1 /* 2 * Copyright 1998 Massachusetts Institute of Technology 3 * 4 * Permission to use, copy, modify, and distribute this software and 5 * its documentation for any purpose and without fee is hereby 6 * granted, provided that both the above copyright notice and this 7 * permission notice appear in all copies, that both the above 8 * copyright notice and this permission notice appear in all 9 * supporting documentation, and that the name of M.I.T. not be used 10 * in advertising or publicity pertaining to distribution of the 11 * software without specific, written prior permission. M.I.T. makes 12 * no representations about the suitability of this software for any 13 * purpose. It is provided "as is" without express or implied 14 * warranty. 15 * 16 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS 17 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE, 18 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT 20 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF 23 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 25 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 26 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $FreeBSD$ 30 */ 31 32 /* 33 * The kernel resource manager. This code is responsible for keeping track 34 * of hardware resources which are apportioned out to various drivers. 35 * It does not actually assign those resources, and it is not expected 36 * that end-device drivers will call into this code directly. Rather, 37 * the code which implements the buses that those devices are attached to, 38 * and the code which manages CPU resources, will call this code, and the 39 * end-device drivers will make upcalls to that code to actually perform 40 * the allocation. 41 * 42 * There are two sorts of resources managed by this code. The first is 43 * the more familiar array (RMAN_ARRAY) type; resources in this class 44 * consist of a sequence of individually-allocatable objects which have 45 * been numbered in some well-defined order. Most of the resources 46 * are of this type, as it is the most familiar. The second type is 47 * called a gauge (RMAN_GAUGE), and models fungible resources (i.e., 48 * resources in which each instance is indistinguishable from every 49 * other instance). The principal anticipated application of gauges 50 * is in the context of power consumption, where a bus may have a specific 51 * power budget which all attached devices share. RMAN_GAUGE is not 52 * implemented yet. 53 * 54 * For array resources, we make one simplifying assumption: two clients 55 * sharing the same resource must use the same range of indices. That 56 * is to say, sharing of overlapping-but-not-identical regions is not 57 * permitted. 