xref: /freebsd/sys/kern/subr_rman.c (revision eacee0ff7ec955b32e09515246bd97b6edcd2b0f)
1 /*
2  * Copyright 1998 Massachusetts Institute of Technology
3  *
4  * Permission to use, copy, modify, and distribute this software and
5  * its documentation for any purpose and without fee is hereby
6  * granted, provided that both the above copyright notice and this
7  * permission notice appear in all copies, that both the above
8  * copyright notice and this permission notice appear in all
9  * supporting documentation, and that the name of M.I.T. not be used
10  * in advertising or publicity pertaining to distribution of the
11  * software without specific, written prior permission.  M.I.T. makes
12  * no representations about the suitability of this software for any
13  * purpose.  It is provided "as is" without express or implied
14  * warranty.
15  *
16  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
17  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD$
30  */
31 
32 /*
33  * The kernel resource manager.  This code is responsible for keeping track
34  * of hardware resources which are apportioned out to various drivers.
35  * It does not actually assign those resources, and it is not expected
36  * that end-device drivers will call into this code directly.  Rather,
37  * the code which implements the buses that those devices are attached to,
38  * and the code which manages CPU resources, will call this code, and the
39  * end-device drivers will make upcalls to that code to actually perform
40  * the allocation.
41  *
42  * There are two sorts of resources managed by this code.  The first is
43  * the more familiar array (RMAN_ARRAY) type; resources in this class
44  * consist of a sequence of individually-allocatable objects which have
45  * been numbered in some well-defined order.  Most of the resources
46  * are of this type, as it is the most familiar.  The second type is
47  * called a gauge (RMAN_GAUGE), and models fungible resources (i.e.,
48  * resources in which each instance is indistinguishable from every
49  * other instance).  The principal anticipated application of gauges
50  * is in the context of power consumption, where a bus may have a specific
51  * power budget which all attached devices share.  RMAN_GAUGE is not
52  * implemented yet.
53  *
54  * For array resources, we make one simplifying assumption: two clients
55  * sharing the same resource must use the same range of indices.  That
56  * is to say, sharing of overlapping-but-not-identical regions is not
57  * permitted.
58  */
59 
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/kernel.h>
63 #include <sys/lock.h>
64 #include <sys/malloc.h>
65 #include <sys/mutex.h>
66 #include <sys/bus.h>		/* XXX debugging */
67 #include <machine/bus.h>
68 #include <sys/rman.h>
69 
70 #ifdef RMAN_DEBUG
71 #define DPRINTF(params) printf##params
72 #else
73 #define DPRINTF(params)
74 #endif
75 
76 static MALLOC_DEFINE(M_RMAN, "rman", "Resource manager");
77 
78 struct	rman_head rman_head;
79 static	struct mtx rman_mtx; /* mutex to protect rman_head */
80 static	int int_rman_activate_resource(struct rman *rm, struct resource *r,
81 				       struct resource **whohas);
82 static	int int_rman_deactivate_resource(struct resource *r);
83 static	int int_rman_release_resource(struct rman *rm, struct resource *r);
84 
85 int
86 rman_init(struct rman *rm)
87 {
88 	static int once;
89 
90 	if (once == 0) {
91 		once = 1;
92 		TAILQ_INIT(&rman_head);
93 		mtx_init(&rman_mtx, "rman head", MTX_DEF);
94 	}
95 
96 	if (rm->rm_type == RMAN_UNINIT)
97 		panic("rman_init");
98 	if (rm->rm_type == RMAN_GAUGE)
99 		panic("implement RMAN_GAUGE");
100 
101 	TAILQ_INIT(&rm->rm_list);
102 	rm->rm_mtx = malloc(sizeof *rm->rm_mtx, M_RMAN, M_NOWAIT | M_ZERO);
103 	if (rm->rm_mtx == 0)
104 		return ENOMEM;
105 	mtx_init(rm->rm_mtx, "rman", MTX_DEF);
106 
107 	mtx_lock(&rman_mtx);
108 	TAILQ_INSERT_TAIL(&rman_head, rm, rm_link);
109 	mtx_unlock(&rman_mtx);
110 	return 0;
111 }
112 
113 /*
114  * NB: this interface is not robust against programming errors which
115  * add multiple copies of the same region.
