xref: /freebsd/sys/kern/subr_rman.c (revision f9218d3d4fd34f082473b3a021c6d4d109fb47cf)
1 /*
2  * Copyright 1998 Massachusetts Institute of Technology
3  *
4  * Permission to use, copy, modify, and distribute this software and
5  * its documentation for any purpose and without fee is hereby
6  * granted, provided that both the above copyright notice and this
7  * permission notice appear in all copies, that both the above
8  * copyright notice and this permission notice appear in all
9  * supporting documentation, and that the name of M.I.T. not be used
10  * in advertising or publicity pertaining to distribution of the
11  * software without specific, written prior permission.  M.I.T. makes
12  * no representations about the suitability of this software for any
13  * purpose.  It is provided "as is" without express or implied
14  * warranty.
15  *
16  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
17  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD$
30  */
31 
32 /*
33  * The kernel resource manager.  This code is responsible for keeping track
34  * of hardware resources which are apportioned out to various drivers.
35  * It does not actually assign those resources, and it is not expected
36  * that end-device drivers will call into this code directly.  Rather,
37  * the code which implements the buses that those devices are attached to,
38  * and the code which manages CPU resources, will call this code, and the
39  * end-device drivers will make upcalls to that code to actually perform
40  * the allocation.
41  *
42  * There are two sorts of resources managed by this code.  The first is
43  * the more familiar array (RMAN_ARRAY) type; resources in this class
44  * consist of a sequence of individually-allocatable objects which have
45  * been numbered in some well-defined order.  Most of the resources
46  * are of this type, as it is the most familiar.  The second type is
47  * called a gauge (RMAN_GAUGE), and models fungible resources (i.e.,
48  * resources in which each instance is indistinguishable from every
49  * other instance).  The principal anticipated application of gauges
50  * is in the context of power consumption, where a bus may have a specific
51  * power budget which all attached devices share.  RMAN_GAUGE is not
52  * implemented yet.
53  *
54  * For array resources, we make one simplifying assumption: two clients
55  * sharing the same resource must use the same range of indices.  That
56  * is to say, sharing of overlapping-but-not-identical regions is not
57  * permitted.
58  */
59 
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/kernel.h>
63 #include <sys/lock.h>
64 #include <sys/malloc.h>
65 #include <sys/mutex.h>
66 #include <sys/bus.h>		/* XXX debugging */
67 #include <machine/bus.h>
68 #include <sys/rman.h>
69 #include <sys/sysctl.h>
70 
71 int     rman_debug = 0;
72 TUNABLE_INT("debug.rman_debug", &rman_debug);
73 SYSCTL_INT(_debug, OID_AUTO, rman_debug, CTLFLAG_RW,
74     &rman_debug, 0, "rman debug");
75 
76 #define DPRINTF(params) if (rman_debug) printf params
77 
78 static MALLOC_DEFINE(M_RMAN, "rman", "Resource manager");
79 
80 struct	rman_head rman_head;
81 static	struct mtx rman_mtx; /* mutex to protect rman_head */
82 static	int int_rman_activate_resource(struct rman *rm, struct resource *r,
83 				       struct resource **whohas);
84 static	int int_rman_deactivate_resource(struct resource *r);
85 static	int int_rman_release_resource(struct rman *rm, struct resource *r);
86 
87 int
88 rman_init(struct rman *rm)
89 {
90 	static int once;
91 
92 	if (once == 0) {
93 		once = 1;
94 		TAILQ_INIT(&rman_head);
95 		mtx_init(&rman_mtx, "rman head", NULL, MTX_DEF);
96 	}
97 
98 	if (rm->rm_type == RMAN_UNINIT)
99 		panic("rman_init");
100 	if (rm->rm_type == RMAN_GAUGE)
101 		panic("implement RMAN_GAUGE");
102 
103 	TAILQ_INIT(&rm->rm_list);
104 	rm->rm_mtx = malloc(sizeof *rm->rm_mtx, M_RMAN, M_NOWAIT | M_ZERO);
105 	if (rm->rm_mtx == 0)
106 		return ENOMEM;
107 	mtx_init(rm->rm_mtx, "rman", NULL, MTX_DEF);
108 
109 	mtx_lock(&rman_mtx);
110 	TAILQ_INSERT_TAIL(&rman_head, rm, rm_link);
111 	mtx_unlock(&rman_mtx);
112 	return 0;
113 }
114 
115 /*
116  * NB: this interface is not robust against programming errors which
117  * add multiple copies of the same region.