58 */ 59 60 #include <sys/param.h> 61 #include <sys/systm.h> 62 #include <sys/kernel.h> 63 #include <sys/lock.h> 64 #include <sys/malloc.h> 65 #include <sys/mutex.h> 66 #include <sys/bus.h> /* XXX debugging */ 67 #include <machine/bus.h> 68 #include <sys/rman.h> 69 #include <sys/sysctl.h> 70 71 int rman_debug = 0; 72 TUNABLE_INT("debug.rman_debug", &rman_debug); 73 SYSCTL_INT(_debug, OID_AUTO, rman_debug, CTLFLAG_RW, 74 &rman_debug, 0, "rman debug"); 75 76 #define DPRINTF(params) if (rman_debug) printf params 77 78 static MALLOC_DEFINE(M_RMAN, "rman", "Resource manager"); 79 80 struct rman_head rman_head; 81 static struct mtx rman_mtx; /* mutex to protect rman_head */ 82 static int int_rman_activate_resource(struct rman *rm, struct resource *r, 83 struct resource **whohas); 84 static int int_rman_deactivate_resource(struct resource *r); 85 static int int_rman_release_resource(struct rman *rm, struct resource *r); 86 87 int 88 rman_init(struct rman *rm) 89 { 90 static int once; 91 92 if (once == 0) { 93 once = 1; 94 TAILQ_INIT(&rman_head); 95 mtx_init(&rman_mtx, "rman head", NULL, MTX_DEF); 96 } 97 98 if (rm->rm_type == RMAN_UNINIT) 99 panic("rman_init"); 100 if (rm->rm_type == RMAN_GAUGE) 101 panic("implement RMAN_GAUGE"); 102 103 TAILQ_INIT(&rm->rm_list); 104 rm->rm_mtx = malloc(sizeof *rm->rm_mtx, M_RMAN, M_NOWAIT | M_ZERO); 105 if (rm->rm_mtx == 0) 106 return ENOMEM; 107 mtx_init(rm->rm_mtx, "rman", NULL, MTX_DEF); 108 109 mtx_lock(&rman_mtx); 110 TAILQ_INSERT_TAIL(&rman_head, rm, rm_link); 111 mtx_unlock(&rman_mtx); 112 return 0; 113 } 114 115 /* 116 * NB: this interface is not robust against programming errors which 117 * add multiple copies of the same region. 118 */ 119 int 120 rman_manage_region(struct rman *rm, u_long start, u_long end) 121 { 122 struct resource *r, *s; 123 124 r = malloc(sizeof *r, M_RMAN, M_NOWAIT | M_ZERO); 125 if (r == 0) 126 return ENOMEM; 127 r->r_start = start; 128 r->r_end = end; 129 r->r_rm = rm; 130 131 mtx_lock(rm->rm_mtx); 132 for (s = TAILQ_FIRST(&rm->rm_list); 133 s && s->r_end < r->r_start; 134 s = TAILQ_NEXT(s, r_link)) 135 ; 136 137 if (s == NULL) { 138 TAILQ_INSERT_TAIL(&rm->rm_list, r, r_link); 139 } else { 140 TAILQ_INSERT_BEFORE(s, r, r_link); 141 } 142 143 mtx_unlock(rm->rm_mtx); 144 return 0; 145 } 146 147 int 148 rman_fini(struct rman *rm) 149 { 150 struct resource *r; 151 152 mtx_lock(rm->rm_mtx); 153 TAILQ_FOREACH(r, &rm->rm_list, r_link) { 154 if (r->r_flags & RF_ALLOCATED) { 155 mtx_unlock(rm->rm_mtx); 156 return EBUSY; 157 } 158 } 159 160 /* 161 * There really should only be one of these if we are in this 162 * state and the code is working properly, but it can't hurt. 163 */ 164 while (!TAILQ_EMPTY(&rm->rm_list)) { 165 r = TAILQ_FIRST(&rm->rm_list); 166 TAILQ_REMOVE(&rm->rm_list, r, r_link); 167 free(r, M_RMAN); 168 } 169 mtx_unlock(rm->rm_mtx); 170 mtx_lock(&rman_mtx); 171 TAILQ_REMOVE(&rman_head, rm, rm_link); 172 mtx_unlock(&rman_mtx); 173 mtx_destroy(rm->rm_mtx); 174 free(rm->rm_mtx, M_RMAN); 175 176 return 0; 177 } 178 179 struct resource * 180 rman_reserve_resource_bound(struct rman *rm, u_long start, u_long end, 181 u_long count, u_long bound, u_int flags, 182 struct device *dev) 183 { 184 u_int want_activate; 185 struct resource *r, *s, *rv; 186 u_long rstart, rend, amask, bmask; 187 188 rv = 0; 189 190 DPRINTF(("rman_reserve_resource: <%s> request: [%#lx, %#lx], length " 191 "%#lx, flags %u, device %s\n", rm->rm_descr, start, end, count, 192 flags, dev == NULL ? "<null>" : device_get_nameunit(dev))); 193 want_activate = (flags & RF_ACTIVE); 194 flags &= ~RF_ACTIVE; 195 196 mtx_lock(rm->rm_mtx); 197 198 for (r = TAILQ_FIRST(&rm->rm_list); 199 r && r->r_end < start; 200 r = TAILQ_NEXT(r, r_link)) 201 ; 202 203 if (r == NULL) { 204 DPRINTF(("could not find a region\n")); 205 goto out; 206 } 207 208 amask = (1ul << RF_ALIGNMENT(flags)) - 1; 209 /* If bound is 0, bmask will also be 0 */ 210 bmask = ~(bound - 1); 211 /* 212 * First try to find an acceptable totally-unshared region. 