1 /*- 2 * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the author nor the names of any co-contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 /* 31 * Implementation of sleep queues used to hold queue of threads blocked on 32 * a wait channel. Sleep queues different from turnstiles in that wait 33 * channels are not owned by anyone, so there is no priority propagation. 34 * Sleep queues can also provide a timeout and can also be interrupted by 35 * signals. That said, there are several similarities between the turnstile 36 * and sleep queue implementations. (Note: turnstiles were implemented 37 * first.) For example, both use a hash table of the same size where each 38 * bucket is referred to as a "chain" that contains both a spin lock and 39 * a linked list of queues. An individual queue is located by using a hash 40 * to pick a chain, locking the chain, and then walking the chain searching 41 * for the queue. This means that a wait channel object does not need to 42 * embed it's queue head just as locks do not embed their turnstile queue 43 * head. Threads also carry around a sleep queue that they lend to the 44 * wait channel when blocking. Just as in turnstiles, the queue includes 45 * a free list of the sleep queues of other threads blocked on the same 46 * wait channel in the case of multiple waiters. 47 * 48 * Some additional functionality provided by sleep queues include the 49 * ability to set a timeout. The timeout is managed using a per-thread 50 * callout that resumes a thread if it is asleep. A thread may also 51 * catch signals while it is asleep (aka an interruptible sleep). The 52 * signal code uses sleepq_abort() to interrupt a sleeping thread. Finally, 53 * sleep queues also provide some extra assertions. One is not allowed to 54 * mix the sleep/wakeup and cv APIs for a given wait channel. Also, one 55 * must consistently use the same lock to synchronize with a wait channel, 56 * though this check is currently only a warning for sleep/wakeup due to 57 * pre-existing abuse of that API. The same lock must also be held when 58 * awakening threads, though that is currently only enforced for condition 59 * variables. 60 */ 61 62 #include <sys/cdefs.h> 63 __FBSDID("$FreeBSD$"); 64 65 #include "opt_sleepqueue_profiling.h" 66 #include "opt_ddb.h" 67 #include "opt_sched.h" 68 69 #include <sys/param.h> 70 #include <sys/systm.h> 71 #include <sys/lock.h> 72 #include <sys/kernel.h> 73 #include <sys/ktr.h> 74 #include <sys/mutex.h> 75 #include <sys/proc.h> 76 #include <sys/sched.h> 77 #include <sys/signalvar.h> 78 #include <sys/sleepqueue.h> 79 #include <sys/sysctl.h> 80 81 #include <vm/uma.h> 82 83 #ifdef DDB 84 #include <ddb/ddb.h> 85 #endif 86 87 /* 88 * Constants for the hash table of sleep queue chains. These constants are 89 * the same ones that 4BSD (and possibly earlier versions of BSD) used. 90 * Basically, we ignore the lower 8 bits of the address since most wait 91 * channel pointers are aligned and only look at the next 7 bits for the 92 * hash. SC_TABLESIZE must be a power of two for SC_MASK to work properly. 93 */ 94 #define SC_TABLESIZE 128 /* Must be power of 2. */ 95 #define SC_MASK (SC_TABLESIZE - 1) 96 #define SC_SHIFT 8 97 #define SC_HASH(wc) (((uintptr_t)(wc) >> SC_SHIFT) & SC_MASK) 98 #define SC_LOOKUP(wc) &sleepq_chains[SC_HASH(wc)] 99 #define NR_SLEEPQS 2 100 /* 101 * There two different lists of sleep queues. Both lists are connected 102 * via the sq_hash entries. The first list is the sleep queue chain list 103 * that a sleep queue is on when it is attached to a wait channel. The 104 * second list is the free list hung off of a sleep queue that is attached 105 * to a wait channel. 