118  */
119 int
120 rman_manage_region(struct rman *rm, u_long start, u_long end)
121 {
122 	struct resource *r, *s;
123 
124 	r = malloc(sizeof *r, M_RMAN, M_NOWAIT | M_ZERO);
125 	if (r == 0)
126 		return ENOMEM;
127 	r->r_start = start;
128 	r->r_end = end;
129 	r->r_rm = rm;
130 
131 	mtx_lock(rm->rm_mtx);
132 	for (s = TAILQ_FIRST(&rm->rm_list);
133 	     s && s->r_end < r->r_start;
134 	     s = TAILQ_NEXT(s, r_link))
135 		;
136 
137 	if (s == NULL) {
138 		TAILQ_INSERT_TAIL(&rm->rm_list, r, r_link);
139 	} else {
140 		TAILQ_INSERT_BEFORE(s, r, r_link);
141 	}
142 
143 	mtx_unlock(rm->rm_mtx);
144 	return 0;
145 }
146 
147 int
148 rman_fini(struct rman *rm)
149 {
150 	struct resource *r;
151 
152 	mtx_lock(rm->rm_mtx);
153 	TAILQ_FOREACH(r, &rm->rm_list, r_link) {
154 		if (r->r_flags & RF_ALLOCATED) {
155 			mtx_unlock(rm->rm_mtx);
156 			return EBUSY;
157 		}
158 	}
159 
160 	/*
161 	 * There really should only be one of these if we are in this
162 	 * state and the code is working properly, but it can't hurt.
163 	 */
164 	while (!TAILQ_EMPTY(&rm->rm_list)) {
165 		r = TAILQ_FIRST(&rm->rm_list);
166 		TAILQ_REMOVE(&rm->rm_list, r, r_link);
167 		free(r, M_RMAN);
168 	}
169 	mtx_unlock(rm->rm_mtx);
170 	mtx_lock(&rman_mtx);
171 	TAILQ_REMOVE(&rman_head, rm, rm_link);
172 	mtx_unlock(&rman_mtx);
173 	mtx_destroy(rm->rm_mtx);
174 	free(rm->rm_mtx, M_RMAN);
175 
176 	return 0;
177 }
178 
179 struct resource *
180 rman_reserve_resource_bound(struct rman *rm, u_long start, u_long end,
181 		      u_long count, u_long bound,  u_int flags,
182 		      struct device *dev)
183 {
184 	u_int	want_activate;
185 	struct	resource *r, *s, *rv;
186 	u_long	rstart, rend, amask, bmask;
187 
188 	rv = 0;
189 
190 	DPRINTF(("rman_reserve_resource: <%s> request: [%#lx, %#lx], length "
191 	       "%#lx, flags %u, device %s\n", rm->rm_descr, start, end, count,
192 	       flags, dev == NULL ? "<null>" : device_get_nameunit(dev)));
193 	want_activate = (flags & RF_ACTIVE);
194 	flags &= ~RF_ACTIVE;
195 
196 	mtx_lock(rm->rm_mtx);
197 
198 	for (r = TAILQ_FIRST(&rm->rm_list);
199 	     r && r->r_end < start;
200 	     r = TAILQ_NEXT(r, r_link))
201 		;
202 
203 	if (r == NULL) {
204 		DPRINTF(("could not find a region\n"));
205 		goto out;
206 	}
207 
208 	amask = (1ul << RF_ALIGNMENT(flags)) - 1;
209 	/* If bound is 0, bmask will also be 0 */
210 	bmask = ~(bound - 1);
211 	/*
212 	 * First try to find an acceptable totally-unshared region.