213 */ 214 for (s = r; s; s = TAILQ_NEXT(s, r_link)) { 215 DPRINTF(("considering [%#lx, %#lx]\n", s->r_start, s->r_end)); 216 if (s->r_start > end) { 217 DPRINTF(("s->r_start (%#lx) > end (%#lx)\n", s->r_start, end)); 218 break; 219 } 220 if (s->r_flags & RF_ALLOCATED) { 221 DPRINTF(("region is allocated\n")); 222 continue; 223 } 224 rstart = ulmax(s->r_start, start); 225 /* 226 * Try to find a region by adjusting to boundary and alignment 227 * until both conditions are satisfied. This is not an optimal 228 * algorithm, but in most cases it isn't really bad, either. 229 */ 230 do { 231 rstart = (rstart + amask) & ~amask; 232 if (((rstart ^ (rstart + count - 1)) & bmask) != 0) 233 rstart += bound - (rstart & ~bmask); 234 } while ((rstart & amask) != 0 && rstart < end && 235 rstart < s->r_end); 236 rend = ulmin(s->r_end, ulmax(rstart + count, end)); 237 if (rstart > rend) { 238 DPRINTF(("adjusted start exceeds end\n")); 239 continue; 240 } 241 DPRINTF(("truncated region: [%#lx, %#lx]; size %#lx (requested %#lx)\n", 242 rstart, rend, (rend - rstart + 1), count)); 243 244 if ((rend - rstart + 1) >= count) { 245 DPRINTF(("candidate region: [%#lx, %#lx], size %#lx\n", 246 rend, rstart, (rend - rstart + 1))); 247 if ((s->r_end - s->r_start + 1) == count) { 248 DPRINTF(("candidate region is entire chunk\n")); 249 rv = s; 250 rv->r_flags |= RF_ALLOCATED | flags; 251 rv->r_dev = dev; 252 goto out; 253 } 254 255 /* 256 * If s->r_start < rstart and 257 * s->r_end > rstart + count - 1, then 258 * we need to split the region into three pieces 259 * (the middle one will get returned to the user). 260 * Otherwise, we are allocating at either the 261 * beginning or the end of s, so we only need to 262 * split it in two. The first case requires 263 * two new allocations; the second requires but one. 264 */ 265 rv = malloc(sizeof *rv, M_RMAN, M_NOWAIT | M_ZERO); 266 if (rv == 0) 267 goto out; 268 rv->r_start = rstart; 269 rv->r_end = rstart + count - 1; 270 rv->r_flags = flags | RF_ALLOCATED; 271 rv->r_dev = dev; 272 rv->r_rm = rm; 273 274 if (s->r_start < rv->r_start && s->r_end > rv->r_end) { 275 DPRINTF(("splitting region in three parts: " 276 "[%#lx, %#lx]; [%#lx, %#lx]; [%#lx, %#lx]\n", 277 s->r_start, rv->r_start - 1, 278 rv->r_start, rv->r_end, 279 rv->r_end + 1, s->r_end)); 280 /* 281 * We are allocating in the middle. 282 */ 283 r = malloc(sizeof *r, M_RMAN, M_NOWAIT|M_ZERO); 284 if (r == 0) { 285 free(rv, M_RMAN); 286 rv = 0; 287 goto out; 288 } 289 r->r_start = rv->r_end + 1; 290 r->r_end = s->r_end; 291 r->r_flags = s->r_flags; 292 r->r_rm = rm; 293 s->r_end = rv->r_start - 1; 294 TAILQ_INSERT_AFTER(&rm->rm_list, s, rv, 295 r_link); 296 TAILQ_INSERT_AFTER(&rm->rm_list, rv, r, 297 r_link); 298 } else if (s->r_start == rv->r_start) { 299 DPRINTF(("allocating from the beginning\n")); 300 /* 301 * We are allocating at the beginning. 