106 * 107 * Each sleep queue also contains the wait channel it is attached to, the 108 * list of threads blocked on that wait channel, flags specific to the 109 * wait channel, and the lock used to synchronize with a wait channel. 110 * The flags are used to catch mismatches between the various consumers 111 * of the sleep queue API (e.g. sleep/wakeup and condition variables). 112 * The lock pointer is only used when invariants are enabled for various 113 * debugging checks. 114 * 115 * Locking key: 116 * c - sleep queue chain lock 117 */ 118 struct sleepqueue { 119 TAILQ_HEAD(, thread) sq_blocked[NR_SLEEPQS]; /* (c) Blocked threads. */ 120 LIST_ENTRY(sleepqueue) sq_hash; /* (c) Chain and free list. */ 121 LIST_HEAD(, sleepqueue) sq_free; /* (c) Free queues. */ 122 void *sq_wchan; /* (c) Wait channel. */ 123 #ifdef INVARIANTS 124 int sq_type; /* (c) Queue type. */ 125 struct lock_object *sq_lock; /* (c) Associated lock. */ 126 #endif 127 }; 128 129 struct sleepqueue_chain { 130 LIST_HEAD(, sleepqueue) sc_queues; /* List of sleep queues. */ 131 struct mtx sc_lock; /* Spin lock for this chain. */ 132 #ifdef SLEEPQUEUE_PROFILING 133 u_int sc_depth; /* Length of sc_queues. */ 134 u_int sc_max_depth; /* Max length of sc_queues. */ 135 #endif 136 }; 137 138 #ifdef SLEEPQUEUE_PROFILING 139 u_int sleepq_max_depth; 140 SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling"); 141 SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0, 142 "sleepq chain stats"); 143 SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth, 144 0, "maxmimum depth achieved of a single chain"); 145 #endif 146 static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE]; 147 static uma_zone_t sleepq_zone; 148 149 /* 150 * Prototypes for non-exported routines. 151 */ 152 static int sleepq_catch_signals(void *wchan); 153 static int sleepq_check_signals(void); 154 static int sleepq_check_timeout(void); 155 #ifdef INVARIANTS 156 static void sleepq_dtor(void *mem, int size, void *arg); 157 #endif 158 static int sleepq_init(void *mem, int size, int flags); 159 static void sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, 160 int pri); 161 static void sleepq_switch(void *wchan); 162 static void sleepq_timeout(void *arg); 163 164 /* 165 * Early initialization of sleep queues that is called from the sleepinit() 166 * SYSINIT. 167 */ 168 void 169 init_sleepqueues(void) 170 { 171 #ifdef SLEEPQUEUE_PROFILING 172 struct sysctl_oid *chain_oid; 173 char chain_name[10]; 174 #endif 175 int i; 176 177 for (i = 0; i < SC_TABLESIZE; i++) { 178 LIST_INIT(&sleepq_chains[i].sc_queues); 179 mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL, 180 MTX_SPIN); 181 #ifdef SLEEPQUEUE_PROFILING 182 snprintf(chain_name, sizeof(chain_name), "%d", i); 183 chain_oid = SYSCTL_ADD_NODE(NULL, 184 SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO, 185 chain_name, CTLFLAG_RD, NULL, "sleepq chain stats"); 186 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO, 187 "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL); 188 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO, 189 "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0, 190 NULL); 191 #endif 192 } 193 sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue), 194 #ifdef INVARIANTS 195 NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0); 196 #else 197 NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0); 198 #endif 199 200 thread0.td_sleepqueue = sleepq_alloc(); 201 } 202 203 /* 204 * Get a sleep queue for a new thread. 