queue. This means that a wait channel object does not need to 40 * embed its queue head just as locks do not embed their turnstile queue 41 * head. Threads also carry around a sleep queue that they lend to the 42 * wait channel when blocking. Just as in turnstiles, the queue includes 43 * a free list of the sleep queues of other threads blocked on the same 44 * wait channel in the case of multiple waiters. 45 * 46 * Some additional functionality provided by sleep queues include the 47 * ability to set a timeout. The timeout is managed using a per-thread 48 * callout that resumes a thread if it is asleep. A thread may also 49 * catch signals while it is asleep (aka an interruptible sleep). The 50 * signal code uses sleepq_abort() to interrupt a sleeping thread. Finally, 51 * sleep queues also provide some extra assertions. One is not allowed to 52 * mix the sleep/wakeup and cv APIs for a given wait channel. Also, one 53 * must consistently use the same lock to synchronize with a wait channel, 54 * though this check is currently only a warning for sleep/wakeup due to 55 * pre-existing abuse of that API. The same lock must also be held when 56 * awakening threads, though that is currently only enforced for condition 57 * variables. 58 */ 59 60 #include <sys/cdefs.h> 61 __FBSDID("$FreeBSD$"); 62 63 #include "opt_sleepqueue_profiling.h" 64 #include "opt_ddb.h" 65 #include "opt_sched.h" 66 #include "opt_stack.h" 67 68 #include <sys/param.h> 69 #include <sys/systm.h> 70 #include <sys/lock.h> 71 #include <sys/kernel.h> 72 #include <sys/ktr.h> 73 #include <sys/mutex.h> 74 #include <sys/proc.h> 75 #include <sys/sbuf.h> 76 #include <sys/sched.h> 77 #include <sys/sdt.h> 78 #include <sys/signalvar.h> 79 #include <sys/sleepqueue.h> 80 #include <sys/stack.h> 81 #include <sys/sysctl.h> 82 #include <sys/time.h> 83 84 #include <machine/atomic.h> 85 86 #include <vm/uma.h> 87 88 #ifdef DDB 89 #include <ddb/ddb.h> 90 #endif 91 92 93 /* 94 * Constants for the hash table of sleep queue chains. 95 * SC_TABLESIZE must be a power of two for SC_MASK to work properly. 96 */ 97 #ifndef SC_TABLESIZE 98 #define SC_TABLESIZE 256 99 #endif 100 CTASSERT(powerof2(SC_TABLESIZE)); 101 #define SC_MASK (SC_TABLESIZE - 1) 102 #define SC_SHIFT 8 103 #define SC_HASH(wc) ((((uintptr_t)(wc) >> SC_SHIFT) ^ (uintptr_t)(wc)) & \ 104 SC_MASK) 105 #define SC_LOOKUP(wc) &sleepq_chains[SC_HASH(wc)] 106 #define NR_SLEEPQS 2 107 /* 108 * There are two different lists of sleep queues. Both lists are connected 109 * via the sq_hash entries. The first list is the sleep queue chain list 110 * that a sleep queue is on when it is attached to a wait channel. The 111 * second list is the free list hung off of a sleep queue that is attached 112 * to a wait channel. 113 * 114 * Each sleep queue also contains the wait channel it is attached to, the 115 * list of threads blocked on that wait channel, flags specific to the 116 * wait channel, and the lock used to synchronize with a wait channel. 117 * The flags are used to catch mismatches between the various consumers 118 * of the sleep queue API (e.g. sleep/wakeup and condition variables). 119 * The lock pointer is only used when invariants are enabled for various 120 * debugging checks. 121 * 122 * Locking key: 123 * c - sleep queue chain lock 124 */ 125 struct sleepqueue { 126 struct threadqueue sq_blocked[NR_SLEEPQS]; /* (c) Blocked threads. */ 127 u_int sq_blockedcnt[NR_SLEEPQS]; /* (c) N. of blocked threads. */ 128 LIST_ENTRY(sleepqueue) sq_hash; /* (c) Chain and free list. */ 129 LIST_HEAD(, sleepqueue) sq_free; /* (c) Free queues. */ 130 void *sq_wchan; /* (c) Wait channel. */ 131 int sq_type; /* (c) Queue type. */ 132 #ifdef INVARIANTS 133 struct lock_object *sq_lock; /* (c) Associated lock. */ 134 #endif 135 }; 136 137 struct sleepqueue_chain { 138 LIST_HEAD(, sleepqueue) sc_queues; /* List of sleep queues. */ 139 struct mtx sc_lock; /* Spin lock for this chain. */ 140 #ifdef SLEEPQUEUE_PROFILING 141 u_int sc_depth; /* Length of sc_queues. */ 142 u_int sc_max_depth; /* Max length of sc_queues. */ 143 #endif 144 } __aligned(CACHE_LINE_SIZE); 145 146 #ifdef SLEEPQUEUE_PROFILING 147 u_int sleepq_max_depth; 148 static SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling"); 149 static SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0, 150 "sleepq chain stats"); 151 SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth, 152 0, "maxmimum depth achieved of a single chain"); 153 154 static void sleepq_profile(const char *wmesg); 155 static int prof_enabled; 156 #endif 157 static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE]; 158 static uma_zone_t sleepq_zone; 159 160 /* 161 * Prototypes for non-exported routines. 162 */ 163 static int sleepq_catch_signals(void *wchan, int pri); 164 static int sleepq_check_signals(void); 165 static int sleepq_check_timeout(void); 166 #ifdef INVARIANTS 167 static void sleepq_dtor(void *mem, int size, void *arg); 168 #endif 169 static int sleepq_init(void *mem, int size, int flags); 170 static int sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, 171 int pri); 172 static void sleepq_switch(void *wchan, int pri); 173 static void sleepq_timeout(void *arg); 174 175 SDT_PROBE_DECLARE(sched, , , sleep); 176 SDT_PROBE_DECLARE(sched, , , wakeup); 177 178 /* 179 * Initialize SLEEPQUEUE_PROFILING specific sysctl nodes. 