xref: /freebsd/sys/kern/subr_rman.c (revision efe3b0de1438e7a8473d92f2be57072394559e3c)
1 /*-
2  * Copyright 1998 Massachusetts Institute of Technology
3  *
4  * Permission to use, copy, modify, and distribute this software and
5  * its documentation for any purpose and without fee is hereby
6  * granted, provided that both the above copyright notice and this
7  * permission notice appear in all copies, that both the above
8  * copyright notice and this permission notice appear in all
9  * supporting documentation, and that the name of M.I.T. not be used
10  * in advertising or publicity pertaining to distribution of the
11  * software without specific, written prior permission.  M.I.T. makes
12  * no representations about the suitability of this software for any
13  * purpose.  It is provided "as is" without express or implied
14  * warranty.
15  *
16  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
17  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /*
31  * The kernel resource manager.  This code is responsible for keeping track
32  * of hardware resources which are apportioned out to various drivers.
33  * It does not actually assign those resources, and it is not expected
34  * that end-device drivers will call into this code directly.  Rather,
35  * the code which implements the buses that those devices are attached to,
36  * and the code which manages CPU resources, will call this code, and the
37  * end-device drivers will make upcalls to that code to actually perform
38  * the allocation.
39  *
40  * There are two sorts of resources managed by this code.  The first is
41  * the more familiar array (RMAN_ARRAY) type; resources in this class
42  * consist of a sequence of individually-allocatable objects which have
43  * been numbered in some well-defined order.  Most of the resources
44  * are of this type, as it is the most familiar.  The second type is
45  * called a gauge (RMAN_GAUGE), and models fungible resources (i.e.,
46  * resources in which each instance is indistinguishable from every
47  * other instance).  The principal anticipated application of gauges
48  * is in the context of power consumption, where a bus may have a specific
49  * power budget which all attached devices share.  RMAN_GAUGE is not
50  * implemented yet.
51  *
52  * For array resources, we make one simplifying assumption: two clients
53  * sharing the same resource must use the same range of indices.  That
54  * is to say, sharing of overlapping-but-not-identical regions is not
55  * permitted.
56  */
57 
58 #include "opt_ddb.h"
59 
60 #include <sys/cdefs.h>
61 __FBSDID("$FreeBSD$");
62 
63 #include <sys/param.h>
64 #include <sys/systm.h>
65 #include <sys/kernel.h>
66 #include <sys/limits.h>
67 #include <sys/lock.h>
68 #include <sys/malloc.h>
69 #include <sys/mutex.h>
70 #include <sys/bus.h>		/* XXX debugging */
71 #include <machine/bus.h>
72 #include <sys/rman.h>
73 #include <sys/sysctl.h>
74 
75 #ifdef DDB
76 #include <ddb/ddb.h>
77 #endif
78 
79 /*
80  * We use a linked list rather than a bitmap because we need to be able to
81  * represent potentially huge objects (like all of a processor's physical
82  * address space).  That is also why the indices are defined to have type
83  * `unsigned long' -- that being the largest integral type in ISO C (1990).
84  * The 1999 version of C allows `long long'; we may need to switch to that
85  * at some point in the future, particularly if we want to support 36-bit
86  * addresses on IA32 hardware.
87  */
88 struct resource_i {
89 	struct resource		r_r;
90 	TAILQ_ENTRY(resource_i)	r_link;
91 	LIST_ENTRY(resource_i)	r_sharelink;
92 	LIST_HEAD(, resource_i)	*r_sharehead;
93 	rman_res_t	r_start;	/* index of the first entry in this resource */
94 	rman_res_t	r_end;		/* index of the last entry (inclusive) */
95 	u_int	r_flags;
96 	void	*r_virtual;	/* virtual address of this resource */
97 	device_t r_dev;	/* device which has allocated this resource */
98 	struct rman *r_rm;	/* resource manager from whence this came */
99 	int	r_rid;		/* optional rid for this resource. */
100 };
101 
102 static int rman_debug = 0;
103 SYSCTL_INT(_debug, OID_AUTO, rman_debug, CTLFLAG_RWTUN,