205 */ 206 struct sleepqueue * 207 sleepq_alloc(void) 208 { 209 210 return (uma_zalloc(sleepq_zone, M_WAITOK)); 211 } 212 213 /* 214 * Free a sleep queue when a thread is destroyed. 215 */ 216 void 217 sleepq_free(struct sleepqueue *sq) 218 { 219 220 uma_zfree(sleepq_zone, sq); 221 } 222 223 /* 224 * Lock the sleep queue chain associated with the specified wait channel. 225 */ 226 void 227 sleepq_lock(void *wchan) 228 { 229 struct sleepqueue_chain *sc; 230 231 sc = SC_LOOKUP(wchan); 232 mtx_lock_spin(&sc->sc_lock); 233 } 234 235 /* 236 * Look up the sleep queue associated with a given wait channel in the hash 237 * table locking the associated sleep queue chain. If no queue is found in 238 * the table, NULL is returned. 239 */ 240 struct sleepqueue * 241 sleepq_lookup(void *wchan) 242 { 243 struct sleepqueue_chain *sc; 244 struct sleepqueue *sq; 245 246 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 247 sc = SC_LOOKUP(wchan); 248 mtx_assert(&sc->sc_lock, MA_OWNED); 249 LIST_FOREACH(sq, &sc->sc_queues, sq_hash) 250 if (sq->sq_wchan == wchan) 251 return (sq); 252 return (NULL); 253 } 254 255 /* 256 * Unlock the sleep queue chain associated with a given wait channel. 257 */ 258 void 259 sleepq_release(void *wchan) 260 { 261 struct sleepqueue_chain *sc; 262 263 sc = SC_LOOKUP(wchan); 264 mtx_unlock_spin(&sc->sc_lock); 265 } 266 267 /* 268 * Places the current thread on the sleep queue for the specified wait 269 * channel. If INVARIANTS is enabled, then it associates the passed in 270 * lock with the sleepq to make sure it is held when that sleep queue is 271 * woken up. 272 */ 273 void 274 sleepq_add(void *wchan, struct lock_object *lock, const char *wmesg, int flags, 275 int queue) 276 { 277 struct sleepqueue_chain *sc; 278 struct sleepqueue *sq; 279 struct thread *td; 280 281 td = curthread; 282 sc = SC_LOOKUP(wchan); 283 mtx_assert(&sc->sc_lock, MA_OWNED); 284 MPASS(td->td_sleepqueue != NULL); 285 MPASS(wchan != NULL); 286 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 287 288 /* If this thread is not allowed to sleep, die a horrible death. */ 289 KASSERT(!(td->td_pflags & TDP_NOSLEEPING), 290 ("Trying sleep, but thread marked as sleeping prohibited")); 291 292 /* Look up the sleep queue associated with the wait channel 'wchan'. */ 293 sq = sleepq_lookup(wchan); 294 295 /* 296 * If the wait channel does not already have a sleep queue, use 297 * this thread's sleep queue. Otherwise, insert the current thread 298 * into the sleep queue already in use by this wait channel. 299 */ 300 if (sq == NULL) { 301 #ifdef INVARIANTS 302 int i; 303 304 sq = td->td_sleepqueue; 305 for (i = 0; i < NR_SLEEPQS; i++) 306 KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]), 307 ("thread's sleep queue %d is not empty", i)); 308 KASSERT(LIST_EMPTY(&sq->sq_free), 309 ("thread's sleep queue has a non-empty free list")); 310 KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer")); 311 sq->sq_lock = lock; 312 sq->sq_type = flags & SLEEPQ_TYPE; 313 #endif 314 #ifdef SLEEPQUEUE_PROFILING 315 sc->sc_depth++; 316 if (sc->sc_depth > sc->sc_max_depth) { 317 sc->sc_max_depth = sc->sc_depth; 318 if (sc->sc_max_depth > sleepq_max_depth) 319 sleepq_max_depth = sc->sc_max_depth; 320 } 321 #endif 322 sq = td->td_sleepqueue; 323 LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash); 