180 * Note that it must happen after sleepinit() has been fully executed, so 181 * it must happen after SI_SUB_KMEM SYSINIT() subsystem setup. 182 */ 183 #ifdef SLEEPQUEUE_PROFILING 184 static void 185 init_sleepqueue_profiling(void) 186 { 187 char chain_name[10]; 188 struct sysctl_oid *chain_oid; 189 u_int i; 190 191 for (i = 0; i < SC_TABLESIZE; i++) { 192 snprintf(chain_name, sizeof(chain_name), "%u", i); 193 chain_oid = SYSCTL_ADD_NODE(NULL, 194 SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO, 195 chain_name, CTLFLAG_RD, NULL, "sleepq chain stats"); 196 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO, 197 "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL); 198 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO, 199 "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0, 200 NULL); 201 } 202 } 203 204 SYSINIT(sleepqueue_profiling, SI_SUB_LOCK, SI_ORDER_ANY, 205 init_sleepqueue_profiling, NULL); 206 #endif 207 208 /* 209 * Early initialization of sleep queues that is called from the sleepinit() 210 * SYSINIT. 211 */ 212 void 213 init_sleepqueues(void) 214 { 215 int i; 216 217 for (i = 0; i < SC_TABLESIZE; i++) { 218 LIST_INIT(&sleepq_chains[i].sc_queues); 219 mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL, 220 MTX_SPIN | MTX_RECURSE); 221 } 222 sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue), 223 #ifdef INVARIANTS 224 NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0); 225 #else 226 NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0); 227 #endif 228 229 thread0.td_sleepqueue = sleepq_alloc(); 230 } 231 232 /* 233 * Get a sleep queue for a new thread. 234 */ 235 struct sleepqueue * 236 sleepq_alloc(void) 237 { 238 239 return (uma_zalloc(sleepq_zone, M_WAITOK)); 240 } 241 242 /* 243 * Free a sleep queue when a thread is destroyed. 244 */ 245 void 246 sleepq_free(struct sleepqueue *sq) 247 { 248 249 uma_zfree(sleepq_zone, sq); 250 } 251 252 /* 253 * Lock the sleep queue chain associated with the specified wait channel. 254 */ 255 void 256 sleepq_lock(void *wchan) 257 { 258 struct sleepqueue_chain *sc; 259 260 sc = SC_LOOKUP(wchan); 261 mtx_lock_spin(&sc->sc_lock); 262 } 263 264 /* 265 * Look up the sleep queue associated with a given wait channel in the hash 266 * table locking the associated sleep queue chain. If no queue is found in 267 * the table, NULL is returned. 268 */ 269 struct sleepqueue * 270 sleepq_lookup(void *wchan) 271 { 272 struct sleepqueue_chain *sc; 273 struct sleepqueue *sq; 274 275 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 276 sc = SC_LOOKUP(wchan); 277 mtx_assert(&sc->sc_lock, MA_OWNED); 278 LIST_FOREACH(sq, &sc->sc_queues, sq_hash) 279 if (sq->sq_wchan == wchan) 280 return (sq); 281 return (NULL); 282 } 283 284 /* 285 * Unlock the sleep queue chain associated with a given wait channel. 286 */ 287 void 288 sleepq_release(void *wchan) 289 { 290 struct sleepqueue_chain *sc; 291 292 sc = SC_LOOKUP(wchan); 293 mtx_unlock_spin(&sc->sc_lock); 294 } 295 296 /* 297 * Places the current thread on the sleep queue for the specified wait 298 * channel. If INVARIANTS is enabled, then it associates the passed in 299 * lock with the sleepq to make sure it is held when that sleep queue is 300 * woken up. 301 */ 302 void 303 sleepq_add(void *wchan, struct lock_object *lock, const char *wmesg, int flags, 304 int queue) 305 { 306 struct sleepqueue_chain *sc; 307 struct sleepqueue *sq; 308 struct thread *td; 309 310 td = curthread; 311 sc = SC_LOOKUP(wchan); 312 mtx_assert(&sc->sc_lock, MA_OWNED); 313 MPASS(td->td_sleepqueue != NULL); 314 MPASS(wchan != NULL); 315 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 316 317 /* If this thread is not allowed to sleep, die a horrible death. */ 318 KASSERT(td->td_no_sleeping == 0, 319 ("%s: td %p to sleep on wchan %p with sleeping prohibited", 320 __func__, td, wchan)); 321 322 /* Look up the sleep queue associated with the wait channel 'wchan'. */ 323 sq = sleepq_lookup(wchan); 324 325 /* 326 * If the wait channel does not already have a sleep queue, use 327 * this thread's sleep queue. Otherwise, insert the current thread 328 * into the sleep queue already in use by this wait channel. 329 */ 330 if (sq == NULL) { 331 #ifdef INVARIANTS 332 int i; 333 334 sq = td->td_sleepqueue; 335 for (i = 0; i < NR_SLEEPQS; i++) { 336 KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]), 337 ("thread's sleep queue %d is not empty", i)); 338 KASSERT(sq->sq_blockedcnt[i] == 0, 339 ("thread's sleep queue %d count mismatches", i)); 340 } 341 KASSERT(LIST_EMPTY(&sq->sq_free), 342 ("thread's sleep queue has a non-empty free list")); 343 KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer")); 344 sq->sq_lock = lock; 345 #endif 346 #ifdef SLEEPQUEUE_PROFILING 347 sc->sc_depth++; 348 if (sc->sc_depth > sc->sc_max_depth) { 349 sc->sc_max_depth = sc->sc_depth; 350 if (sc->sc_max_depth > sleepq_max_depth) 351 sleepq_max_depth = sc->sc_max_depth; 352 } 353 #endif 354 sq = td->td_sleepqueue; 355 LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash); 356 sq->sq_wchan = wchan; 357 sq->sq_type = flags & SLEEPQ_TYPE; 358 } else { 359 MPASS(wchan == sq->sq_wchan); 360 MPASS(lock == sq->sq_lock); 361 MPASS((flags & SLEEPQ_TYPE) == sq->sq_type); 362 LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash); 363 } 364 thread_lock(td); 365 TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq); 366 sq->sq_blockedcnt[queue]++; 367 td->td_sleepqueue = NULL; 368 td->td_sqqueue = queue; 369 td->td_wchan = wchan; 370 td->td_wmesg = wmesg; 371 if (flags & SLEEPQ_INTERRUPTIBLE) { 372 td->td_flags |= TDF_SINTR; 373 td->td_flags &= ~TDF_SLEEPABORT; 374 } 375 thread_unlock(td); 376 } 377 378 /* 379 * Sets a timeout that will remove the current thread from the specified 380 * sleep queue after timo ticks if the thread has not already been awakened. 