104     &rman_debug, 0, "rman debug");
105 
106 #define DPRINTF(params) if (rman_debug) printf params
107 
108 static MALLOC_DEFINE(M_RMAN, "rman", "Resource manager");
109 
110 struct rman_head rman_head;
111 static struct mtx rman_mtx; /* mutex to protect rman_head */
112 static int int_rman_release_resource(struct rman *rm, struct resource_i *r);
113 
114 static __inline struct resource_i *
115 int_alloc_resource(int malloc_flag)
116 {
117 	struct resource_i *r;
118 
119 	r = malloc(sizeof *r, M_RMAN, malloc_flag | M_ZERO);
120 	if (r != NULL) {
121 		r->r_r.__r_i = r;
122 	}
123 	return (r);
124 }
125 
126 int
127 rman_init(struct rman *rm)
128 {
129 	static int once = 0;
130 
131 	if (once == 0) {
132 		once = 1;
133 		TAILQ_INIT(&rman_head);
134 		mtx_init(&rman_mtx, "rman head", NULL, MTX_DEF);
135 	}
136 
137 	if (rm->rm_start == 0 && rm->rm_end == 0)
138 		rm->rm_end = ~0;
139 	if (rm->rm_type == RMAN_UNINIT)
140 		panic("rman_init");
141 	if (rm->rm_type == RMAN_GAUGE)
142 		panic("implement RMAN_GAUGE");
143 
144 	TAILQ_INIT(&rm->rm_list);
145 	rm->rm_mtx = malloc(sizeof *rm->rm_mtx, M_RMAN, M_NOWAIT | M_ZERO);
146 	if (rm->rm_mtx == NULL)
147 		return ENOMEM;
148 	mtx_init(rm->rm_mtx, "rman", NULL, MTX_DEF);
149 
150 	mtx_lock(&rman_mtx);
151 	TAILQ_INSERT_TAIL(&rman_head, rm, rm_link);
152 	mtx_unlock(&rman_mtx);
153 	return 0;
154 }
155 
156 int
157 rman_manage_region(struct rman *rm, rman_res_t start, rman_res_t end)
158 {
159 	struct resource_i *r, *s, *t;
160 	int rv = 0;
161 
162 	DPRINTF(("rman_manage_region: <%s> request: start %#jx, end %#jx\n",
163 	    rm->rm_descr, start, end));
164 	if (start < rm->rm_start || end > rm->rm_end)
165 		return EINVAL;
166 	r = int_alloc_resource(M_NOWAIT);
167 	if (r == NULL)
168 		return ENOMEM;
169 	r->r_start = start;
170 	r->r_end = end;
171 	r->r_rm = rm;
172 
173 	mtx_lock(rm->rm_mtx);
174 
175 	/* Skip entries before us. */
176 	TAILQ_FOREACH(s, &rm->rm_list, r_link) {
177 		if (s->r_end == ~0)
178 			break;
179 		if (s->r_end + 1 >= r->r_start)
180 			break;
181 	}
182 
183 	/* If we ran off the end of the list, insert at the tail. */
184 	if (s == NULL) {
185 		TAILQ_INSERT_TAIL(&rm->rm_list, r, r_link);
186 	} else {
187 		/* Check for any overlap with the current region. */
188 		if (r->r_start <= s->r_end && r->r_end >= s->r_start) {
189 			rv = EBUSY;
190 			goto out;
191 		}
192 
193 		/* Check for any overlap with the next region. */
194 		t = TAILQ_NEXT(s, r_link);
195 		if (t && r->r_start <= t->r_end && r->r_end >= t->r_start) {
196 			rv = EBUSY;
197 			goto out;
198 		}
199 
200 		/*
201 		 * See if this region can be merged with the next region.  If
202 		 * not, clear the pointer.
203 		 */
204 		if (t && (r->r_end + 1 != t->r_start || t->r_flags != 0))
205 			t = NULL;
206 
207 		/* See if we can merge with the current region. */
208 		if (s->r_end + 1 == r->r_start && s->r_flags == 0) {
209 			/* Can we merge all 3 regions? */
210 			if (t != NULL) {
211 				s->r_end = t->r_end;
212 				TAILQ_REMOVE(&rm->rm_list, t, r_link);
213 				free(r, M_RMAN);
214 				free(t, M_RMAN);
215 			} else {
216 				s->r_end = r->r_end;
217 				free(r, M_RMAN);
218 			}
219 		} else if (t != NULL) {
220 			/* Can we merge with just the next region? */
221 			t->r_start = r->r_start;
222 			free(r, M_RMAN);
223 		} else if (s->r_end < r->r_start) {
224 			TAILQ_INSERT_AFTER(&rm->rm_list, s, r, r_link);
225 		} else {
226 			TAILQ_INSERT_BEFORE(s, r, r_link);
227 		}
228 	}
229 out:
230 	mtx_unlock(rm->rm_mtx);
231 	return rv;
232 }
233 
234 int
235 rman_init_from_resource(struct rman *rm, struct resource *r)
236 {
237 	int rv;
238 
239 	if ((rv = rman_init(rm)) != 0)
240 		return (rv);
241 	return (rman_manage_region(rm, r->__r_i->r_start, r->__r_i->r_end));
242 }
243 
244 int
245 rman_fini(struct rman *rm)
246 {
247 	struct resource_i *r;
248 
249 	mtx_lock(rm->rm_mtx);
250 	TAILQ_FOREACH(r, &rm->rm_list, r_link) {
251 		if (r->r_flags & RF_ALLOCATED) {
252 			mtx_unlock(rm->rm_mtx);
253 			return EBUSY;
254 		}
255 	}
256 
257 	/*
258 	 * There really should only be one of these if we are in this
259 	 * state and the code is working properly, but it can't hurt.