324 sq->sq_wchan = wchan; 325 } else { 326 MPASS(wchan == sq->sq_wchan); 327 MPASS(lock == sq->sq_lock); 328 MPASS((flags & SLEEPQ_TYPE) == sq->sq_type); 329 LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash); 330 } 331 TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq); 332 td->td_sleepqueue = NULL; 333 td->td_sqqueue = queue; 334 td->td_wchan = wchan; 335 td->td_wmesg = wmesg; 336 if (flags & SLEEPQ_INTERRUPTIBLE) { 337 td->td_flags |= TDF_SINTR; 338 td->td_flags &= ~TDF_SLEEPABORT; 339 } 340 } 341 342 /* 343 * Sets a timeout that will remove the current thread from the specified 344 * sleep queue after timo ticks if the thread has not already been awakened. 345 */ 346 void 347 sleepq_set_timeout(void *wchan, int timo) 348 { 349 struct sleepqueue_chain *sc; 350 struct thread *td; 351 352 td = curthread; 353 sc = SC_LOOKUP(wchan); 354 mtx_assert(&sc->sc_lock, MA_OWNED); 355 MPASS(TD_ON_SLEEPQ(td)); 356 MPASS(td->td_sleepqueue == NULL); 357 MPASS(wchan != NULL); 358 callout_reset(&td->td_slpcallout, timo, sleepq_timeout, td); 359 } 360 361 /* 362 * Marks the pending sleep of the current thread as interruptible and 363 * makes an initial check for pending signals before putting a thread 364 * to sleep. Enters and exits with the thread lock held. Thread lock 365 * may have transitioned from the sleepq lock to a run lock. 366 */ 367 static int 368 sleepq_catch_signals(void *wchan) 369 { 370 struct sleepqueue_chain *sc; 371 struct sleepqueue *sq; 372 struct thread *td; 373 struct proc *p; 374 struct sigacts *ps; 375 int sig, ret; 376 377 td = curthread; 378 p = curproc; 379 sc = SC_LOOKUP(wchan); 380 mtx_assert(&sc->sc_lock, MA_OWNED); 381 MPASS(wchan != NULL); 382 CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)", 383 (void *)td, (long)p->p_pid, p->p_comm); 384 385 mtx_unlock_spin(&sc->sc_lock); 386 387 /* See if there are any pending signals for this thread. */ 388 PROC_LOCK(p); 389 ps = p->p_sigacts; 390 mtx_lock(&ps->ps_mtx); 391 sig = cursig(td); 392 if (sig == 0) { 393 mtx_unlock(&ps->ps_mtx); 394 ret = thread_suspend_check(1); 395 MPASS(ret == 0 || ret == EINTR || ret == ERESTART); 396 } else { 397 if (SIGISMEMBER(ps->ps_sigintr, sig)) 398 ret = EINTR; 399 else 400 ret = ERESTART; 401 mtx_unlock(&ps->ps_mtx); 402 } 403 /* 404 * Lock sleepq chain before unlocking proc 405 * without this, we could lose a race. 406 */ 407 mtx_lock_spin(&sc->sc_lock); 408 PROC_UNLOCK(p); 409 thread_lock(td); 410 if (ret == 0) { 411 if (!(td->td_flags & TDF_INTERRUPT)) { 412 sleepq_switch(wchan); 413 return (0); 414 } 415 /* KSE threads tried unblocking us. */ 416 ret = td->td_intrval; 417 MPASS(ret == EINTR || ret == ERESTART || ret == EWOULDBLOCK); 418 } 419 /* 420 * There were pending signals and this thread is still 421 * on the sleep queue, remove it from the sleep queue. 422 */ 423 if (TD_ON_SLEEPQ(td)) { 424 sq = sleepq_lookup(wchan); 425 sleepq_resume_thread(sq, td, -1); 426 } 427 mtx_unlock_spin(&sc->sc_lock); 428 MPASS(td->td_lock != &sc->sc_lock); 429 return (ret); 430 } 431 432 /* 433 * Switches to another thread if we are still asleep on a sleep queue. 