116  */
117 int
118 rman_manage_region(struct rman *rm, u_long start, u_long end)
119 {
120 	struct resource *r, *s;
121 
122 	r = malloc(sizeof *r, M_RMAN, M_NOWAIT | M_ZERO);
123 	if (r == 0)
124 		return ENOMEM;
125 	r->r_start = start;
126 	r->r_end = end;
127 	r->r_rm = rm;
128 
129 	mtx_lock(rm->rm_mtx);
130 	for (s = TAILQ_FIRST(&rm->rm_list);
131 	     s && s->r_end < r->r_start;
132 	     s = TAILQ_NEXT(s, r_link))
133 		;
134 
135 	if (s == NULL) {
136 		TAILQ_INSERT_TAIL(&rm->rm_list, r, r_link);
137 	} else {
138 		TAILQ_INSERT_BEFORE(s, r, r_link);
139 	}
140 
141 	mtx_unlock(rm->rm_mtx);
142 	return 0;
143 }
144 
145 int
146 rman_fini(struct rman *rm)
147 {
148 	struct resource *r;
149 
150 	mtx_lock(rm->rm_mtx);
151 	TAILQ_FOREACH(r, &rm->rm_list, r_link) {
152 		if (r->r_flags & RF_ALLOCATED) {
153 			mtx_unlock(rm->rm_mtx);
154 			return EBUSY;
155 		}
156 	}
157 
158 	/*
159 	 * There really should only be one of these if we are in this
160 	 * state and the code is working properly, but it can't hurt.
161 	 */
162 	while (!TAILQ_EMPTY(&rm->rm_list)) {
163 		r = TAILQ_FIRST(&rm->rm_list);
164 		TAILQ_REMOVE(&rm->rm_list, r, r_link);
165 		free(r, M_RMAN);
166 	}
167 	mtx_unlock(rm->rm_mtx);
168 	mtx_lock(&rman_mtx);
169 	TAILQ_REMOVE(&rman_head, rm, rm_link);
170 	mtx_unlock(&rman_mtx);
171 	mtx_destroy(rm->rm_mtx);
172 	free(rm->rm_mtx, M_RMAN);
173 
174 	return 0;
175 }
176 
177 struct resource *
178 rman_reserve_resource_bound(struct rman *rm, u_long start, u_long end,
179 		      u_long count, u_long bound,  u_int flags,
180 		      struct device *dev)
181 {
182 	u_int	want_activate;
183 	struct	resource *r, *s, *rv;
184 	u_long	rstart, rend, amask, bmask;
185 
186 	rv = 0;
187 
188 	DPRINTF(("rman_reserve_resource: <%s> request: [%#lx, %#lx], length "
189 	       "%#lx, flags %u, device %s\n", rm->rm_descr, start, end, count,
190 	       flags, dev == NULL ? "<null>" : device_get_nameunit(dev)));
191 	want_activate = (flags & RF_ACTIVE);
192 	flags &= ~RF_ACTIVE;
193 
194 	mtx_lock(rm->rm_mtx);
195 
196 	for (r = TAILQ_FIRST(&rm->rm_list);
197 	     r && r->r_end < start;
198 	     r = TAILQ_NEXT(r, r_link))
199 		;
200 
201 	if (r == NULL) {
202 		DPRINTF(("could not find a region\n"));
203 		goto out;
204 	}
205 
206 	amask = (1ul << RF_ALIGNMENT(flags)) - 1;
207 	/* If bound is 0, bmask will also be 0 */
208 	bmask = ~(bound - 1);
209 	/*
210 	 * First try to find an acceptable totally-unshared region.
211 	 */
212 	for (s = r; s; s = TAILQ_NEXT(s, r_link)) {
213 		DPRINTF(("considering [%#lx, %#lx]\n", s->r_start, s->r_end));
214 		if (s->r_start > end) {
215 			DPRINTF(("s->r_start (%#lx) > end (%#lx)\n", s->r_start, end));
216 			break;
217 		}
218 		if (s->r_flags & RF_ALLOCATED) {
219 			DPRINTF(("region is allocated\n"));
220 			continue;
221 		}
222 		rstart = ulmax(s->r_start, start);
223 		/*
224 		 * Try to find a region by adjusting to boundary and alignment
225 		 * until both conditions are satisfied. This is not an optimal
226 		 * algorithm, but in most cases it isn't really bad, either.