260 	 */
261 	while (!TAILQ_EMPTY(&rm->rm_list)) {
262 		r = TAILQ_FIRST(&rm->rm_list);
263 		TAILQ_REMOVE(&rm->rm_list, r, r_link);
264 		free(r, M_RMAN);
265 	}
266 	mtx_unlock(rm->rm_mtx);
267 	mtx_lock(&rman_mtx);
268 	TAILQ_REMOVE(&rman_head, rm, rm_link);
269 	mtx_unlock(&rman_mtx);
270 	mtx_destroy(rm->rm_mtx);
271 	free(rm->rm_mtx, M_RMAN);
272 
273 	return 0;
274 }
275 
276 int
277 rman_first_free_region(struct rman *rm, rman_res_t *start, rman_res_t *end)
278 {
279 	struct resource_i *r;
280 
281 	mtx_lock(rm->rm_mtx);
282 	TAILQ_FOREACH(r, &rm->rm_list, r_link) {
283 		if (!(r->r_flags & RF_ALLOCATED)) {
284 			*start = r->r_start;
285 			*end = r->r_end;
286 			mtx_unlock(rm->rm_mtx);
287 			return (0);
288 		}
289 	}
290 	mtx_unlock(rm->rm_mtx);
291 	return (ENOENT);
292 }
293 
294 int
295 rman_last_free_region(struct rman *rm, rman_res_t *start, rman_res_t *end)
296 {
297 	struct resource_i *r;
298 
299 	mtx_lock(rm->rm_mtx);
300 	TAILQ_FOREACH_REVERSE(r, &rm->rm_list, resource_head, r_link) {
301 		if (!(r->r_flags & RF_ALLOCATED)) {
302 			*start = r->r_start;
303 			*end = r->r_end;
304 			mtx_unlock(rm->rm_mtx);
305 			return (0);
306 		}
307 	}
308 	mtx_unlock(rm->rm_mtx);
309 	return (ENOENT);
310 }
311 
312 /* Shrink or extend one or both ends of an allocated resource. */
313 int
314 rman_adjust_resource(struct resource *rr, rman_res_t start, rman_res_t end)
315 {
316 	struct resource_i *r, *s, *t, *new;
317 	struct rman *rm;
318 
319 	/* Not supported for shared resources. */
320 	r = rr->__r_i;
321 	if (r->r_flags & RF_SHAREABLE)
322 		return (EINVAL);
323 
324 	/*
325 	 * This does not support wholesale moving of a resource.  At
326 	 * least part of the desired new range must overlap with the
327 	 * existing resource.
328 	 */
329 	if (end < r->r_start || r->r_end < start)
330 		return (EINVAL);
331 
332 	/*
333 	 * Find the two resource regions immediately adjacent to the
334 	 * allocated resource.
335 	 */
336 	rm = r->r_rm;
337 	mtx_lock(rm->rm_mtx);
338 #ifdef INVARIANTS
339 	TAILQ_FOREACH(s, &rm->rm_list, r_link) {
340 		if (s == r)
341 			break;
342 	}
343 	if (s == NULL)
344 		panic("resource not in list");
345 #endif
346 	s = TAILQ_PREV(r, resource_head, r_link);
347 	t = TAILQ_NEXT(r, r_link);
348 	KASSERT(s == NULL || s->r_end + 1 == r->r_start,
349 	    ("prev resource mismatch"));
350 	KASSERT(t == NULL || r->r_end + 1 == t->r_start,
351 	    ("next resource mismatch"));
352 
353 	/*
354 	 * See if the changes are permitted.  Shrinking is always allowed,
355 	 * but growing requires sufficient room in the adjacent region.
356 	 */
357 	if (start < r->r_start && (s == NULL || (s->r_flags & RF_ALLOCATED) ||
358 	    s->r_start > start)) {
359 		mtx_unlock(rm->rm_mtx);
360 		return (EBUSY);
361 	}
362 	if (end > r->r_end && (t == NULL || (t->r_flags & RF_ALLOCATED) ||
363 	    t->r_end < end)) {
364 		mtx_unlock(rm->rm_mtx);
365 		return (EBUSY);
366 	}
367 
368 	/*
369 	 * While holding the lock, grow either end of the resource as
370 	 * needed and shrink either end if the shrinking does not require
371 	 * allocating a new resource.  We can safely drop the lock and then
372 	 * insert a new range to handle the shrinking case afterwards.
373 	 */
374 	if (start < r->r_start ||
375 	    (start > r->r_start && s != NULL && !(s->r_flags & RF_ALLOCATED))) {
376 		KASSERT(s->r_flags == 0, ("prev is busy"));
377 		r->r_start = start;
378 		if (s->r_start == start) {
379 			TAILQ_REMOVE(&rm->rm_list, s, r_link);
380 			free(s, M_RMAN);
381 		} else
382 			s->r_end = start - 1;
383 	}
384 	if (end > r->r_end ||
385 	    (end < r->r_end && t != NULL && !(t->r_flags & RF_ALLOCATED))) {
386 		KASSERT(t->r_flags == 0, ("next is busy"));
387 		r->r_end = end;
388 		if (t->r_end == end) {
389 			TAILQ_REMOVE(&rm->rm_list, t, r_link);
390 			free(t, M_RMAN);
391 		} else
392 			t->r_start = end + 1;
393 	}
394 	mtx_unlock(rm->rm_mtx);
395 
396 	/*
397 	 * Handle the shrinking cases that require allocating a new
398 	 * resource to hold the newly-free region.  We have to recheck
399 	 * if we still need this new region after acquiring the lock.