434 * Returns with thread lock. 435 */ 436 static void 437 sleepq_switch(void *wchan) 438 { 439 struct sleepqueue_chain *sc; 440 struct thread *td; 441 442 td = curthread; 443 sc = SC_LOOKUP(wchan); 444 mtx_assert(&sc->sc_lock, MA_OWNED); 445 THREAD_LOCK_ASSERT(td, MA_OWNED); 446 /* We were removed */ 447 if (td->td_sleepqueue != NULL) { 448 mtx_unlock_spin(&sc->sc_lock); 449 return; 450 } 451 thread_lock_set(td, &sc->sc_lock); 452 453 MPASS(td->td_sleepqueue == NULL); 454 sched_sleep(td); 455 TD_SET_SLEEPING(td); 456 SCHED_STAT_INC(switch_sleepq); 457 mi_switch(SW_VOL, NULL); 458 KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING")); 459 CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)", 460 (void *)td, (long)td->td_proc->p_pid, (void *)td->td_proc->p_comm); 461 } 462 463 /* 464 * Check to see if we timed out. 465 */ 466 static int 467 sleepq_check_timeout(void) 468 { 469 struct thread *td; 470 471 td = curthread; 472 THREAD_LOCK_ASSERT(td, MA_OWNED); 473 474 /* 475 * If TDF_TIMEOUT is set, we timed out. 476 */ 477 if (td->td_flags & TDF_TIMEOUT) { 478 td->td_flags &= ~TDF_TIMEOUT; 479 return (EWOULDBLOCK); 480 } 481 482 /* 483 * If TDF_TIMOFAIL is set, the timeout ran after we had 484 * already been woken up. 485 */ 486 if (td->td_flags & TDF_TIMOFAIL) 487 td->td_flags &= ~TDF_TIMOFAIL; 488 489 /* 490 * If callout_stop() fails, then the timeout is running on 491 * another CPU, so synchronize with it to avoid having it 492 * accidentally wake up a subsequent sleep. 493 */ 494 else if (callout_stop(&td->td_slpcallout) == 0) { 495 td->td_flags |= TDF_TIMEOUT; 496 TD_SET_SLEEPING(td); 497 SCHED_STAT_INC(switch_sleepqtimo); 498 mi_switch(SW_INVOL, NULL); 499 } 500 return (0); 501 } 502 503 /* 504 * Check to see if we were awoken by a signal. 505 */ 506 static int 507 sleepq_check_signals(void) 508 { 509 struct thread *td; 510 511 td = curthread; 512 THREAD_LOCK_ASSERT(td, MA_OWNED); 513 514 /* We are no longer in an interruptible sleep. */ 515 if (td->td_flags & TDF_SINTR) 516 td->td_flags &= ~TDF_SINTR; 517 518 if (td->td_flags & TDF_SLEEPABORT) { 519 td->td_flags &= ~TDF_SLEEPABORT; 520 return (td->td_intrval); 521 } 522 523 if (td->td_flags & TDF_INTERRUPT) 524 return (td->td_intrval); 525 526 return (0); 527 } 528 529 /* 530 * Block the current thread until it is awakened from its sleep queue. 531 */ 532 void 533 sleepq_wait(void *wchan) 534 { 535 struct thread *td; 536 537 td = curthread; 538 MPASS(!(td->td_flags & TDF_SINTR)); 539 thread_lock(td); 540 sleepq_switch(wchan); 541 thread_unlock(td); 542 } 543 544 /* 545 * Block the current thread until it is awakened from its sleep queue 546 * or it is interrupted by a signal. 547 */ 548 int 549 sleepq_wait_sig(void *wchan) 550 { 551 int rcatch; 552 int rval; 553 554 rcatch = sleepq_catch_signals(wchan); 555 rval = sleepq_check_signals(); 556 thread_unlock(curthread); 557 if (rcatch) 558 return (rcatch); 559 return (rval); 560 } 561 562 /* 563 * Block the current thread until it is awakened from its sleep queue 564 * or it times out while waiting. 565 */ 566 int 567 sleepq_timedwait(void *wchan) 568 { 569 struct thread *td; 570 int rval; 571 572 td = curthread; 573 MPASS(!(td->td_flags & TDF_SINTR)); 574 thread_lock(td); 575 sleepq_switch(wchan); 576 rval = sleepq_check_timeout(); 577 thread_unlock(td); 578 579 return (rval); 580 } 581 582 /* 583 * Block the current thread until it is awakened from its sleep queue, 584 * it is interrupted by a signal, or it times out waiting to be awakened. 585 */ 586 int 587 sleepq_timedwait_sig(void *wchan) 588 { 589 int rcatch, rvalt, rvals; 590 591 rcatch = sleepq_catch_signals(wchan); 592 rvalt = sleepq_check_timeout(); 593 rvals = sleepq_check_signals(); 594 thread_unlock(curthread); 595 if (rcatch) 596 return (rcatch); 597 if (rvals) 598 return (rvals); 599 return (rvalt); 600 } 601 602 /* 603 * Removes a thread from a sleep queue and makes it 604 * runnable. 