302 */ 303 s->r_start = rv->r_end + 1; 304 TAILQ_INSERT_BEFORE(s, rv, r_link); 305 } else { 306 DPRINTF(("allocating at the end\n")); 307 /* 308 * We are allocating at the end. 309 */ 310 s->r_end = rv->r_start - 1; 311 TAILQ_INSERT_AFTER(&rm->rm_list, s, rv, 312 r_link); 313 } 314 goto out; 315 } 316 } 317 318 /* 319 * Now find an acceptable shared region, if the client's requirements 320 * allow sharing. By our implementation restriction, a candidate 321 * region must match exactly by both size and sharing type in order 322 * to be considered compatible with the client's request. (The 323 * former restriction could probably be lifted without too much 324 * additional work, but this does not seem warranted.) 325 */ 326 DPRINTF(("no unshared regions found\n")); 327 if ((flags & (RF_SHAREABLE | RF_TIMESHARE)) == 0) 328 goto out; 329 330 for (s = r; s; s = TAILQ_NEXT(s, r_link)) { 331 if (s->r_start > end) 332 break; 333 if ((s->r_flags & flags) != flags) 334 continue; 335 rstart = ulmax(s->r_start, start); 336 rend = ulmin(s->r_end, ulmax(start + count, end)); 337 if (s->r_start >= start && s->r_end <= end 338 && (s->r_end - s->r_start + 1) == count && 339 (s->r_start & amask) == 0 && 340 ((s->r_start ^ s->r_end) & bmask) == 0) { 341 rv = malloc(sizeof *rv, M_RMAN, M_NOWAIT | M_ZERO); 342 if (rv == 0) 343 goto out; 344 rv->r_start = s->r_start; 345 rv->r_end = s->r_end; 346 rv->r_flags = s->r_flags & 347 (RF_ALLOCATED | RF_SHAREABLE | RF_TIMESHARE); 348 rv->r_dev = dev; 349 rv->r_rm = rm; 350 if (s->r_sharehead == 0) { 351 s->r_sharehead = malloc(sizeof *s->r_sharehead, 352 M_RMAN, M_NOWAIT | M_ZERO); 353 if (s->r_sharehead == 0) { 354 free(rv, M_RMAN); 355 rv = 0; 356 goto out; 357 } 358 LIST_INIT(s->r_sharehead); 359 LIST_INSERT_HEAD(s->r_sharehead, s, 360 r_sharelink); 361 s->r_flags |= RF_FIRSTSHARE; 362 } 363 rv->r_sharehead = s->r_sharehead; 364 LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink); 365 goto out; 366 } 367 } 368 369 /* 370 * We couldn't find anything. 371 */ 372 out: 373 /* 374 * If the user specified RF_ACTIVE in the initial flags, 375 * which is reflected in `want_activate', we attempt to atomically 376 * activate the resource. If this fails, we release the resource 377 * and indicate overall failure. (This behavior probably doesn't 378 * make sense for RF_TIMESHARE-type resources.) 379 */ 380 if (rv && want_activate) { 381 struct resource *whohas; 382 if (int_rman_activate_resource(rm, rv, &whohas)) { 383 int_rman_release_resource(rm, rv); 384 rv = 0; 385 } 386 } 387 388 mtx_unlock(rm->rm_mtx); 389 return (rv); 390 } 391 392 struct resource * 393 rman_reserve_resource(struct rman *rm, u_long start, u_long end, u_long count, 394 u_int flags, struct device *dev) 395 { 396 397 return (rman_reserve_resource_bound(rm, start, end, count, 0, flags, 398 dev)); 399 } 400 401 static int 402 int_rman_activate_resource(struct rman *rm, struct resource *r, 403 struct resource **whohas) 404 { 405 struct