213 	 */
214 	for (s = r; s; s = TAILQ_NEXT(s, r_link)) {
215 		DPRINTF(("considering [%#lx, %#lx]\n", s->r_start, s->r_end));
216 		if (s->r_start > end) {
217 			DPRINTF(("s->r_start (%#lx) > end (%#lx)\n", s->r_start, end));
218 			break;
219 		}
220 		if (s->r_flags & RF_ALLOCATED) {
221 			DPRINTF(("region is allocated\n"));
222 			continue;
223 		}
224 		rstart = ulmax(s->r_start, start);
225 		/*
226 		 * Try to find a region by adjusting to boundary and alignment
227 		 * until both conditions are satisfied. This is not an optimal
228 		 * algorithm, but in most cases it isn't really bad, either.
229 		 */
230 		do {
231 			rstart = (rstart + amask) & ~amask;
232 			if (((rstart ^ (rstart + count - 1)) & bmask) != 0)
233 				rstart += bound - (rstart & ~bmask);
234 		} while ((rstart & amask) != 0 && rstart < end &&
235 		    rstart < s->r_end);
236 		rend = ulmin(s->r_end, ulmax(rstart + count, end));
237 		if (rstart > rend) {
238 			DPRINTF(("adjusted start exceeds end\n"));
239 			continue;
240 		}
241 		DPRINTF(("truncated region: [%#lx, %#lx]; size %#lx (requested %#lx)\n",
242 		       rstart, rend, (rend - rstart + 1), count));
243 
244 		if ((rend - rstart + 1) >= count) {
245 			DPRINTF(("candidate region: [%#lx, %#lx], size %#lx\n",
246 			       rend, rstart, (rend - rstart + 1)));
247 			if ((s->r_end - s->r_start + 1) == count) {
248 				DPRINTF(("candidate region is entire chunk\n"));
249 				rv = s;
250 				rv->r_flags |= RF_ALLOCATED | flags;
251 				rv->r_dev = dev;
252 				goto out;
253 			}
254 
255 			/*
256 			 * If s->r_start < rstart and
257 			 *    s->r_end > rstart + count - 1, then
258 			 * we need to split the region into three pieces
259 			 * (the middle one will get returned to the user).
260 			 * Otherwise, we are allocating at either the
261 			 * beginning or the end of s, so we only need to
262 			 * split it in two.  The first case requires
263 			 * two new allocations; the second requires but one.
264 			 */
265 			rv = malloc(sizeof *rv, M_RMAN, M_NOWAIT | M_ZERO);
266 			if (rv == 0)
267 				goto out;
268 			rv->r_start = rstart;
269 			rv->r_end = rstart + count - 1;
270 			rv->r_flags = flags | RF_ALLOCATED;
271 			rv->r_dev = dev;
272 			rv->r_rm = rm;
273 
274 			if (s->r_start < rv->r_start && s->r_end > rv->r_end) {
275 				DPRINTF(("splitting region in three parts: "
276 				       "[%#lx, %#lx]; [%#lx, %#lx]; [%#lx, %#lx]\n",
277 				       s->r_start, rv->r_start - 1,
278 				       rv->r_start, rv->r_end,
279 				       rv->r_end + 1, s->r_end));
280 				/*
281 				 * We are allocating in the middle.
282 				 */
283 				r = malloc(sizeof *r, M_RMAN, M_NOWAIT|M_ZERO);
284 				if (r == 0) {
285 					free(rv, M_RMAN);
286 					rv = 0;
287 					goto out;
288 				}
289 				r->r_start = rv->r_end + 1;
290 				r->r_end = s->r_end;
291 				r->r_flags = s->r_flags;
292 				r->r_rm = rm;
293 				s->r_end = rv->r_start - 1;
294 				TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
295 						     r_link);
296 				TAILQ_INSERT_AFTER(&rm->rm_list, rv, r,
297 						     r_link);
298 			} else if (s->r_start == rv->r_start) {
299 				DPRINTF(("allocating from the beginning\n"));
300 				/*
301 				 * We are allocating at the beginning.
302 				 */
303 				s->r_start = rv->r_end + 1;
304 				TAILQ_INSERT_BEFORE(s, rv, r_link);
305 			} else {
306 				DPRINTF(("allocating at the end\n"));
307 				/*
308 				 * We are allocating at the end.