400 	 */
401 	if (start > r->r_start) {
402 		new = int_alloc_resource(M_WAITOK);
403 		new->r_start = r->r_start;
404 		new->r_end = start - 1;
405 		new->r_rm = rm;
406 		mtx_lock(rm->rm_mtx);
407 		r->r_start = start;
408 		s = TAILQ_PREV(r, resource_head, r_link);
409 		if (s != NULL && !(s->r_flags & RF_ALLOCATED)) {
410 			s->r_end = start - 1;
411 			free(new, M_RMAN);
412 		} else
413 			TAILQ_INSERT_BEFORE(r, new, r_link);
414 		mtx_unlock(rm->rm_mtx);
415 	}
416 	if (end < r->r_end) {
417 		new = int_alloc_resource(M_WAITOK);
418 		new->r_start = end + 1;
419 		new->r_end = r->r_end;
420 		new->r_rm = rm;
421 		mtx_lock(rm->rm_mtx);
422 		r->r_end = end;
423 		t = TAILQ_NEXT(r, r_link);
424 		if (t != NULL && !(t->r_flags & RF_ALLOCATED)) {
425 			t->r_start = end + 1;
426 			free(new, M_RMAN);
427 		} else
428 			TAILQ_INSERT_AFTER(&rm->rm_list, r, new, r_link);
429 		mtx_unlock(rm->rm_mtx);
430 	}
431 	return (0);
432 }
433 
434 #define	SHARE_TYPE(f)	(f & (RF_SHAREABLE | RF_PREFETCHABLE))
435 
436 struct resource *
437 rman_reserve_resource_bound(struct rman *rm, rman_res_t start, rman_res_t end,
438 			    rman_res_t count, rman_res_t bound, u_int flags,
439 			    device_t dev)
440 {
441 	u_int new_rflags;
442 	struct resource_i *r, *s, *rv;
443 	rman_res_t rstart, rend, amask, bmask;
444 
445 	rv = NULL;
446 
447 	DPRINTF(("rman_reserve_resource_bound: <%s> request: [%#jx, %#jx], "
448 	       "length %#jx, flags %x, device %s\n", rm->rm_descr, start, end,
449 	       count, flags,
450 	       dev == NULL ? "<null>" : device_get_nameunit(dev)));
451 	KASSERT((flags & RF_FIRSTSHARE) == 0,
452 	    ("invalid flags %#x", flags));
453 	new_rflags = (flags & ~RF_FIRSTSHARE) | RF_ALLOCATED;
454 
455 	mtx_lock(rm->rm_mtx);
456 
457 	r = TAILQ_FIRST(&rm->rm_list);
458 	if (r == NULL) {
459 	    DPRINTF(("NULL list head\n"));
460 	} else {
461 	    DPRINTF(("rman_reserve_resource_bound: trying %#jx <%#jx,%#jx>\n",
462 		    r->r_end, start, count-1));
463 	}
464 	for (r = TAILQ_FIRST(&rm->rm_list);
465 	     r && r->r_end < start + count - 1;
466 	     r = TAILQ_NEXT(r, r_link)) {
467 		;
468 		DPRINTF(("rman_reserve_resource_bound: tried %#jx <%#jx,%#jx>\n",
469 			r->r_end, start, count-1));
470 	}
471 
472 	if (r == NULL) {
473 		DPRINTF(("could not find a region\n"));
474 		goto out;
475 	}
476 
477 	amask = (1ull << RF_ALIGNMENT(flags)) - 1;
478 	KASSERT(start <= RM_MAX_END - amask,
479 	    ("start (%#jx) + amask (%#jx) would wrap around", start, amask));
480 
481 	/* If bound is 0, bmask will also be 0 */
482 	bmask = ~(bound - 1);
483 	/*
484 	 * First try to find an acceptable totally-unshared region.
485 	 */
486 	for (s = r; s; s = TAILQ_NEXT(s, r_link)) {
487 		DPRINTF(("considering [%#jx, %#jx]\n", s->r_start, s->r_end));
488 		/*
489 		 * The resource list is sorted, so there is no point in
490 		 * searching further once r_start is too large.
491 		 */
492 		if (s->r_start > end - (count - 1)) {
493 			DPRINTF(("s->r_start (%#jx) + count - 1> end (%#jx)\n",
494 			    s->r_start, end));
495 			break;
496 		}
497 		if (s->r_start > RM_MAX_END - amask) {
498 			DPRINTF(("s->r_start (%#jx) + amask (%#jx) too large\n",
499 			    s->r_start, amask));
500 			break;
501 		}
502 		if (s->r_flags & RF_ALLOCATED) {
503 			DPRINTF(("region is allocated\n"));
504 			continue;
505 		}
506 		rstart = ummax(s->r_start, start);
507 		/*
508 		 * Try to find a region by adjusting to boundary and alignment
509 		 * until both conditions are satisfied. This is not an optimal
510 		 * algorithm, but in most cases it isn't really bad, either.