605 */ 606 static void 607 sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri) 608 { 609 struct sleepqueue_chain *sc; 610 611 MPASS(td != NULL); 612 MPASS(sq->sq_wchan != NULL); 613 MPASS(td->td_wchan == sq->sq_wchan); 614 MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0); 615 THREAD_LOCK_ASSERT(td, MA_OWNED); 616 sc = SC_LOOKUP(sq->sq_wchan); 617 mtx_assert(&sc->sc_lock, MA_OWNED); 618 619 /* Remove the thread from the queue. */ 620 TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq); 621 622 /* 623 * Get a sleep queue for this thread. If this is the last waiter, 624 * use the queue itself and take it out of the chain, otherwise, 625 * remove a queue from the free list. 626 */ 627 if (LIST_EMPTY(&sq->sq_free)) { 628 td->td_sleepqueue = sq; 629 #ifdef INVARIANTS 630 sq->sq_wchan = NULL; 631 #endif 632 #ifdef SLEEPQUEUE_PROFILING 633 sc->sc_depth--; 634 #endif 635 } else 636 td->td_sleepqueue = LIST_FIRST(&sq->sq_free); 637 LIST_REMOVE(td->td_sleepqueue, sq_hash); 638 639 td->td_wmesg = NULL; 640 td->td_wchan = NULL; 641 td->td_flags &= ~TDF_SINTR; 642 643 /* 644 * Note that thread td might not be sleeping if it is running 645 * sleepq_catch_signals() on another CPU or is blocked on 646 * its proc lock to check signals. It doesn't hurt to clear 647 * the sleeping flag if it isn't set though, so we just always 648 * do it. However, we can't assert that it is set. 649 */ 650 CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)", 651 (void *)td, (long)td->td_proc->p_pid, td->td_proc->p_comm); 652 TD_CLR_SLEEPING(td); 653 654 /* Adjust priority if requested. */ 655 MPASS(pri == -1 || (pri >= PRI_MIN && pri <= PRI_MAX)); 656 if (pri != -1 && td->td_priority > pri) 657 sched_prio(td, pri); 658 setrunnable(td); 659 } 660 661 #ifdef INVARIANTS 662 /* 663 * UMA zone item deallocator. 664 */ 665 static void 666 sleepq_dtor(void *mem, int size, void *arg) 667 { 668 struct sleepqueue *sq; 669 int i; 670 671 sq = mem; 672 for (i = 0; i < NR_SLEEPQS; i++) 673 MPASS(TAILQ_EMPTY(&sq->sq_blocked[i])); 674 } 675 #endif 676 677 /* 678 * UMA zone item initializer. 679 */ 680 static int 681 sleepq_init(void *mem, int size, int flags) 682 { 683 struct sleepqueue *sq; 684 int i; 685 686 bzero(mem, size); 687 sq = mem; 688 for (i = 0; i < NR_SLEEPQS; i++) 689 TAILQ_INIT(&sq->sq_blocked[i]); 690 LIST_INIT(&sq->sq_free); 691 return (0); 692 } 693 694 /* 695 * Find the highest priority thread sleeping on a wait channel and resume it. 696 */ 697 void 698 sleepq_signal(void *wchan, int flags, int pri, int queue) 699 { 700 struct sleepqueue *sq; 701 struct thread *td, *besttd; 702 703 CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags); 704 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 705 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 706 sq = sleepq_lookup(wchan); 707 if (sq == NULL) 708 return; 709 KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE), 710 ("%s: mismatch between sleep/wakeup and cv_*", __func__)); 711 712 /* 713 * Find the highest priority thread on the queue. If there is a 714 * tie, use the thread that first appears in the queue as it has 715 * been sleeping the longest since threads are always added to 716 * the tail of sleep queues. 717 */ 718 besttd = NULL; 719 TAILQ_FOREACH(td, &sq->sq_blocked[queue], td_slpq) { 720 if (besttd == NULL || td->td_priority < besttd->td_priority) 721 besttd = td; 722 } 723 MPASS(besttd != NULL); 724 thread_lock(besttd); 725 sleepq_resume_thread(sq, besttd, pri); 726 thread_unlock(besttd); 727 } 728 729 /* 730 * Resume all threads sleeping on a specified wait channel. 