309 				 */
310 				s->r_end = rv->r_start - 1;
311 				TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
312 						     r_link);
313 			}
314 			goto out;
315 		}
316 	}
317 
318 	/*
319 	 * Now find an acceptable shared region, if the client's requirements
320 	 * allow sharing.  By our implementation restriction, a candidate
321 	 * region must match exactly by both size and sharing type in order
322 	 * to be considered compatible with the client's request.  (The
323 	 * former restriction could probably be lifted without too much
324 	 * additional work, but this does not seem warranted.)
325 	 */
326 	DPRINTF(("no unshared regions found\n"));
327 	if ((flags & (RF_SHAREABLE | RF_TIMESHARE)) == 0)
328 		goto out;
329 
330 	for (s = r; s; s = TAILQ_NEXT(s, r_link)) {
331 		if (s->r_start > end)
332 			break;
333 		if ((s->r_flags & flags) != flags)
334 			continue;
335 		rstart = ulmax(s->r_start, start);
336 		rend = ulmin(s->r_end, ulmax(start + count, end));
337 		if (s->r_start >= start && s->r_end <= end
338 		    && (s->r_end - s->r_start + 1) == count &&
339 		    (s->r_start & amask) == 0 &&
340 		    ((s->r_start ^ s->r_end) & bmask) == 0) {
341 			rv = malloc(sizeof *rv, M_RMAN, M_NOWAIT | M_ZERO);
342 			if (rv == 0)
343 				goto out;
344 			rv->r_start = s->r_start;
345 			rv->r_end = s->r_end;
346 			rv->r_flags = s->r_flags &
347 				(RF_ALLOCATED | RF_SHAREABLE | RF_TIMESHARE);
348 			rv->r_dev = dev;
349 			rv->r_rm = rm;
350 			if (s->r_sharehead == 0) {
351 				s->r_sharehead = malloc(sizeof *s->r_sharehead,
352 						M_RMAN, M_NOWAIT | M_ZERO);
353 				if (s->r_sharehead == 0) {
354 					free(rv, M_RMAN);
355 					rv = 0;
356 					goto out;
357 				}
358 				LIST_INIT(s->r_sharehead);
359 				LIST_INSERT_HEAD(s->r_sharehead, s,
360 						 r_sharelink);
361 				s->r_flags |= RF_FIRSTSHARE;
362 			}
363 			rv->r_sharehead = s->r_sharehead;
364 			LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink);
365 			goto out;
366 		}
367 	}
368 
369 	/*
370 	 * We couldn't find anything.
371 	 */
372 out:
373 	/*
374 	 * If the user specified RF_ACTIVE in the initial flags,
375 	 * which is reflected in `want_activate', we attempt to atomically
376 	 * activate the resource.  If this fails, we release the resource
377 	 * and indicate overall failure.  (This behavior probably doesn't
378 	 * make sense for RF_TIMESHARE-type resources.)
379 	 */
380 	if (rv && want_activate) {
381 		struct resource *whohas;
382 		if (int_rman_activate_resource(rm, rv, &whohas)) {
383 			int_rman_release_resource(rm, rv);
384 			rv = 0;
385 		}
386 	}
387 
388 	mtx_unlock(rm->rm_mtx);
389 	return (rv);
390 }
391 
392 struct resource *
393 rman_reserve_resource(struct rman *rm, u_long start, u_long end, u_long count,
394 		      u_int flags, struct device *dev)
395 {
396 
397 	return (rman_reserve_resource_bound(rm, start, end, count, 0, flags,
398 	    dev));
399 }
400 
401 static int
402 int_rman_activate_resource(struct rman *rm, struct resource *r,
403 			   struct resource **whohas)
404 {
405 	struct resource *s;
406 	int ok;
407 
408 	/*
409 	 * If we are not timesharing, then there is nothing much to do.
410 	 * If we already have the resource, then there is nothing at all to do.
411 	 * If we are not on a sharing list with anybody else, then there is
412 	 * little to do.