227 		 */
228 		do {
229 			rstart = (rstart + amask) & ~amask;
230 			if (((rstart ^ (rstart + count)) & bmask) != 0)
231 				rstart += bound - (rstart & ~bmask);
232 		} while ((rstart & amask) != 0 && rstart < end &&
233 		    rstart < s->r_end);
234 		rend = ulmin(s->r_end, ulmax(rstart + count, end));
235 		DPRINTF(("truncated region: [%#lx, %#lx]; size %#lx (requested %#lx)\n",
236 		       rstart, rend, (rend - rstart + 1), count));
237 
238 		if ((rend - rstart + 1) >= count) {
239 			DPRINTF(("candidate region: [%#lx, %#lx], size %#lx\n",
240 			       rend, rstart, (rend - rstart + 1)));
241 			if ((s->r_end - s->r_start + 1) == count) {
242 				DPRINTF(("candidate region is entire chunk\n"));
243 				rv = s;
244 				rv->r_flags |= RF_ALLOCATED | flags;
245 				rv->r_dev = dev;
246 				goto out;
247 			}
248 
249 			/*
250 			 * If s->r_start < rstart and
251 			 *    s->r_end > rstart + count - 1, then
252 			 * we need to split the region into three pieces
253 			 * (the middle one will get returned to the user).
254 			 * Otherwise, we are allocating at either the
255 			 * beginning or the end of s, so we only need to
256 			 * split it in two.  The first case requires
257 			 * two new allocations; the second requires but one.
258 			 */
259 			rv = malloc(sizeof *rv, M_RMAN, M_NOWAIT | M_ZERO);
260 			if (rv == 0)
261 				goto out;
262 			rv->r_start = rstart;
263 			rv->r_end = rstart + count - 1;
264 			rv->r_flags = flags | RF_ALLOCATED;
265 			rv->r_dev = dev;
266 			rv->r_rm = rm;
267 
268 			if (s->r_start < rv->r_start && s->r_end > rv->r_end) {
269 				DPRINTF(("splitting region in three parts: "
270 				       "[%#lx, %#lx]; [%#lx, %#lx]; [%#lx, %#lx]\n",
271 				       s->r_start, rv->r_start - 1,
272 				       rv->r_start, rv->r_end,
273 				       rv->r_end + 1, s->r_end));
274 				/*
275 				 * We are allocating in the middle.
276 				 */
277 				r = malloc(sizeof *r, M_RMAN, M_NOWAIT|M_ZERO);
278 				if (r == 0) {
279 					free(rv, M_RMAN);
280 					rv = 0;
281 					goto out;
282 				}
283 				r->r_start = rv->r_end + 1;
284 				r->r_end = s->r_end;
285 				r->r_flags = s->r_flags;
286 				r->r_rm = rm;
287 				s->r_end = rv->r_start - 1;
288 				TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
289 						     r_link);
290 				TAILQ_INSERT_AFTER(&rm->rm_list, rv, r,
291 						     r_link);
292 			} else if (s->r_start == rv->r_start) {
293 				DPRINTF(("allocating from the beginning\n"));
294 				/*
295 				 * We are allocating at the beginning.
296 				 */
297 				s->r_start = rv->r_end + 1;
298 				TAILQ_INSERT_BEFORE(s, rv, r_link);
299 			} else {
300 				DPRINTF(("allocating at the end\n"));
301 				/*
302 				 * We are allocating at the end.
303 				 */
304 				s->r_end = rv->r_start - 1;
305 				TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
306 						     r_link);
307 			}
308 			goto out;
309 		}
310 	}
311 
312 	/*
313 	 * Now find an acceptable shared region, if the client's requirements
314 	 * allow sharing.  By our implementation restriction, a candidate
315 	 * region must match exactly by both size and sharing type in order
316 	 * to be considered compatible with the client's request.  (The
317 	 * former restriction could probably be lifted without too much
318 	 * additional work, but this does not seem warranted.)
319 	 */
320 	DPRINTF(("no unshared regions found\n"));
321 	if ((flags & (RF_SHAREABLE | RF_TIMESHARE)) == 0)
322 		goto out;
323 
324 	for (s = r; s; s = TAILQ_NEXT(s, r_link)) {
325 		if (s->r_start > end)
326 			break;
327 		if ((s->r_flags & flags) != flags)
328 			continue;
329 		rstart = ulmax(s->r_start, start);
330 		rend = ulmin(s->r_end, ulmax(start + count, end));
331 		if (s->r_start >= start && s->r_end <= end
332 		    && (s->r_end - s->r_start + 1) == count &&
333 		    (s->r_start & amask) == 0 &&
334 		    ((s->r_start ^ s->r_end) & bmask) == 0) {
335 			rv = malloc(sizeof *rv, M_RMAN, M_NOWAIT | M_ZERO);
336 			if (rv == 0)
337 				goto out;
338 			rv->r_start = s->r_start;
339 			rv->r_end = s->r_end;
340 			rv->r_flags = s->r_flags &
341 				(RF_ALLOCATED | RF_SHAREABLE | RF_TIMESHARE);
342 			rv->r_dev = dev;
343 			rv->r_rm = rm;
344 			if (s->r_sharehead == 0) {
345 				s->r_sharehead = malloc(sizeof *s->r_sharehead,
346 						M_RMAN, M_NOWAIT | M_ZERO);
347 				if (s->r_sharehead == 0) {
348 					free(rv, M_RMAN);
349 					rv = 0;
350 					goto out;
351 				}
352 				LIST_INIT(s->r_sharehead);
353 				LIST_INSERT_HEAD(s->r_sharehead, s,
354 						 r_sharelink);
355 				s->r_flags |= RF_FIRSTSHARE;
356 			}
357 			rv->r_sharehead = s->r_sharehead;
358 			LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink);
359 			goto out;
360 		}
361 	}
362 
363 	/*
364 	 * We couldn't find anything.