381 */ 382 void 383 sleepq_set_timeout_sbt(void *wchan, sbintime_t sbt, sbintime_t pr, 384 int flags) 385 { 386 struct sleepqueue_chain *sc __unused; 387 struct thread *td; 388 sbintime_t pr1; 389 390 td = curthread; 391 sc = SC_LOOKUP(wchan); 392 mtx_assert(&sc->sc_lock, MA_OWNED); 393 MPASS(TD_ON_SLEEPQ(td)); 394 MPASS(td->td_sleepqueue == NULL); 395 MPASS(wchan != NULL); 396 if (cold && td == &thread0) 397 panic("timed sleep before timers are working"); 398 KASSERT(td->td_sleeptimo == 0, ("td %d %p td_sleeptimo %jx", 399 td->td_tid, td, (uintmax_t)td->td_sleeptimo)); 400 thread_lock(td); 401 callout_when(sbt, pr, flags, &td->td_sleeptimo, &pr1); 402 thread_unlock(td); 403 callout_reset_sbt_on(&td->td_slpcallout, td->td_sleeptimo, pr1, 404 sleepq_timeout, td, PCPU_GET(cpuid), flags | C_PRECALC | 405 C_DIRECT_EXEC); 406 } 407 408 /* 409 * Return the number of actual sleepers for the specified queue. 410 */ 411 u_int 412 sleepq_sleepcnt(void *wchan, int queue) 413 { 414 struct sleepqueue *sq; 415 416 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 417 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 418 sq = sleepq_lookup(wchan); 419 if (sq == NULL) 420 return (0); 421 return (sq->sq_blockedcnt[queue]); 422 } 423 424 /* 425 * Marks the pending sleep of the current thread as interruptible and 426 * makes an initial check for pending signals before putting a thread 427 * to sleep. Enters and exits with the thread lock held. Thread lock 428 * may have transitioned from the sleepq lock to a run lock. 429 */ 430 static int 431 sleepq_catch_signals(void *wchan, int pri) 432 { 433 struct sleepqueue_chain *sc; 434 struct sleepqueue *sq; 435 struct thread *td; 436 struct proc *p; 437 struct sigacts *ps; 438 int sig, ret; 439 440 ret = 0; 441 td = curthread; 442 p = curproc; 443 sc = SC_LOOKUP(wchan); 444 mtx_assert(&sc->sc_lock, MA_OWNED); 445 MPASS(wchan != NULL); 446 if ((td->td_pflags & TDP_WAKEUP) != 0) { 447 td->td_pflags &= ~TDP_WAKEUP; 448 ret = EINTR; 449 thread_lock(td); 450 goto out; 451 } 452 453 /* 454 * See if there are any pending signals or suspension requests for this 455 * thread. If not, we can switch immediately. 456 */ 457 thread_lock(td); 458 if ((td->td_flags & (TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK)) != 0) { 459 thread_unlock(td); 460 mtx_unlock_spin(&sc->sc_lock); 461 CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)", 462 (void *)td, (long)p->p_pid, td->td_name); 463 PROC_LOCK(p); 464 /* 465 * Check for suspension first. Checking for signals and then 466 * suspending could result in a missed signal, since a signal 467 * can be delivered while this thread is suspended. 468 */ 469 if ((td->td_flags & TDF_NEEDSUSPCHK) != 0) { 470 ret = thread_suspend_check(1); 471 MPASS(ret == 0 || ret == EINTR || ret == ERESTART); 472 if (ret != 0) { 473 PROC_UNLOCK(p); 474 mtx_lock_spin(&sc->sc_lock); 475 thread_lock(td); 476 goto out; 477 } 478 } 479 if ((td->td_flags & TDF_NEEDSIGCHK) != 0) { 480 ps = p->p_sigacts; 481 mtx_lock(&ps->ps_mtx); 482 sig = cursig(td); 483 if (sig == -1) { 484 mtx_unlock(&ps->ps_mtx); 485 KASSERT((td->td_flags & TDF_SBDRY) != 0, 486 ("lost TDF_SBDRY")); 487 KASSERT(TD_SBDRY_INTR(td), 488 ("lost TDF_SERESTART of TDF_SEINTR")); 489 KASSERT((td->td_flags & 490 (TDF_SEINTR | TDF_SERESTART)) != 491 (TDF_SEINTR | TDF_SERESTART), 492 ("both TDF_SEINTR and TDF_SERESTART")); 493 ret = TD_SBDRY_ERRNO(td); 494 } else if (sig != 0) { 495 ret = SIGISMEMBER(ps->ps_sigintr, sig) ? 496 EINTR : ERESTART; 497 mtx_unlock(&ps->ps_mtx); 498 } else { 499 mtx_unlock(&ps->ps_mtx); 500 } 501 502 /* 503 * Do not go into sleep if this thread was the 504 * ptrace(2) attach leader. cursig() consumed 505 * SIGSTOP from PT_ATTACH, but we usually act 506 * on the signal by interrupting sleep, and 507 * should do that here as well. 508 */ 509 if ((td->td_dbgflags & TDB_FSTP) != 0) { 510 if (ret == 0) 511 ret = EINTR; 512 td->td_dbgflags &= ~TDB_FSTP; 513 } 514 } 515 /* 516 * Lock the per-process spinlock prior to dropping the PROC_LOCK 517 * to avoid a signal delivery race. PROC_LOCK, PROC_SLOCK, and 518 * thread_lock() are currently held in tdsendsignal(). 519 */ 520 PROC_SLOCK(p); 521 mtx_lock_spin(&sc->sc_lock); 522 PROC_UNLOCK(p); 523 thread_lock(td); 524 PROC_SUNLOCK(p); 525 } 526 if (ret == 0) { 527 sleepq_switch(wchan, pri); 528 return (0); 529 } 530 out: 531 /* 532 * There were pending signals and this thread is still 533 * on the sleep queue, remove it from the sleep queue. 