413 	 */
414 	if ((r->r_flags & RF_TIMESHARE) == 0
415 	    || (r->r_flags & RF_ACTIVE) != 0
416 	    || r->r_sharehead == 0) {
417 		r->r_flags |= RF_ACTIVE;
418 		return 0;
419 	}
420 
421 	ok = 1;
422 	for (s = LIST_FIRST(r->r_sharehead); s && ok;
423 	     s = LIST_NEXT(s, r_sharelink)) {
424 		if ((s->r_flags & RF_ACTIVE) != 0) {
425 			ok = 0;
426 			*whohas = s;
427 		}
428 	}
429 	if (ok) {
430 		r->r_flags |= RF_ACTIVE;
431 		return 0;
432 	}
433 	return EBUSY;
434 }
435 
436 int
437 rman_activate_resource(struct resource *r)
438 {
439 	int rv;
440 	struct resource *whohas;
441 	struct rman *rm;
442 
443 	rm = r->r_rm;
444 	mtx_lock(rm->rm_mtx);
445 	rv = int_rman_activate_resource(rm, r, &whohas);
446 	mtx_unlock(rm->rm_mtx);
447 	return rv;
448 }
449 
450 int
451 rman_await_resource(struct resource *r, int pri, int timo)
452 {
453 	int	rv;
454 	struct	resource *whohas;
455 	struct	rman *rm;
456 
457 	rm = r->r_rm;
458 	mtx_lock(rm->rm_mtx);
459 	for (;;) {
460 		rv = int_rman_activate_resource(rm, r, &whohas);
461 		if (rv != EBUSY)
462 			return (rv);	/* returns with mutex held */
463 
464 		if (r->r_sharehead == 0)
465 			panic("rman_await_resource");
466 		whohas->r_flags |= RF_WANTED;
467 		rv = msleep(r->r_sharehead, rm->rm_mtx, pri, "rmwait", timo);
468 		if (rv) {
469 			mtx_unlock(rm->rm_mtx);
470 			return (rv);
471 		}
472 	}
473 }
474 
475 static int
476 int_rman_deactivate_resource(struct resource *r)
477 {
478 	struct	rman *rm;
479 
480 	rm = r->r_rm;
481 	r->r_flags &= ~RF_ACTIVE;
482 	if (r->r_flags & RF_WANTED) {
483 		r->r_flags &= ~RF_WANTED;
484 		wakeup(r->r_sharehead);
485 	}
486 	return 0;
487 }
488 
489 int
490 rman_deactivate_resource(struct resource *r)
491 {
492 	struct	rman *rm;
493 
494 	rm = r->r_rm;
495 	mtx_lock(rm->rm_mtx);
496 	int_rman_deactivate_resource(r);
497 	mtx_unlock(rm->rm_mtx);
498 	return 0;
499 }
500 
501 static int
502 int_rman_release_resource(struct rman *rm, struct resource *r)
503 {
504 	struct	resource *s, *t;
505 
506 	if (r->r_flags & RF_ACTIVE)
507 		int_rman_deactivate_resource(r);
508 
509 	/*
510 	 * Check for a sharing list first.  If there is one, then we don't
511 	 * have to think as hard.
512 	 */
513 	if (r->r_sharehead) {
514 		/*
515 		 * If a sharing list exists, then we know there are at
516 		 * least two sharers.
517 		 *
518 		 * If we are in the main circleq, appoint someone else.
519 		 */
520 		LIST_REMOVE(r, r_sharelink);
521 		s = LIST_FIRST(r->r_sharehead);
522 		if (r->r_flags & RF_FIRSTSHARE) {
523 			s->r_flags |= RF_FIRSTSHARE;
524 			TAILQ_INSERT_BEFORE(r, s, r_link);
525 			TAILQ_REMOVE(&rm->rm_list, r, r_link);
526 		}
527 
528 		/*
529 		 * Make sure that the sharing list goes away completely
530 		 * if the resource is no longer being shared at all.
531 		 */
532 		if (LIST_NEXT(s, r_sharelink) == 0) {
533 			free(s->r_sharehead, M_RMAN);
534 			s->r_sharehead = 0;
535 			s->r_flags &= ~RF_FIRSTSHARE;
536 		}
537 		goto out;
538 	}
539 
540 	/*
541 	 * Look at the adjacent resources in the list and see if our
542 	 * segment can be merged with any of them.