511 		 */
512 		do {
513 			rstart = (rstart + amask) & ~amask;
514 			if (((rstart ^ (rstart + count - 1)) & bmask) != 0)
515 				rstart += bound - (rstart & ~bmask);
516 		} while ((rstart & amask) != 0 && rstart < end &&
517 		    rstart < s->r_end);
518 		rend = ummin(s->r_end, ummax(rstart + count - 1, end));
519 		if (rstart > rend) {
520 			DPRINTF(("adjusted start exceeds end\n"));
521 			continue;
522 		}
523 		DPRINTF(("truncated region: [%#jx, %#jx]; size %#jx (requested %#jx)\n",
524 		       rstart, rend, (rend - rstart + 1), count));
525 
526 		if ((rend - rstart + 1) >= count) {
527 			DPRINTF(("candidate region: [%#jx, %#jx], size %#jx\n",
528 			       rstart, rend, (rend - rstart + 1)));
529 			if ((s->r_end - s->r_start + 1) == count) {
530 				DPRINTF(("candidate region is entire chunk\n"));
531 				rv = s;
532 				rv->r_flags = new_rflags;
533 				rv->r_dev = dev;
534 				goto out;
535 			}
536 
537 			/*
538 			 * If s->r_start < rstart and
539 			 *    s->r_end > rstart + count - 1, then
540 			 * we need to split the region into three pieces
541 			 * (the middle one will get returned to the user).
542 			 * Otherwise, we are allocating at either the
543 			 * beginning or the end of s, so we only need to
544 			 * split it in two.  The first case requires
545 			 * two new allocations; the second requires but one.
546 			 */
547 			rv = int_alloc_resource(M_NOWAIT);
548 			if (rv == NULL)
549 				goto out;
550 			rv->r_start = rstart;
551 			rv->r_end = rstart + count - 1;
552 			rv->r_flags = new_rflags;
553 			rv->r_dev = dev;
554 			rv->r_rm = rm;
555 
556 			if (s->r_start < rv->r_start && s->r_end > rv->r_end) {
557 				DPRINTF(("splitting region in three parts: "
558 				       "[%#jx, %#jx]; [%#jx, %#jx]; [%#jx, %#jx]\n",
559 				       s->r_start, rv->r_start - 1,
560 				       rv->r_start, rv->r_end,
561 				       rv->r_end + 1, s->r_end));
562 				/*
563 				 * We are allocating in the middle.
564 				 */
565 				r = int_alloc_resource(M_NOWAIT);
566 				if (r == NULL) {
567 					free(rv, M_RMAN);
568 					rv = NULL;
569 					goto out;
570 				}
571 				r->r_start = rv->r_end + 1;
572 				r->r_end = s->r_end;
573 				r->r_flags = s->r_flags;
574 				r->r_rm = rm;
575 				s->r_end = rv->r_start - 1;
576 				TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
577 						     r_link);
578 				TAILQ_INSERT_AFTER(&rm->rm_list, rv, r,
579 						     r_link);
580 			} else if (s->r_start == rv->r_start) {
581 				DPRINTF(("allocating from the beginning\n"));
582 				/*
583 				 * We are allocating at the beginning.
584 				 */
585 				s->r_start = rv->r_end + 1;
586 				TAILQ_INSERT_BEFORE(s, rv, r_link);
587 			} else {
588 				DPRINTF(("allocating at the end\n"));
589 				/*
590 				 * We are allocating at the end.
591 				 */
592 				s->r_end = rv->r_start - 1;
593 				TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
594 						     r_link);
595 			}
596 			goto out;
597 		}
598 	}
599 
600 	/*
601 	 * Now find an acceptable shared region, if the client's requirements
602 	 * allow sharing.  By our implementation restriction, a candidate
603 	 * region must match exactly by both size and sharing type in order
604 	 * to be considered compatible with the client's request.  (The
605 	 * former restriction could probably be lifted without too much
606 	 * additional work, but this does not seem warranted.)
607 	 */
608 	DPRINTF(("no unshared regions found\n"));
609 	if ((flags & RF_SHAREABLE) == 0)
610 		goto out;
611 
612 	for (s = r; s && s->r_end <= end; s = TAILQ_NEXT(s, r_link)) {
613 		if (SHARE_TYPE(s->r_flags) == SHARE_TYPE(flags) &&
614 		    s->r_start >= start &&
615 		    (s->r_end - s->r_start + 1) == count &&
616 		    (s->r_start & amask) == 0 &&
617 		    ((s->r_start ^ s->r_end) & bmask) == 0) {
618 			rv = int_alloc_resource(M_NOWAIT);
619 			if (rv == NULL)
620 				goto out;
621 			rv->r_start = s->r_start;
622 			rv->r_end = s->r_end;
623 			rv->r_flags = new_rflags;
624 			rv->r_dev = dev;
625 			rv->r_rm = rm;
626 			if (s->r_sharehead == NULL) {
627 				s->r_sharehead = malloc(sizeof *s->r_sharehead,
628 						M_RMAN, M_NOWAIT | M_ZERO);
629 				if (s->r_sharehead == NULL) {
630 					free(rv, M_RMAN);
631 					rv = NULL;
632 					goto out;
633 				}
634 				LIST_INIT(s->r_sharehead);
635 				LIST_INSERT_HEAD(s->r_sharehead, s,
636 						 r_sharelink);
637 				s->r_flags |= RF_FIRSTSHARE;
638 			}
639 			rv->r_sharehead = s->r_sharehead;
640 			LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink);
641 			goto out;
642 		}
643 	}
644 	/*
645 	 * We couldn't find anything.