534 */ 535 if (TD_ON_SLEEPQ(td)) { 536 sq = sleepq_lookup(wchan); 537 if (sleepq_resume_thread(sq, td, 0)) { 538 #ifdef INVARIANTS 539 /* 540 * This thread hasn't gone to sleep yet, so it 541 * should not be swapped out. 542 */ 543 panic("not waking up swapper"); 544 #endif 545 } 546 } 547 mtx_unlock_spin(&sc->sc_lock); 548 MPASS(td->td_lock != &sc->sc_lock); 549 return (ret); 550 } 551 552 /* 553 * Switches to another thread if we are still asleep on a sleep queue. 554 * Returns with thread lock. 555 */ 556 static void 557 sleepq_switch(void *wchan, int pri) 558 { 559 struct sleepqueue_chain *sc; 560 struct sleepqueue *sq; 561 struct thread *td; 562 bool rtc_changed; 563 564 td = curthread; 565 sc = SC_LOOKUP(wchan); 566 mtx_assert(&sc->sc_lock, MA_OWNED); 567 THREAD_LOCK_ASSERT(td, MA_OWNED); 568 569 /* 570 * If we have a sleep queue, then we've already been woken up, so 571 * just return. 572 */ 573 if (td->td_sleepqueue != NULL) { 574 mtx_unlock_spin(&sc->sc_lock); 575 return; 576 } 577 578 /* 579 * If TDF_TIMEOUT is set, then our sleep has been timed out 580 * already but we are still on the sleep queue, so dequeue the 581 * thread and return. 582 * 583 * Do the same if the real-time clock has been adjusted since this 584 * thread calculated its timeout based on that clock. This handles 585 * the following race: 586 * - The Ts thread needs to sleep until an absolute real-clock time. 587 * It copies the global rtc_generation into curthread->td_rtcgen, 588 * reads the RTC, and calculates a sleep duration based on that time. 589 * See umtxq_sleep() for an example. 590 * - The Tc thread adjusts the RTC, bumps rtc_generation, and wakes 591 * threads that are sleeping until an absolute real-clock time. 592 * See tc_setclock() and the POSIX specification of clock_settime(). 593 * - Ts reaches the code below. It holds the sleepqueue chain lock, 594 * so Tc has finished waking, so this thread must test td_rtcgen. 595 * (The declaration of td_rtcgen refers to this comment.) 596 */ 597 rtc_changed = td->td_rtcgen != 0 && td->td_rtcgen != rtc_generation; 598 if ((td->td_flags & TDF_TIMEOUT) || rtc_changed) { 599 if (rtc_changed) { 600 td->td_rtcgen = 0; 601 } 602 MPASS(TD_ON_SLEEPQ(td)); 603 sq = sleepq_lookup(wchan); 604 if (sleepq_resume_thread(sq, td, 0)) { 605 #ifdef INVARIANTS 606 /* 607 * This thread hasn't gone to sleep yet, so it 608 * should not be swapped out. 609 */ 610 panic("not waking up swapper"); 611 #endif 612 } 613 mtx_unlock_spin(&sc->sc_lock); 614 return; 615 } 616 #ifdef SLEEPQUEUE_PROFILING 617 if (prof_enabled) 618 sleepq_profile(td->td_wmesg); 619 #endif 620 MPASS(td->td_sleepqueue == NULL); 621 sched_sleep(td, pri); 622 thread_lock_set(td, &sc->sc_lock); 623 SDT_PROBE0(sched, , , sleep); 624 TD_SET_SLEEPING(td); 625 mi_switch(SW_VOL | SWT_SLEEPQ, NULL); 626 KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING")); 627 CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)", 628 (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name); 629 } 630 631 /* 632 * Check to see if we timed out. 633 */ 634 static int 635 sleepq_check_timeout(void) 636 { 637 struct thread *td; 638 int res; 639 640 td = curthread; 641 THREAD_LOCK_ASSERT(td, MA_OWNED); 642 643 /* 644 * If TDF_TIMEOUT is set, we timed out. But recheck 645 * td_sleeptimo anyway. 646 */ 647 res = 0; 648 if (td->td_sleeptimo != 0) { 649 if (td->td_sleeptimo <= sbinuptime()) 650 res = EWOULDBLOCK; 651 td->td_sleeptimo = 0; 652 } 653 if (td->td_flags & TDF_TIMEOUT) 654 td->td_flags &= ~TDF_TIMEOUT; 655 else 656 /* 657 * We ignore the situation where timeout subsystem was 658 * unable to stop our callout. The struct thread is 659 * type-stable, the callout will use the correct 660 * memory when running. The checks of the 661 * td_sleeptimo value in this function and in 662 * sleepq_timeout() ensure that the thread does not 663 * get spurious wakeups, even if the callout was reset 664 * or thread reused. 665 */ 666 callout_stop(&td->td_slpcallout); 667 return (res); 668 } 669 670 /* 671 * Check to see if we were awoken by a signal. 672 */ 673 static int 674 sleepq_check_signals(void) 675 { 676 struct thread *td; 677 678 td = curthread; 679 THREAD_LOCK_ASSERT(td, MA_OWNED); 680 681 /* We are no longer in an interruptible sleep. */ 682 if (td->td_flags & TDF_SINTR) 683 td->td_flags &= ~TDF_SINTR; 684 685 if (td->td_flags & TDF_SLEEPABORT) { 686 td->td_flags &= ~TDF_SLEEPABORT; 687 return (td->td_intrval); 688 } 689 690 return (0); 691 } 692 693 /* 694 * Block the current thread until it is awakened from its sleep queue. 695 */ 696 void 697 sleepq_wait(void *wchan, int pri) 698 { 699 struct thread *td; 700 701 td = curthread; 702 MPASS(!(td->td_flags & TDF_SINTR)); 703 thread_lock(td); 704 sleepq_switch(wchan, pri); 705 thread_unlock(td); 706 } 707 708 /* 709 * Block the current thread until it is awakened from its sleep queue 710 * or it is interrupted by a signal. 711 */ 712 int 713 sleepq_wait_sig(void *wchan, int pri) 714 { 715 int rcatch; 716 int rval; 717 718 rcatch = sleepq_catch_signals(wchan, pri); 719 rval = sleepq_check_signals(); 720 thread_unlock(curthread); 721 if (rcatch) 722 return (rcatch); 723 return (rval); 724 } 725 726 /* 727 * Block the current thread until it is awakened from its sleep queue 728 * or it times out while waiting. 729 */ 730 int 731 sleepq_timedwait(void *wchan, int pri) 732 { 733 struct thread *td; 734 int rval; 735 736 td = curthread; 737 MPASS(!