365 	 */
366 out:
367 	/*
368 	 * If the user specified RF_ACTIVE in the initial flags,
369 	 * which is reflected in `want_activate', we attempt to atomically
370 	 * activate the resource.  If this fails, we release the resource
371 	 * and indicate overall failure.  (This behavior probably doesn't
372 	 * make sense for RF_TIMESHARE-type resources.)
373 	 */
374 	if (rv && want_activate) {
375 		struct resource *whohas;
376 		if (int_rman_activate_resource(rm, rv, &whohas)) {
377 			int_rman_release_resource(rm, rv);
378 			rv = 0;
379 		}
380 	}
381 
382 	mtx_unlock(rm->rm_mtx);
383 	return (rv);
384 }
385 
386 struct resource *
387 rman_reserve_resource(struct rman *rm, u_long start, u_long end, u_long count,
388 		      u_int flags, struct device *dev)
389 {
390 
391 	return (rman_reserve_resource_bound(rm, start, end, count, 0, flags,
392 	    dev));
393 }
394 
395 static int
396 int_rman_activate_resource(struct rman *rm, struct resource *r,
397 			   struct resource **whohas)
398 {
399 	struct resource *s;
400 	int ok;
401 
402 	/*
403 	 * If we are not timesharing, then there is nothing much to do.
404 	 * If we already have the resource, then there is nothing at all to do.
405 	 * If we are not on a sharing list with anybody else, then there is
406 	 * little to do.
407 	 */
408 	if ((r->r_flags & RF_TIMESHARE) == 0
409 	    || (r->r_flags & RF_ACTIVE) != 0
410 	    || r->r_sharehead == 0) {
411 		r->r_flags |= RF_ACTIVE;
412 		return 0;
413 	}
414 
415 	ok = 1;
416 	for (s = LIST_FIRST(r->r_sharehead); s && ok;
417 	     s = LIST_NEXT(s, r_sharelink)) {
418 		if ((s->r_flags & RF_ACTIVE) != 0) {
419 			ok = 0;
420 			*whohas = s;
421 		}
422 	}
423 	if (ok) {
424 		r->r_flags |= RF_ACTIVE;
425 		return 0;
426 	}
427 	return EBUSY;
428 }
429 
430 int
431 rman_activate_resource(struct resource *r)
432 {
433 	int rv;
434 	struct resource *whohas;
435 	struct rman *rm;
436 
437 	rm = r->r_rm;
438 	mtx_lock(rm->rm_mtx);
439 	rv = int_rman_activate_resource(rm, r, &whohas);
440 	mtx_unlock(rm->rm_mtx);
441 	return rv;
442 }
443 
444 int
445 rman_await_resource(struct resource *r, int pri, int timo)
446 {
447 	int	rv;
448 	struct	resource *whohas;
449 	struct	rman *rm;
450 
451 	rm = r->r_rm;
452 	mtx_lock(rm->rm_mtx);
453 	for (;;) {
454 		rv = int_rman_activate_resource(rm, r, &whohas);
455 		if (rv != EBUSY)
456 			return (rv);	/* returns with mutex held */
457 
458 		if (r->r_sharehead == 0)
459 			panic("rman_await_resource");
460 		whohas->r_flags |= RF_WANTED;
461 		rv = msleep(r->r_sharehead, rm->rm_mtx, pri, "rmwait", timo);
462 		if (rv) {
463 			mtx_unlock(rm->rm_mtx);
464 			return (rv);
465 		}
466 	}
467 }
468 
469 static int
470 int_rman_deactivate_resource(struct resource *r)
471 {
472 	struct	rman *rm;
473 
474 	rm = r->r_rm;
475 	r->r_flags &= ~RF_ACTIVE;
476 	if (r->r_flags & RF_WANTED) {
477 		r->r_flags &= ~RF_WANTED;
478 		wakeup(r->r_sharehead);
479 	}
480 	return 0;
481 }
482 
483 int
484 rman_deactivate_resource(struct resource *r)
485 {
486 	struct	rman *rm;
487 
488 	rm = r->r_rm;
489 	mtx_lock(rm->rm_mtx);
490 	int_rman_deactivate_resource(r);
491 	mtx_unlock(rm->rm_mtx);
492 	return 0;
493 }
494 
495 static int
496 int_rman_release_resource(struct rman *rm, struct resource *r)
497 {
498 	struct	resource *s, *t;
499 
500 	if (r->r_flags & RF_ACTIVE)
501 		int_rman_deactivate_resource(r);
502 
503 	/*
504 	 * Check for a sharing list first.  If there is one, then we don't
505 	 * have to think as hard.