646 	 */
647 
648 out:
649 	mtx_unlock(rm->rm_mtx);
650 	return (rv == NULL ? NULL : &rv->r_r);
651 }
652 
653 struct resource *
654 rman_reserve_resource(struct rman *rm, rman_res_t start, rman_res_t end,
655 		      rman_res_t count, u_int flags, device_t dev)
656 {
657 
658 	return (rman_reserve_resource_bound(rm, start, end, count, 0, flags,
659 	    dev));
660 }
661 
662 int
663 rman_activate_resource(struct resource *re)
664 {
665 	struct resource_i *r;
666 	struct rman *rm;
667 
668 	r = re->__r_i;
669 	rm = r->r_rm;
670 	mtx_lock(rm->rm_mtx);
671 	r->r_flags |= RF_ACTIVE;
672 	mtx_unlock(rm->rm_mtx);
673 	return 0;
674 }
675 
676 int
677 rman_deactivate_resource(struct resource *r)
678 {
679 	struct rman *rm;
680 
681 	rm = r->__r_i->r_rm;
682 	mtx_lock(rm->rm_mtx);
683 	r->__r_i->r_flags &= ~RF_ACTIVE;
684 	mtx_unlock(rm->rm_mtx);
685 	return 0;
686 }
687 
688 static int
689 int_rman_release_resource(struct rman *rm, struct resource_i *r)
690 {
691 	struct resource_i *s, *t;
692 
693 	if (r->r_flags & RF_ACTIVE)
694 		r->r_flags &= ~RF_ACTIVE;
695 
696 	/*
697 	 * Check for a sharing list first.  If there is one, then we don't
698 	 * have to think as hard.
699 	 */
700 	if (r->r_sharehead) {
701 		/*
702 		 * If a sharing list exists, then we know there are at
703 		 * least two sharers.
704 		 *
705 		 * If we are in the main circleq, appoint someone else.
706 		 */
707 		LIST_REMOVE(r, r_sharelink);
708 		s = LIST_FIRST(r->r_sharehead);
709 		if (r->r_flags & RF_FIRSTSHARE) {
710 			s->r_flags |= RF_FIRSTSHARE;
711 			TAILQ_INSERT_BEFORE(r, s, r_link);
712 			TAILQ_REMOVE(&rm->rm_list, r, r_link);
713 		}
714 
715 		/*
716 		 * Make sure that the sharing list goes away completely
717 		 * if the resource is no longer being shared at all.
718 		 */
719 		if (LIST_NEXT(s, r_sharelink) == NULL) {
720 			free(s->r_sharehead, M_RMAN);
721 			s->r_sharehead = NULL;
722 			s->r_flags &= ~RF_FIRSTSHARE;
723 		}
724 		goto out;
725 	}
726 
727 	/*
728 	 * Look at the adjacent resources in the list and see if our
729 	 * segment can be merged with any of them.  If either of the
730 	 * resources is allocated or is not exactly adjacent then they
731 	 * cannot be merged with our segment.
732 	 */
733 	s = TAILQ_PREV(r, resource_head, r_link);
734 	if (s != NULL && ((s->r_flags & RF_ALLOCATED) != 0 ||
735 	    s->r_end + 1 != r->r_start))
736 		s = NULL;
737 	t = TAILQ_NEXT(r, r_link);
738 	if (t != NULL && ((t->r_flags & RF_ALLOCATED) != 0 ||
739 	    r->r_end + 1 != t->r_start))
740 		t = NULL;
741 
742 	if (s != NULL && t != NULL) {
743 		/*
744 		 * Merge all three segments.
745 		 */
746 		s->r_end = t->r_end;
747 		TAILQ_REMOVE(&rm->rm_list, r, r_link);
748 		TAILQ_REMOVE(&rm->rm_list, t, r_link);
749 		free(t, M_RMAN);
750 	} else if (s != NULL) {
751 		/*
752 		 * Merge previous segment with ours.
753 		 */
754 		s->r_end = r->r_end;
755 		TAILQ_REMOVE(&rm->rm_list, r, r_link);
756 	} else if (t != NULL) {
757 		/*
758 		 * Merge next segment with ours.
759 		 */
760 		t->r_start = r->r_start;
761 		TAILQ_REMOVE(&rm->rm_list, r, r_link);
762 	} else {
763 		/*
764 		 * At this point, we know there is nothing we
765 		 * can potentially merge with, because on each
766 		 * side, there is either nothing there or what is
767 		 * there is still allocated.  In that case, we don't
768 		 * want to remove r from the list; we simply want to
769 		 * change it to an unallocated region and return
770 		 * without freeing anything.