(td->td_flags & TDF_SINTR)); 738 thread_lock(td); 739 sleepq_switch(wchan, pri); 740 rval = sleepq_check_timeout(); 741 thread_unlock(td); 742 743 return (rval); 744 } 745 746 /* 747 * Block the current thread until it is awakened from its sleep queue, 748 * it is interrupted by a signal, or it times out waiting to be awakened. 749 */ 750 int 751 sleepq_timedwait_sig(void *wchan, int pri) 752 { 753 int rcatch, rvalt, rvals; 754 755 rcatch = sleepq_catch_signals(wchan, pri); 756 rvalt = sleepq_check_timeout(); 757 rvals = sleepq_check_signals(); 758 thread_unlock(curthread); 759 if (rcatch) 760 return (rcatch); 761 if (rvals) 762 return (rvals); 763 return (rvalt); 764 } 765 766 /* 767 * Returns the type of sleepqueue given a waitchannel. 768 */ 769 int 770 sleepq_type(void *wchan) 771 { 772 struct sleepqueue *sq; 773 int type; 774 775 MPASS(wchan != NULL); 776 777 sleepq_lock(wchan); 778 sq = sleepq_lookup(wchan); 779 if (sq == NULL) { 780 sleepq_release(wchan); 781 return (-1); 782 } 783 type = sq->sq_type; 784 sleepq_release(wchan); 785 return (type); 786 } 787 788 /* 789 * Removes a thread from a sleep queue and makes it 790 * runnable. 791 */ 792 static int 793 sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri) 794 { 795 struct sleepqueue_chain *sc __unused; 796 797 MPASS(td != NULL); 798 MPASS(sq->sq_wchan != NULL); 799 MPASS(td->td_wchan == sq->sq_wchan); 800 MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0); 801 THREAD_LOCK_ASSERT(td, MA_OWNED); 802 sc = SC_LOOKUP(sq->sq_wchan); 803 mtx_assert(&sc->sc_lock, MA_OWNED); 804 805 SDT_PROBE2(sched, , , wakeup, td, td->td_proc); 806 807 /* Remove the thread from the queue. */ 808 sq->sq_blockedcnt[td->td_sqqueue]--; 809 TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq); 810 811 /* 812 * Get a sleep queue for this thread. If this is the last waiter, 813 * use the queue itself and take it out of the chain, otherwise, 814 * remove a queue from the free list. 815 */ 816 if (LIST_EMPTY(&sq->sq_free)) { 817 td->td_sleepqueue = sq; 818 #ifdef INVARIANTS 819 sq->sq_wchan = NULL; 820 #endif 821 #ifdef SLEEPQUEUE_PROFILING 822 sc->sc_depth--; 823 #endif 824 } else 825 td->td_sleepqueue = LIST_FIRST(&sq->sq_free); 826 LIST_REMOVE(td->td_sleepqueue, sq_hash); 827 828 td->td_wmesg = NULL; 829 td->td_wchan = NULL; 830 td->td_flags &= ~TDF_SINTR; 831 832 CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)", 833 (void *)td, (long)td->td_proc->p_pid, td->td_name); 834 835 /* Adjust priority if requested. */ 836 MPASS(pri == 0 || (pri >= PRI_MIN && pri <= PRI_MAX)); 837 if (pri != 0 && td->td_priority > pri && 838 PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) 839 sched_prio(td, pri); 840 841 /* 842 * Note that thread td might not be sleeping if it is running 843 * sleepq_catch_signals() on another CPU or is blocked on its 844 * proc lock to check signals. There's no need to mark the 845 * thread runnable in that case. 846 */ 847 if (TD_IS_SLEEPING(td)) { 848 TD_CLR_SLEEPING(td); 849 return (setrunnable(td)); 850 } 851 return (0); 852 } 853 854 #ifdef INVARIANTS 855 /* 856 * UMA zone item deallocator. 857 */ 858 static void 859 sleepq_dtor(void *mem, int size, void *arg) 860 { 861 struct sleepqueue *sq; 862 int i; 863 864 sq = mem; 865 for (i = 0; i < NR_SLEEPQS; i++) { 866 MPASS(TAILQ_EMPTY(&sq->sq_blocked[i])); 867 MPASS(sq->sq_blockedcnt[i] == 0); 868 } 869 } 870 #endif 871 872 /* 873 * UMA zone item initializer. 874 */ 875 static int 876 sleepq_init(void *mem, int size, int flags) 877 { 878 struct sleepqueue *sq; 879 int i; 880 881 bzero(mem, size); 882 sq = mem; 883 for (i = 0; i < NR_SLEEPQS; i++) { 884 TAILQ_INIT(&sq->sq_blocked[i]); 885 sq->sq_blockedcnt[i] = 0; 886 } 887 LIST_INIT(&sq->sq_free); 888 return (0); 889 } 890 891 /* 892 * Find thread sleeping on a wait channel and resume it. 893 */ 894 int 895 sleepq_signal(void *wchan, int flags, int pri, int queue) 896 { 897 struct sleepqueue_chain *sc; 898 struct sleepqueue *sq; 899 struct threadqueue *head; 900 struct thread *td, *besttd; 901 int wakeup_swapper; 902 903 CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags); 904 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 905 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 906 sq = sleepq_lookup(wchan); 907 if (sq == NULL) 908 return (0); 909 KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE), 910 ("%s: mismatch between sleep/wakeup and cv_*", __func__)); 911 912 head = &sq->sq_blocked[queue]; 913 if (flags & SLEEPQ_UNFAIR) { 914 /* 915 * Find the most recently sleeping thread, but try to 916 * skip threads still in process of context switch to 917 * avoid spinning on the thread lock. 918 */ 919 sc = SC_LOOKUP(wchan); 920 besttd = TAILQ_LAST_FAST(head, thread, td_slpq); 921 while (besttd->td_lock != &sc->sc_lock) { 922 td = TAILQ_PREV_FAST(besttd, head, thread, td_slpq); 923 if (td == NULL) 924 break; 925 besttd = td; 926 } 927 } else { 928 /* 929 * Find the highest priority thread on the queue. If there 930 * is a tie, use the thread that first appears in the queue 931 * as it has been sleeping the longest since threads are 932 * always added to the tail of sleep queues. 