543 	 */
544 	s = TAILQ_PREV(r, resource_head, r_link);
545 	t = TAILQ_NEXT(r, r_link);
546 
547 	if (s != NULL && (s->r_flags & RF_ALLOCATED) == 0
548 	    && t != NULL && (t->r_flags & RF_ALLOCATED) == 0) {
549 		/*
550 		 * Merge all three segments.
551 		 */
552 		s->r_end = t->r_end;
553 		TAILQ_REMOVE(&rm->rm_list, r, r_link);
554 		TAILQ_REMOVE(&rm->rm_list, t, r_link);
555 		free(t, M_RMAN);
556 	} else if (s != NULL && (s->r_flags & RF_ALLOCATED) == 0) {
557 		/*
558 		 * Merge previous segment with ours.
559 		 */
560 		s->r_end = r->r_end;
561 		TAILQ_REMOVE(&rm->rm_list, r, r_link);
562 	} else if (t != NULL && (t->r_flags & RF_ALLOCATED) == 0) {
563 		/*
564 		 * Merge next segment with ours.
565 		 */
566 		t->r_start = r->r_start;
567 		TAILQ_REMOVE(&rm->rm_list, r, r_link);
568 	} else {
569 		/*
570 		 * At this point, we know there is nothing we
571 		 * can potentially merge with, because on each
572 		 * side, there is either nothing there or what is
573 		 * there is still allocated.  In that case, we don't
574 		 * want to remove r from the list; we simply want to
575 		 * change it to an unallocated region and return
576 		 * without freeing anything.
577 		 */
578 		r->r_flags &= ~RF_ALLOCATED;
579 		return 0;
580 	}
581 
582 out:
583 	free(r, M_RMAN);
584 	return 0;
585 }
586 
587 int
588 rman_release_resource(struct resource *r)
589 {
590 	int	rv;
591 	struct	rman *rm = r->r_rm;
592 
593 	mtx_lock(rm->rm_mtx);
594 	rv = int_rman_release_resource(rm, r);
595 	mtx_unlock(rm->rm_mtx);
596 	return (rv);
597 }
598 
599 uint32_t
600 rman_make_alignment_flags(uint32_t size)
601 {
602 	int	i;
603 
604 	/*
605 	 * Find the hightest bit set, and add one if more than one bit
606 	 * set.  We're effectively computing the ceil(log2(size)) here.
607 	 */
608 	for (i = 31; i > 0; i--)
609 		if ((1 << i) & size)
610 			break;
611 	if (~(1 << i) & size)
612 		i++;
613 
614 	return(RF_ALIGNMENT_LOG2(i));
615 }
616 
617 u_long
618 rman_get_start(struct resource *r)
619 {
620 	return (r->r_start);
621 }
622 
623 u_long
624 rman_get_end(struct resource *r)
625 {
626 	return (r->r_end);
627 }
628 
629 u_long
630 rman_get_size(struct resource *r)
631 {
632 	return (r->r_end - r->r_start + 1);
633 }
634 
635 u_int
636 rman_get_flags(struct resource *r)
637 {
638 	return (r->r_flags);
639 }
640 
641 void
642 rman_set_virtual(struct resource *r, void *v)
643 {
644 	r->r_virtual = v;
645 }
646 
647 void *
648 rman_get_virtual(struct resource *r)
649 {
650 	return (r->r_virtual);
651 }
652 
653 void
654 rman_set_bustag(struct resource *r, bus_space_tag_t t)
655 {
656 	r->r_bustag = t;
657 }
658 
659 bus_space_tag_t
660 rman_get_bustag(struct resource *r)
661 {
662 	return (r->r_bustag);
663 }
664 
665 void
666 rman_set_bushandle(struct resource *r, bus_space_handle_t h)
667 {
668 	r->r_bushandle = h;
669 }
670 
671 bus_space_handle_t
672 rman_get_bushandle(struct resource *r)
673 {
674 	return (r->r_bushandle);
675 }
676 
677 void
678 rman_set_rid(struct resource *r, int rid)
679 {
680 	r->r_rid = rid;
681 }
682 
683 int
684 rman_get_rid(struct resource *r)
685 {
686 	return (r->r_rid);
687 }
688 
689 struct device *
690 rman_get_device(struct resource *r)
691 {
692 	return (r->r_dev);
693 }
694