771 		 */
772 		r->r_flags &= ~RF_ALLOCATED;
773 		r->r_dev = NULL;
774 		return 0;
775 	}
776 
777 out:
778 	free(r, M_RMAN);
779 	return 0;
780 }
781 
782 int
783 rman_release_resource(struct resource *re)
784 {
785 	int rv;
786 	struct resource_i *r;
787 	struct rman *rm;
788 
789 	r = re->__r_i;
790 	rm = r->r_rm;
791 	mtx_lock(rm->rm_mtx);
792 	rv = int_rman_release_resource(rm, r);
793 	mtx_unlock(rm->rm_mtx);
794 	return (rv);
795 }
796 
797 uint32_t
798 rman_make_alignment_flags(uint32_t size)
799 {
800 	int i;
801 
802 	/*
803 	 * Find the hightest bit set, and add one if more than one bit
804 	 * set.  We're effectively computing the ceil(log2(size)) here.
805 	 */
806 	for (i = 31; i > 0; i--)
807 		if ((1 << i) & size)
808 			break;
809 	if (~(1 << i) & size)
810 		i++;
811 
812 	return(RF_ALIGNMENT_LOG2(i));
813 }
814 
815 void
816 rman_set_start(struct resource *r, rman_res_t start)
817 {
818 
819 	r->__r_i->r_start = start;
820 }
821 
822 rman_res_t
823 rman_get_start(struct resource *r)
824 {
825 
826 	return (r->__r_i->r_start);
827 }
828 
829 void
830 rman_set_end(struct resource *r, rman_res_t end)
831 {
832 
833 	r->__r_i->r_end = end;
834 }
835 
836 rman_res_t
837 rman_get_end(struct resource *r)
838 {
839 
840 	return (r->__r_i->r_end);
841 }
842 
843 rman_res_t
844 rman_get_size(struct resource *r)
845 {
846 
847 	return (r->__r_i->r_end - r->__r_i->r_start + 1);
848 }
849 
850 u_int
851 rman_get_flags(struct resource *r)
852 {
853 
854 	return (r->__r_i->r_flags);
855 }
856 
857 void
858 rman_set_virtual(struct resource *r, void *v)
859 {
860 
861 	r->__r_i->r_virtual = v;
862 }
863 
864 void *
865 rman_get_virtual(struct resource *r)
866 {
867 
868 	return (r->__r_i->r_virtual);
869 }
870 
871 void
872 rman_set_bustag(struct resource *r, bus_space_tag_t t)
873 {
874 
875 	r->r_bustag = t;
876 }
877 
878 bus_space_tag_t
879 rman_get_bustag(struct resource *r)
880 {
881 
882 	return (r->r_bustag);
883 }
884 
885 void
886 rman_set_bushandle(struct resource *r, bus_space_handle_t h)
887 {
888 
889 	r->r_bushandle = h;
890 }
891 
892 bus_space_handle_t
893 rman_get_bushandle(struct resource *r)
894 {
895 
896 	return (r->r_bushandle);
897 }
898 
899 void
900 rman_set_mapping(struct resource *r, struct resource_map *map)
901 {
902 
903 	KASSERT(rman_get_size(r) == map->r_size,
904 	    ("rman_set_mapping: size mismatch"));
905 	rman_set_bustag(r, map->r_bustag);
906 	rman_set_bushandle(r, map->r_bushandle);
907 	rman_set_virtual(r, map->r_vaddr);
908 }
909 
910 void
911 rman_get_mapping(struct resource *r, struct resource_map *map)
912 {
913 
914 	map->r_bustag = rman_get_bustag(r);
915 	map->r_bushandle = rman_get_bushandle(r);
916 	map->r_size = rman_get_size(r);
917 	map->r_vaddr = rman_get_virtual(r);
918 }
919 
920 void
921 rman_set_rid(struct resource *r, int rid)
922 {
923 
924 	r->__r_i->r_rid = rid;
925 }
926 
927 int
928 rman_get_rid(struct resource *r)
929 {
930 
931 	return (r->__r_i->r_rid);
932 }
933 
934 void
935 rman_set_device(struct resource *r, device_t dev)
936 {
937 
938 	r->__r_i->r_dev = dev;
939 }
940 
941 device_t
942 rman_get_device(struct resource *r)
943 {
944 
945 	return (r->__r_i->r_dev);
946 }
947 
948 int
949 rman_is_region_manager(struct resource *r, struct rman *rm)
950 {
951 
952 	return (r->__r_i->r_rm == rm);
953 }
954 
955 /*
956  * Sysctl interface for scanning the resource lists.
957  *
958  * We take two input parameters; the index into the list of resource
959  * managers, and the resource offset into the list.
960  */
961 static int
962 sysctl_rman(SYSCTL_HANDLER_ARGS)
963 {
964 	int			*name = (int *)arg1;
965 	u_int			namelen = arg2;
966 	int			rman_idx, res_idx;
967 	struct rman		*rm;
968 	struct resource_i	*res;
969 	struct resource_i	*sres;
970 	struct u_rman		urm;
971 	struct u_resource	ures;
972 	int			error;
973 
974 	if (namelen != 3)
975 		return (EINVAL);
976 
977 	if (bus_data_generation_check(name[0]))
978 		return (EINVAL);
979 	rman_idx = name[1];
980 	res_idx = name[2];
981 
982 	/*
983 	 * Find the indexed resource manager
984 	 */
985 	mtx_lock(&rman_mtx);
986 	TAILQ_FOREACH(rm, &rman_head, rm_link) {
987 		if (rman_idx-- == 0)
988 			break;
989 	}
990 	mtx_unlock(&rman_mtx);
991 	if (rm == NULL)
992 		return (ENOENT);
993 
994 	/*
995 	 * If the resource index is -1, we want details on the
996 	 * resource manager.