933 */ 934 besttd = td = TAILQ_FIRST(head); 935 while ((td = TAILQ_NEXT(td, td_slpq)) != NULL) { 936 if (td->td_priority < besttd->td_priority) 937 besttd = td; 938 } 939 } 940 MPASS(besttd != NULL); 941 thread_lock(besttd); 942 wakeup_swapper = sleepq_resume_thread(sq, besttd, pri); 943 thread_unlock(besttd); 944 return (wakeup_swapper); 945 } 946 947 static bool 948 match_any(struct thread *td __unused) 949 { 950 951 return (true); 952 } 953 954 /* 955 * Resume all threads sleeping on a specified wait channel. 956 */ 957 int 958 sleepq_broadcast(void *wchan, int flags, int pri, int queue) 959 { 960 struct sleepqueue *sq; 961 962 CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags); 963 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 964 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 965 sq = sleepq_lookup(wchan); 966 if (sq == NULL) 967 return (0); 968 KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE), 969 ("%s: mismatch between sleep/wakeup and cv_*", __func__)); 970 971 return (sleepq_remove_matching(sq, queue, match_any, pri)); 972 } 973 974 /* 975 * Resume threads on the sleep queue that match the given predicate. 976 */ 977 int 978 sleepq_remove_matching(struct sleepqueue *sq, int queue, 979 bool (*matches)(struct thread *), int pri) 980 { 981 struct thread *td, *tdn; 982 int wakeup_swapper; 983 984 /* 985 * The last thread will be given ownership of sq and may 986 * re-enqueue itself before sleepq_resume_thread() returns, 987 * so we must cache the "next" queue item at the beginning 988 * of the final iteration. 989 */ 990 wakeup_swapper = 0; 991 TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, tdn) { 992 thread_lock(td); 993 if (matches(td)) 994 wakeup_swapper |= sleepq_resume_thread(sq, td, pri); 995 thread_unlock(td); 996 } 997 998 return (wakeup_swapper); 999 } 1000 1001 /* 1002 * Time sleeping threads out. When the timeout expires, the thread is 1003 * removed from the sleep queue and made runnable if it is still asleep. 1004 */ 1005 static void 1006 sleepq_timeout(void *arg) 1007 { 1008 struct sleepqueue_chain *sc __unused; 1009 struct sleepqueue *sq; 1010 struct thread *td; 1011 void *wchan; 1012 int wakeup_swapper; 1013 1014 td = arg; 1015 wakeup_swapper = 0; 1016 CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)", 1017 (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name); 1018 1019 thread_lock(td); 1020 1021 if (td->td_sleeptimo > sbinuptime() || td->td_sleeptimo == 0) { 1022 /* 1023 * The thread does not want a timeout (yet). 1024 */ 1025 } else if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) { 1026 /* 1027 * See if the thread is asleep and get the wait 1028 * channel if it is. 1029 */ 1030 wchan = td->td_wchan; 1031 sc = SC_LOOKUP(wchan); 1032 THREAD_LOCKPTR_ASSERT(td, &sc->sc_lock); 1033 sq = sleepq_lookup(wchan); 1034 MPASS(sq != NULL); 1035 td->td_flags |= TDF_TIMEOUT; 1036 wakeup_swapper = sleepq_resume_thread(sq, td, 0); 1037 } else if (TD_ON_SLEEPQ(td)) { 1038 /* 1039 * If the thread is on the SLEEPQ but isn't sleeping 1040 * yet, it can either be on another CPU in between 1041 * sleepq_add() and one of the sleepq_*wait*() 1042 * routines or it can be in sleepq_catch_signals(). 1043 */ 1044 td->td_flags |= TDF_TIMEOUT; 1045 } 1046 1047 thread_unlock(td); 1048 if (wakeup_swapper) 1049 kick_proc0(); 1050 } 1051 1052 /* 1053 * Resumes a specific thread from the sleep queue associated with a specific 1054 * wait channel if it is on that queue. 1055 */ 1056 void 1057 sleepq_remove(struct thread *td, void *wchan) 1058 { 1059 struct sleepqueue *sq; 1060 int wakeup_swapper; 1061 1062 /* 1063 * Look up the sleep queue for this wait channel, then re-check 1064 * that the thread is asleep on that channel, if it is not, then 1065 * bail. 1066 */ 1067 MPASS(wchan != NULL); 1068 sleepq_lock(wchan); 1069 sq = sleepq_lookup(wchan); 1070 /* 1071 * We can not lock the thread here as it may be sleeping on a 1072 * different sleepq. However, holding the sleepq lock for this 1073 * wchan can guarantee that we do not miss a wakeup for this 1074 * channel. The asserts below will catch any false positives. 1075 */ 1076 if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) { 1077 sleepq_release(wchan); 1078 return; 1079 } 1080 /* Thread is asleep on sleep queue sq, so wake it up. */ 1081 thread_lock(td); 1082 MPASS(sq != NULL); 1083 MPASS(td->td_wchan == wchan); 1084 wakeup_swapper = sleepq_resume_thread(sq, td, 0); 1085 thread_unlock(td); 1086 sleepq_release(wchan); 1087 if (wakeup_swapper) 1088 kick_proc0(); 1089 } 1090 1091 /* 1092 * Abort a thread as if an interrupt had occurred. Only abort 1093 * interruptible waits (unfortunately it isn't safe to abort others). 1094 */ 1095 int 1096 sleepq_abort(struct thread *td, int intrval) 1097 { 1098 struct sleepqueue *sq; 1099 void *wchan; 1100 1101 THREAD_LOCK_ASSERT(td, MA_OWNED); 1102 MPASS(TD_ON_SLEEPQ(td)); 1103 MPASS(td->td_flags & TDF_SINTR); 1104 MPASS(intrval == EINTR || intrval == ERESTART); 1105 1106 /* 1107 * If the TDF_TIMEOUT flag is set, just leave. A 1108 * timeout is scheduled anyhow. 