731 */ 732 void 733 sleepq_broadcast(void *wchan, int flags, int pri, int queue) 734 { 735 struct sleepqueue *sq; 736 struct thread *td; 737 738 CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags); 739 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 740 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 741 sq = sleepq_lookup(wchan); 742 if (sq == NULL) { 743 sleepq_release(wchan); 744 return; 745 } 746 KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE), 747 ("%s: mismatch between sleep/wakeup and cv_*", __func__)); 748 749 /* Resume all blocked threads on the sleep queue. */ 750 while (!TAILQ_EMPTY(&sq->sq_blocked[queue])) { 751 td = TAILQ_FIRST(&sq->sq_blocked[queue]); 752 thread_lock(td); 753 sleepq_resume_thread(sq, td, pri); 754 thread_unlock(td); 755 } 756 sleepq_release(wchan); 757 } 758 759 /* 760 * Time sleeping threads out. When the timeout expires, the thread is 761 * removed from the sleep queue and made runnable if it is still asleep. 762 */ 763 static void 764 sleepq_timeout(void *arg) 765 { 766 struct sleepqueue_chain *sc; 767 struct sleepqueue *sq; 768 struct thread *td; 769 void *wchan; 770 771 td = arg; 772 CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)", 773 (void *)td, (long)td->td_proc->p_pid, (void *)td->td_proc->p_comm); 774 775 /* 776 * First, see if the thread is asleep and get the wait channel if 777 * it is. 778 */ 779 thread_lock(td); 780 if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) { 781 wchan = td->td_wchan; 782 sc = SC_LOOKUP(wchan); 783 MPASS(td->td_lock == &sc->sc_lock); 784 sq = sleepq_lookup(wchan); 785 MPASS(sq != NULL); 786 td->td_flags |= TDF_TIMEOUT; 787 sleepq_resume_thread(sq, td, -1); 788 thread_unlock(td); 789 return; 790 } 791 /* 792 * If the thread is on the SLEEPQ but not sleeping and we have it 793 * locked it must be in sleepq_catch_signals(). Let it know we've 794 * timedout here so it can remove itself. 795 */ 796 if (TD_ON_SLEEPQ(td)) { 797 td->td_flags |= TDF_TIMEOUT | TDF_INTERRUPT; 798 td->td_intrval = EWOULDBLOCK; 799 thread_unlock(td); 800 return; 801 } 802 803 /* 804 * Now check for the edge cases. First, if TDF_TIMEOUT is set, 805 * then the other thread has already yielded to us, so clear 806 * the flag and resume it. If TDF_TIMEOUT is not set, then the 807 * we know that the other thread is not on a sleep queue, but it 808 * hasn't resumed execution yet. In that case, set TDF_TIMOFAIL 809 * to let it know that the timeout has already run and doesn't 810 * need to be canceled. 811 */ 812 if (td->td_flags & TDF_TIMEOUT) { 813 MPASS(TD_IS_SLEEPING(td)); 814 td->td_flags &= ~TDF_TIMEOUT; 815 TD_CLR_SLEEPING(td); 816 setrunnable(td); 817 } else 818 td->td_flags |= TDF_TIMOFAIL; 819 thread_unlock(td); 820 } 821 822 /* 823 * Resumes a specific thread from the sleep queue associated with a specific 824 * wait channel if it is on that queue. 825 */ 826 void 827 sleepq_remove(struct thread *td, void *wchan) 828 { 829 struct sleepqueue *sq; 830 831 /* 832 * Look up the sleep queue for this wait channel, then re-check 833 * that the thread is asleep on that channel, if it is not, then 834 * bail. 835 */ 836 MPASS(wchan != NULL); 837 sleepq_lock(wchan); 838 sq = sleepq_lookup(wchan); 839 /* 840 * We can not lock the thread here as it may be sleeping on a 841 * different sleepq. However, holding the sleepq lock for this 842 * wchan can guarantee that we do not miss a wakeup for this 843 * channel. The asserts below will catch any false positives. 