resource *s; 406 int ok; 407 408 /* 409 * If we are not timesharing, then there is nothing much to do. 410 * If we already have the resource, then there is nothing at all to do. 411 * If we are not on a sharing list with anybody else, then there is 412 * little to do. 413 */ 414 if ((r->r_flags & RF_TIMESHARE) == 0 415 || (r->r_flags & RF_ACTIVE) != 0 416 || r->r_sharehead == 0) { 417 r->r_flags |= RF_ACTIVE; 418 return 0; 419 } 420 421 ok = 1; 422 for (s = LIST_FIRST(r->r_sharehead); s && ok; 423 s = LIST_NEXT(s, r_sharelink)) { 424 if ((s->r_flags & RF_ACTIVE) != 0) { 425 ok = 0; 426 *whohas = s; 427 } 428 } 429 if (ok) { 430 r->r_flags |= RF_ACTIVE; 431 return 0; 432 } 433 return EBUSY; 434 } 435 436 int 437 rman_activate_resource(struct resource *r) 438 { 439 int rv; 440 struct resource *whohas; 441 struct rman *rm; 442 443 rm = r->r_rm; 444 mtx_lock(rm->rm_mtx); 445 rv = int_rman_activate_resource(rm, r, &whohas); 446 mtx_unlock(rm->rm_mtx); 447 return rv; 448 } 449 450 int 451 rman_await_resource(struct resource *r, int pri, int timo) 452 { 453 int rv; 454 struct resource *whohas; 455 struct rman *rm; 456 457 rm = r->r_rm; 458 mtx_lock(rm->rm_mtx); 459 for (;;) { 460 rv = int_rman_activate_resource(rm, r, &whohas); 461 if (rv != EBUSY) 462 return (rv); /* returns with mutex held */ 463 464 if (r->r_sharehead == 0) 465 panic("rman_await_resource"); 466 whohas->r_flags |= RF_WANTED; 467 rv = msleep(r->r_sharehead, rm->rm_mtx, pri, "rmwait", timo); 468 if (rv) { 469 mtx_unlock(rm->rm_mtx); 470 return (rv); 471 } 472 } 473 } 474 475 static int 476 int_rman_deactivate_resource(struct resource *r) 477 { 478 struct rman *rm; 479 480 rm = r->r_rm; 481 r->r_flags &= ~RF_ACTIVE; 482 if (r->r_flags & RF_WANTED) { 483 r->r_flags &= ~RF_WANTED; 484 wakeup(r->r_sharehead); 485 } 486 return 0; 487 } 488 489 int 490 rman_deactivate_resource(struct resource *r) 491 { 492 struct rman *rm; 493 494 rm = r->r_rm; 495 mtx_lock(rm->rm_mtx); 496 int_rman_deactivate_resource(r); 497 mtx_unlock(rm->rm_mtx); 498 return 0; 499 } 500 501 static int 502 int_rman_release_resource(struct rman *rm, struct resource *r) 503 { 504 struct resource *s, *t; 505 506 if (r->r_flags & RF_ACTIVE) 507 int_rman_deactivate_resource(r); 508 509 /* 510 * Check for a sharing list first. If there is one, then we don't 511 * have to think as hard. 512 */ 513 if (r->r_sharehead) { 514 /* 515 * If a sharing list exists, then we know there are at 516 * least two sharers. 517 * 518 * If we are in the main circleq, appoint someone else. 519 */ 520 LIST_REMOVE(r, r_sharelink); 521 s = LIST_FIRST(r->r_sharehead); 522 if (r->r_flags & RF_FIRSTSHARE) { 523 s->r_flags |= RF_FIRSTSHARE; 524 TAILQ_INSERT_BEFORE(r, s, r_link); 525 TAILQ_REMOVE(&rm->rm_list, r, r_link); 526 } 527 528 /* 529 * Make sure that the sharing list goes away completely 530 * if the resource is no longer being shared at all. 531 */ 532 if (LIST_NEXT(s, r_sharelink) == 0) { 533 free(s->r_sharehead, M_RMAN); 534 s->r_sharehead = 0; 535 s->r_flags &= ~RF_FIRSTSHARE; 536 } 537 goto out; 538 } 539 540 /* 541 * Look at the adjacent resources in the list and see if our 542 * segment can be merged with any of them. 543 */ 544 s = TAILQ_PREV(r, resource_head, r_link); 545 t = TAILQ_NEXT(r, r_link); 546 547 if (s != NULL && (s->r_flags & RF_ALLOCATED) == 0 548 && t != NULL && (t->r_flags & RF_ALLOCATED) == 0) { 549 /* 550 * Merge all three segments. 