997 	 */
998 	if (res_idx == -1) {
999 		bzero(&urm, sizeof(urm));
1000 		urm.rm_handle = (uintptr_t)rm;
1001 		if (rm->rm_descr != NULL)
1002 			strlcpy(urm.rm_descr, rm->rm_descr, RM_TEXTLEN);
1003 		urm.rm_start = rm->rm_start;
1004 		urm.rm_size = rm->rm_end - rm->rm_start + 1;
1005 		urm.rm_type = rm->rm_type;
1006 
1007 		error = SYSCTL_OUT(req, &urm, sizeof(urm));
1008 		return (error);
1009 	}
1010 
1011 	/*
1012 	 * Find the indexed resource and return it.
1013 	 */
1014 	mtx_lock(rm->rm_mtx);
1015 	TAILQ_FOREACH(res, &rm->rm_list, r_link) {
1016 		if (res->r_sharehead != NULL) {
1017 			LIST_FOREACH(sres, res->r_sharehead, r_sharelink)
1018 				if (res_idx-- == 0) {
1019 					res = sres;
1020 					goto found;
1021 				}
1022 		}
1023 		else if (res_idx-- == 0)
1024 				goto found;
1025 	}
1026 	mtx_unlock(rm->rm_mtx);
1027 	return (ENOENT);
1028 
1029 found:
1030 	bzero(&ures, sizeof(ures));
1031 	ures.r_handle = (uintptr_t)res;
1032 	ures.r_parent = (uintptr_t)res->r_rm;
1033 	ures.r_device = (uintptr_t)res->r_dev;
1034 	if (res->r_dev != NULL) {
1035 		if (device_get_name(res->r_dev) != NULL) {
1036 			snprintf(ures.r_devname, RM_TEXTLEN,
1037 			    "%s%d",
1038 			    device_get_name(res->r_dev),
1039 			    device_get_unit(res->r_dev));
1040 		} else {
1041 			strlcpy(ures.r_devname, "nomatch",
1042 			    RM_TEXTLEN);
1043 		}
1044 	} else {
1045 		ures.r_devname[0] = '\0';
1046 	}
1047 	ures.r_start = res->r_start;
1048 	ures.r_size = res->r_end - res->r_start + 1;
1049 	ures.r_flags = res->r_flags;
1050 
1051 	mtx_unlock(rm->rm_mtx);
1052 	error = SYSCTL_OUT(req, &ures, sizeof(ures));
1053 	return (error);
1054 }
1055 
1056 static SYSCTL_NODE(_hw_bus, OID_AUTO, rman, CTLFLAG_RD, sysctl_rman,
1057     "kernel resource manager");
1058 
1059 #ifdef DDB
1060 static void
1061 dump_rman_header(struct rman *rm)
1062 {
1063 
1064 	if (db_pager_quit)
1065 		return;
1066 	db_printf("rman %p: %s (0x%jx-0x%jx full range)\n",
1067 	    rm, rm->rm_descr, (rman_res_t)rm->rm_start, (rman_res_t)rm->rm_end);
1068 }
1069 
1070 static void
1071 dump_rman(struct rman *rm)
1072 {
1073 	struct resource_i *r;
1074 	const char *devname;
1075 
1076 	if (db_pager_quit)
1077 		return;
1078 	TAILQ_FOREACH(r, &rm->rm_list, r_link) {
1079 		if (r->r_dev != NULL) {
1080 			devname = device_get_nameunit(r->r_dev);
1081 			if (devname == NULL)
1082 				devname = "nomatch";
1083 		} else
1084 			devname = NULL;
1085 		db_printf("    0x%jx-0x%jx (RID=%d) ",
1086 		    r->r_start, r->r_end, r->r_rid);
1087 		if (devname != NULL)
1088 			db_printf("(%s)\n", devname);
1089 		else
1090 			db_printf("----\n");
1091 		if (db_pager_quit)
1092 			return;
1093 	}
1094 }
1095 
1096 DB_SHOW_COMMAND(rman, db_show_rman)
1097 {
1098 
1099 	if (have_addr) {
1100 		dump_rman_header((struct rman *)addr);
1101 		dump_rman((struct rman *)addr);
1102 	}
1103 }
1104 
1105 DB_SHOW_COMMAND(rmans, db_show_rmans)
1106 {
1107 	struct rman *rm;
1108 
1109 	TAILQ_FOREACH(rm, &rman_head, rm_link) {
1110 		dump_rman_header(rm);
1111 	}
1112 }
1113 
1114 DB_SHOW_ALL_COMMAND(rman, db_show_all_rman)
1115 {
1116 	struct rman *rm;
1117 
1118 	TAILQ_FOREACH(rm, &rman_head, rm_link) {
1119 		dump_rman_header(rm);
1120 		dump_rman(rm);
1121 	}
1122 }
1123 DB_SHOW_ALIAS(allrman, db_show_all_rman);
1124 #endif
1125