844 */ 845 if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) { 846 sleepq_release(wchan); 847 return; 848 } 849 /* Thread is asleep on sleep queue sq, so wake it up. */ 850 thread_lock(td); 851 MPASS(sq != NULL); 852 MPASS(td->td_wchan == wchan); 853 sleepq_resume_thread(sq, td, -1); 854 thread_unlock(td); 855 sleepq_release(wchan); 856 } 857 858 /* 859 * Abort a thread as if an interrupt had occurred. Only abort 860 * interruptible waits (unfortunately it isn't safe to abort others). 861 */ 862 void 863 sleepq_abort(struct thread *td, int intrval) 864 { 865 struct sleepqueue *sq; 866 void *wchan; 867 868 THREAD_LOCK_ASSERT(td, MA_OWNED); 869 MPASS(TD_ON_SLEEPQ(td)); 870 MPASS(td->td_flags & TDF_SINTR); 871 MPASS(intrval == EINTR || intrval == ERESTART); 872 873 /* 874 * If the TDF_TIMEOUT flag is set, just leave. A 875 * timeout is scheduled anyhow. 876 */ 877 if (td->td_flags & TDF_TIMEOUT) 878 return; 879 880 CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)", 881 (void *)td, (long)td->td_proc->p_pid, (void *)td->td_proc->p_comm); 882 td->td_intrval = intrval; 883 td->td_flags |= TDF_SLEEPABORT; 884 /* 885 * If the thread has not slept yet it will find the signal in 886 * sleepq_catch_signals() and call sleepq_resume_thread. Otherwise 887 * we have to do it here. 888 */ 889 if (!TD_IS_SLEEPING(td)) 890 return; 891 wchan = td->td_wchan; 892 MPASS(wchan != NULL); 893 sq = sleepq_lookup(wchan); 894 MPASS(sq != NULL); 895 896 /* Thread is asleep on sleep queue sq, so wake it up. */ 897 sleepq_resume_thread(sq, td, -1); 898 } 899 900 #ifdef DDB 901 DB_SHOW_COMMAND(sleepq, db_show_sleepqueue) 902 { 903 struct sleepqueue_chain *sc; 904 struct sleepqueue *sq; 905 #ifdef INVARIANTS 906 struct lock_object *lock; 907 #endif 908 struct thread *td; 909 void *wchan; 910 int i; 911 912 if (!have_addr) 913 return; 914 915 /* 916 * First, see if there is an active sleep queue for the wait channel 917 * indicated by the address. 918 */ 919 wchan = (void *)addr; 920 sc = SC_LOOKUP(wchan); 921 LIST_FOREACH(sq, &sc->sc_queues, sq_hash) 922 if (sq->sq_wchan == wchan) 923 goto found; 924 925 /* 926 * Second, see if there is an active sleep queue at the address 927 * indicated. 928 */ 929 for (i = 0; i < SC_TABLESIZE; i++) 930 LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) { 931 if (sq == (struct sleepqueue *)addr) 932 goto found; 933 } 934 935 db_printf("Unable to locate a sleep queue via %p\n", (void *)addr); 936 return; 937 found: 938 db_printf("Wait channel: %p\n", sq->sq_wchan); 939 #ifdef INVARIANTS 940 db_printf("Queue type: %d\n", sq->sq_type); 941 if (sq->sq_lock) { 942 lock = sq->sq_lock; 943 db_printf("Associated Interlock: %p - (%s) %s\n", lock, 944 LOCK_CLASS(lock)->lc_name, lock->lo_name); 945 } 946 #endif 947 db_printf("Blocked threads:\n"); 948 for (i = 0; i < NR_SLEEPQS; i++) { 949 db_printf("\nQueue[%d]:\n", i); 950 if (TAILQ_EMPTY(&sq->sq_blocked[i])) 951 db_printf("\tempty\n"); 952 else 953 TAILQ_FOREACH(td, &sq->sq_blocked[0], 954 td_slpq) { 955 db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td, 956 td->td_tid, td->td_proc->p_pid, 957 td->td_name[i] != '\0' ? td->td_name : 958 td->td_proc->p_comm); 959 } 960 } 961 } 962 963 /* Alias 'show sleepqueue' to 'show sleepq'. */ 964 DB_SET(sleepqueue, db_show_sleepqueue, db_show_cmd_set, 0, NULL); 965 #endif 966