551 */ 552 s->r_end = t->r_end; 553 TAILQ_REMOVE(&rm->rm_list, r, r_link); 554 TAILQ_REMOVE(&rm->rm_list, t, r_link); 555 free(t, M_RMAN); 556 } else if (s != NULL && (s->r_flags & RF_ALLOCATED) == 0) { 557 /* 558 * Merge previous segment with ours. 559 */ 560 s->r_end = r->r_end; 561 TAILQ_REMOVE(&rm->rm_list, r, r_link); 562 } else if (t != NULL && (t->r_flags & RF_ALLOCATED) == 0) { 563 /* 564 * Merge next segment with ours. 565 */ 566 t->r_start = r->r_start; 567 TAILQ_REMOVE(&rm->rm_list, r, r_link); 568 } else { 569 /* 570 * At this point, we know there is nothing we 571 * can potentially merge with, because on each 572 * side, there is either nothing there or what is 573 * there is still allocated. In that case, we don't 574 * want to remove r from the list; we simply want to 575 * change it to an unallocated region and return 576 * without freeing anything. 577 */ 578 r->r_flags &= ~RF_ALLOCATED; 579 return 0; 580 } 581 582 out: 583 free(r, M_RMAN); 584 return 0; 585 } 586 587 int 588 rman_release_resource(struct resource *r) 589 { 590 int rv; 591 struct rman *rm = r->r_rm; 592 593 mtx_lock(rm->rm_mtx); 594 rv = int_rman_release_resource(rm, r); 595 mtx_unlock(rm->rm_mtx); 596 return (rv); 597 } 598 599 uint32_t 600 rman_make_alignment_flags(uint32_t size) 601 { 602 int i; 603 604 /* 605 * Find the hightest bit set, and add one if more than one bit 606 * set. We're effectively computing the ceil(log2(size)) here. 607 */ 608 for (i = 31; i > 0; i--) 609 if ((1 << i) & size) 610 break; 611 if (~(1 << i) & size) 612 i++; 613 614 return(RF_ALIGNMENT_LOG2(i)); 615 } 616 617 u_long 618 rman_get_start(struct resource *r) 619 { 620 return (r->r_start); 621 } 622 623 u_long 624 rman_get_end(struct resource *r) 625 { 626 return (r->r_end); 627 } 628 629 u_long 630 rman_get_size(struct resource *r) 631 { 632 return (r->r_end - r->r_start + 1); 633 } 634 635 u_int 636 rman_get_flags(struct resource *r) 637 { 638 return (r->r_flags); 639 } 640 641 void 642 rman_set_virtual(struct resource *r, void *v) 643 { 644 r->r_virtual = v; 645 } 646 647 void * 648 rman_get_virtual(struct resource *r) 649 { 650 return (r->r_virtual); 651 } 652 653 void 654 rman_set_bustag(struct resource *r, bus_space_tag_t t) 655 { 656 r->r_bustag = t; 657 } 658 659 bus_space_tag_t 660 rman_get_bustag(struct resource *r) 661 { 662 return (r->r_bustag); 663 } 664 665 void 666 rman_set_bushandle(struct resource *r, bus_space_handle_t h) 667 { 668 r->r_bushandle = h; 669 } 670 671 bus_space_handle_t 672 rman_get_bushandle(struct resource *r) 673 { 674 return (r->r_bushandle); 675 } 676 677 void 678 rman_set_rid(struct resource *r, int rid) 679 { 680 r->r_rid = rid; 681 } 682 683 int 684 rman_get_rid(struct resource *r) 685 { 686 return (r->r_rid); 687 } 688 689 struct device * 690 rman_get_device(struct resource *r) 691 { 692 return (r->r_dev); 693 } 694