1109 */ 1110 if (td->td_flags & TDF_TIMEOUT) 1111 return (0); 1112 1113 CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)", 1114 (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name); 1115 td->td_intrval = intrval; 1116 td->td_flags |= TDF_SLEEPABORT; 1117 /* 1118 * If the thread has not slept yet it will find the signal in 1119 * sleepq_catch_signals() and call sleepq_resume_thread. Otherwise 1120 * we have to do it here. 1121 */ 1122 if (!TD_IS_SLEEPING(td)) 1123 return (0); 1124 wchan = td->td_wchan; 1125 MPASS(wchan != NULL); 1126 sq = sleepq_lookup(wchan); 1127 MPASS(sq != NULL); 1128 1129 /* Thread is asleep on sleep queue sq, so wake it up. */ 1130 return (sleepq_resume_thread(sq, td, 0)); 1131 } 1132 1133 void 1134 sleepq_chains_remove_matching(bool (*matches)(struct thread *)) 1135 { 1136 struct sleepqueue_chain *sc; 1137 struct sleepqueue *sq, *sq1; 1138 int i, wakeup_swapper; 1139 1140 wakeup_swapper = 0; 1141 for (sc = &sleepq_chains[0]; sc < sleepq_chains + SC_TABLESIZE; ++sc) { 1142 if (LIST_EMPTY(&sc->sc_queues)) { 1143 continue; 1144 } 1145 mtx_lock_spin(&sc->sc_lock); 1146 LIST_FOREACH_SAFE(sq, &sc->sc_queues, sq_hash, sq1) { 1147 for (i = 0; i < NR_SLEEPQS; ++i) { 1148 wakeup_swapper |= sleepq_remove_matching(sq, i, 1149 matches, 0); 1150 } 1151 } 1152 mtx_unlock_spin(&sc->sc_lock); 1153 } 1154 if (wakeup_swapper) { 1155 kick_proc0(); 1156 } 1157 } 1158 1159 /* 1160 * Prints the stacks of all threads presently sleeping on wchan/queue to 1161 * the sbuf sb. Sets count_stacks_printed to the number of stacks actually 1162 * printed. Typically, this will equal the number of threads sleeping on the 1163 * queue, but may be less if sb overflowed before all stacks were printed. 1164 */ 1165 #ifdef STACK 1166 int 1167 sleepq_sbuf_print_stacks(struct sbuf *sb, void *wchan, int queue, 1168 int *count_stacks_printed) 1169 { 1170 struct thread *td, *td_next; 1171 struct sleepqueue *sq; 1172 struct stack **st; 1173 struct sbuf **td_infos; 1174 int i, stack_idx, error, stacks_to_allocate; 1175 bool finished; 1176 1177 error = 0; 1178 finished = false; 1179 1180 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 1181 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 1182 1183 stacks_to_allocate = 10; 1184 for (i = 0; i < 3 && !finished ; i++) { 1185 /* We cannot malloc while holding the queue's spinlock, so 1186 * we do our mallocs now, and hope it is enough. If it 1187 * isn't, we will free these, drop the lock, malloc more, 1188 * and try again, up to a point. After that point we will 1189 * give up and report ENOMEM. We also cannot write to sb 1190 * during this time since the client may have set the 1191 * SBUF_AUTOEXTEND flag on their sbuf, which could cause a 1192 * malloc as we print to it. So we defer actually printing 1193 * to sb until after we drop the spinlock. 1194 */ 1195 1196 /* Where we will store the stacks. */ 1197 st = malloc(sizeof(struct stack *) * stacks_to_allocate, 1198 M_TEMP, M_WAITOK); 1199 for (stack_idx = 0; stack_idx < stacks_to_allocate; 1200 stack_idx++) 1201 st[stack_idx] = stack_create(M_WAITOK); 1202 1203 /* Where we will store the td name, tid, etc. */ 1204 td_infos = malloc(sizeof(struct sbuf *) * stacks_to_allocate, 1205 M_TEMP, M_WAITOK); 1206 for (stack_idx = 0; stack_idx < stacks_to_allocate; 1207 stack_idx++) 1208 td_infos[stack_idx] = sbuf_new(NULL, NULL, 1209 MAXCOMLEN + sizeof(struct thread *) * 2 + 40, 1210 SBUF_FIXEDLEN); 1211 1212 sleepq_lock(wchan); 1213 sq = sleepq_lookup(wchan); 1214 if (sq == NULL) { 1215 /* This sleepq does not exist; exit and return ENOENT. */ 1216 error = ENOENT; 1217 finished = true; 1218 sleepq_release(wchan); 1219 goto loop_end; 1220 } 1221 1222 stack_idx = 0; 1223 /* Save thread info */ 1224 TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, 1225 td_next) { 1226 if (stack_idx >= stacks_to_allocate) 1227 goto loop_end; 1228 1229 /* Note the td_lock is equal to the sleepq_lock here. */ 1230 stack_save_td(st[stack_idx], td); 1231 1232 sbuf_printf(td_infos[stack_idx], "%d: %s %p", 1233 td->td_tid, td->td_name, td); 1234 1235 ++stack_idx; 1236 } 1237 1238 finished = true; 1239 sleepq_release(wchan); 1240 1241 /* Print the stacks */ 1242 for (i = 0; i < stack_idx; i++) { 1243 sbuf_finish(td_infos[i]); 1244 sbuf_printf(sb, "--- thread %s: ---\n", sbuf_data(td_infos[i])); 1245 stack_sbuf_print(sb, st[i]); 1246 sbuf_printf(sb, "\n"); 1247 1248 error = sbuf_error(sb); 1249 if (error == 0) 1250 *count_stacks_printed = stack_idx; 1251 } 1252 1253 loop_end: 1254 if (!finished) 1255 sleepq_release(wchan); 1256 for (stack_idx = 0; stack_idx < stacks_to_allocate; 1257 stack_idx++) 1258 stack_destroy(st[stack_idx]); 1259 for (stack_idx = 0; stack_idx < stacks_to_allocate; 1260 stack_idx++) 1261 sbuf_delete(td_infos[stack_idx]); 1262 free(st, M_TEMP); 1263 free(td_infos, M_TEMP); 1264 stacks_to_allocate *= 10; 1265 } 1266 1267 if (!finished && error == 0) 1268 error = ENOMEM; 1269 1270 return (error); 1271 } 1272 #endif 1273 1274 #ifdef SLEEPQUEUE_PROFILING 1275 #define SLEEPQ_PROF_LOCATIONS 1024 1276 #define SLEEPQ_SBUFSIZE 512 1277 struct sleepq_prof { 1278 LIST_ENTRY(sleepq_prof) sp_link; 1279 const char *sp_wmesg; 1280 long sp_count; 1281 }; 1282 1283 LIST_HEAD(sqphead, sleepq_prof); 1284 1285 struct sqphead sleepq_prof_free; 1286 struct sqphead sleepq_hash[SC_TABLESIZE]; 1287 static struct sleepq_prof sleepq_profent[SLEEPQ_PROF_LOCATIONS]; 1288 static struct mtx sleepq_prof_lock; 1289 MTX_SYSINIT(sleepq_prof_lock, &sleepq_prof_lock, "sleepq_prof", MTX_SPIN); 1290 1291 static void 1292 sleepq_profile(const char *wmesg) 1293 { 1294 struct sleepq_prof *sp; 1295 1296 mtx_lock_spin(&sleepq_prof_lock); 1297 if (prof_enabled == 0) 1298 goto unlock; 1299 LIST_FOREACH(sp, &sleepq_hash[SC_HASH(wmesg)], sp_link) 1300 if (sp->sp_wmesg == wmesg) 1301 goto done; 1302 sp = LIST_FIRST(&sleepq_prof_free); 1303 if (sp == NULL) 1304 goto unlock; 1305 sp->sp_wmesg = wmesg; 1306 LIST_REMOVE(sp, sp_link); 1307 LIST_INSERT_HEAD(&sleepq_hash[SC_HASH(wmesg)], sp, sp_link); 1308 done: 1309 sp->sp_count++; 1310 unlock: 1311 mtx_unlock_spin(&sleepq_prof_lock); 1312 return; 1313 } 1314 1315 static void 1316 sleepq_prof_reset(void) 1317 { 1318 struct sleepq_prof *sp; 1319 int enabled; 1320 int i; 1321 1322 mtx_lock_spin(&sleepq_prof_lock); 1323 enabled = prof_enabled; 1324 prof_enabled = 0; 1325 for (i = 0; i < SC_TABLESIZE; i++) 1326 LIST_INIT(&sleepq_hash[i]); 1327 LIST_INIT(&sleepq_prof_free); 1328 for (i = 0; i < SLEEPQ_PROF_LOCATIONS; i++) { 1329 sp = &sleepq_profent[i]; 1330 sp->sp_wmesg = NULL; 1331 sp->sp_count = 0; 1332 LIST_INSERT_HEAD(&sleepq_prof_free, sp, sp_link); 1333 } 1334 prof_enabled = enabled; 1335 mtx_unlock_spin(&sleepq_prof_lock); 1336 } 1337 1338 static int 1339 enable_sleepq_prof(SYSCTL_HANDLER_ARGS) 1340 { 1341 int error, v; 1342 1343 v = prof_enabled; 1344 error = sysctl_handle_int(oidp, &v, v, req); 1345 if (error) 1346 return (error); 1347 if (req->newptr == NULL) 1348 return (error); 1349 if (v == prof_enabled) 1350 return (0); 1351 if (v == 1) 1352 sleepq_prof_reset(); 1353 mtx_lock_spin(&sleepq_prof_lock); 1354 prof_enabled = !!v; 1355 mtx_unlock_spin(&sleepq_prof_lock); 1356 1357 return (0); 1358 } 1359 1360 static int 1361 reset_sleepq_prof_stats(SYSCTL_HANDLER_ARGS) 1362 { 1363 int error, v; 1364 1365 v = 0; 1366 error = sysctl_handle_int(oidp, &v, 0, req); 1367 if (error) 1368 return (error); 1369 if (req->newptr == NULL) 1370 return (error); 1371 if (v == 0) 1372 return (0); 1373 sleepq_prof_reset(); 1374 1375 return (0); 1376 } 1377 1378 static int 1379 dump_sleepq_prof_stats(SYSCTL_HANDLER_ARGS) 1380 { 1381 struct sleepq_prof *sp; 1382 struct sbuf *sb; 1383 int enabled; 1384 int error; 1385 int i; 1386 1387 error = sysctl_wire_old_buffer(req, 0); 1388 if (error != 0) 1389 return (error); 1390 sb = sbuf_new_for_sysctl(NULL, NULL, SLEEPQ_SBUFSIZE, req); 1391 sbuf_printf(sb, "\nwmesg\tcount\n"); 1392 enabled = prof_enabled; 1393 mtx_lock_spin(&sleepq_prof_lock); 1394 prof_enabled = 0; 1395 mtx_unlock_spin(&sleepq_prof_lock); 1396 for (i = 0; i < SC_TABLESIZE; i++) { 1397 LIST_FOREACH(sp, &sleepq_hash[i], sp_link) { 1398 sbuf_printf(sb, "%s\t%ld\n", 1399 sp->sp_wmesg, sp->sp_count); 1400 } 1401 } 1402 mtx_lock_spin(&sleepq_prof_lock); 1403 prof_enabled = enabled; 1404 mtx_unlock_spin(&sleepq_prof_lock); 1405 1406 error = sbuf_finish(sb); 1407 sbuf_delete(sb); 1408 return (error); 1409 } 1410 1411 SYSCTL_PROC(_debug_sleepq, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD, 1412 NULL, 0, dump_sleepq_prof_stats, "A", "Sleepqueue profiling statistics"); 1413 SYSCTL_PROC(_debug_sleepq, OID_AUTO, reset, CTLTYPE_INT | CTLFLAG_RW, 1414 NULL, 0, reset_sleepq_prof_stats, "I", 1415 "Reset sleepqueue profiling statistics"); 1416 SYSCTL_PROC(_debug_sleepq, OID_AUTO, enable, CTLTYPE_INT | CTLFLAG_RW, 1417 NULL, 0, enable_sleepq_prof, "I", "Enable sleepqueue profiling"); 1418 #endif 1419 1420 #ifdef DDB 1421 DB_SHOW_COMMAND(sleepq, db_show_sleepqueue) 1422 { 1423 struct sleepqueue_chain *sc; 1424 struct sleepqueue *sq; 1425 #ifdef INVARIANTS 1426 struct lock_object *lock; 1427 #endif 1428 struct thread *td; 1429 void *wchan; 1430 int i; 1431 1432 if (!have_addr) 1433 return; 1434 1435 /* 1436 * First, see if there is an active sleep queue for the wait channel 1437 * indicated by the address. 1438 */ 1439 wchan = (void *)addr; 1440 sc = SC_LOOKUP(wchan); 1441 LIST_FOREACH(sq, &sc->sc_queues, sq_hash) 1442 if (sq->sq_wchan == wchan) 1443 goto found; 1444 1445 /* 1446 * Second, see if there is an active sleep queue at the address 1447 * indicated. 1448 */ 1449 for (i = 0; i < SC_TABLESIZE; i++) 1450 LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) { 1451 if (sq == (struct sleepqueue *)addr) 1452 goto found; 1453 } 1454 1455 db_printf("Unable to locate a sleep queue via %p\n", (void *)addr); 1456 return; 1457 found: 1458 db_printf("Wait channel: %p\n", sq->sq_wchan); 1459 db_printf("Queue type: %d\n", sq->sq_type); 1460 #ifdef INVARIANTS 1461 if (sq->sq_lock) { 1462 lock = sq->sq_lock; 1463 db_printf("Associated Interlock: %p - (%s) %s\n", lock, 1464 LOCK_CLASS(lock)->lc_name, lock->lo_name); 1465 } 1466 #endif 1467 db_printf("Blocked threads:\n"); 1468 for (i = 0; i < NR_SLEEPQS; i++) { 1469 db_printf("\nQueue[%d]:\n", i); 1470 if (TAILQ_EMPTY(&sq->sq_blocked[i])) 1471 db_printf("\tempty\n"); 1472 else 1473 TAILQ_FOREACH(td, &sq->sq_blocked[i], 1474 td_slpq) { 1475 db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td, 1476 td->td_tid, td->td_proc->p_pid, 1477 td->td_name); 1478 } 1479 db_printf("(expected: %u)\n", sq->sq_blockedcnt[i]); 1480 } 1481 } 1482 1483 /* Alias 'show sleepqueue' to 'show sleepq'. */ 1484 DB_SHOW_ALIAS(sleepqueue, db_show_sleepqueue); 1485 #endif 1486