506 	 */
507 	if (r->r_sharehead) {
508 		/*
509 		 * If a sharing list exists, then we know there are at
510 		 * least two sharers.
511 		 *
512 		 * If we are in the main circleq, appoint someone else.
513 		 */
514 		LIST_REMOVE(r, r_sharelink);
515 		s = LIST_FIRST(r->r_sharehead);
516 		if (r->r_flags & RF_FIRSTSHARE) {
517 			s->r_flags |= RF_FIRSTSHARE;
518 			TAILQ_INSERT_BEFORE(r, s, r_link);
519 			TAILQ_REMOVE(&rm->rm_list, r, r_link);
520 		}
521 
522 		/*
523 		 * Make sure that the sharing list goes away completely
524 		 * if the resource is no longer being shared at all.
525 		 */
526 		if (LIST_NEXT(s, r_sharelink) == 0) {
527 			free(s->r_sharehead, M_RMAN);
528 			s->r_sharehead = 0;
529 			s->r_flags &= ~RF_FIRSTSHARE;
530 		}
531 		goto out;
532 	}
533 
534 	/*
535 	 * Look at the adjacent resources in the list and see if our
536 	 * segment can be merged with any of them.
537 	 */
538 	s = TAILQ_PREV(r, resource_head, r_link);
539 	t = TAILQ_NEXT(r, r_link);
540 
541 	if (s != NULL && (s->r_flags & RF_ALLOCATED) == 0
542 	    && t != NULL && (t->r_flags & RF_ALLOCATED) == 0) {
543 		/*
544 		 * Merge all three segments.
545 		 */
546 		s->r_end = t->r_end;
547 		TAILQ_REMOVE(&rm->rm_list, r, r_link);
548 		TAILQ_REMOVE(&rm->rm_list, t, r_link);
549 		free(t, M_RMAN);
550 	} else if (s != NULL && (s->r_flags & RF_ALLOCATED) == 0) {
551 		/*
552 		 * Merge previous segment with ours.
553 		 */
554 		s->r_end = r->r_end;
555 		TAILQ_REMOVE(&rm->rm_list, r, r_link);
556 	} else if (t != NULL && (t->r_flags & RF_ALLOCATED) == 0) {
557 		/*
558 		 * Merge next segment with ours.
559 		 */
560 		t->r_start = r->r_start;
561 		TAILQ_REMOVE(&rm->rm_list, r, r_link);
562 	} else {
563 		/*
564 		 * At this point, we know there is nothing we
565 		 * can potentially merge with, because on each
566 		 * side, there is either nothing there or what is
567 		 * there is still allocated.  In that case, we don't
568 		 * want to remove r from the list; we simply want to
569 		 * change it to an unallocated region and return
570 		 * without freeing anything.
571 		 */
572 		r->r_flags &= ~RF_ALLOCATED;
573 		return 0;
574 	}
575 
576 out:
577 	free(r, M_RMAN);
578 	return 0;
579 }
580 
581 int
582 rman_release_resource(struct resource *r)
583 {
584 	int	rv;
585 	struct	rman *rm = r->r_rm;
586 
587 	mtx_lock(rm->rm_mtx);
588 	rv = int_rman_release_resource(rm, r);
589 	mtx_unlock(rm->rm_mtx);
590 	return (rv);
591 }
592 
593 uint32_t
594 rman_make_alignment_flags(uint32_t size)
595 {
596 	int	i;
597 
598 	/*
599 	 * Find the hightest bit set, and add one if more than one bit
600 	 * set.  We're effectively computing the ceil(log2(size)) here.
601 	 */
602 	for (i = 31; i > 0; i--)
603 		if ((1 << i) & size)
604 			break;
605 	if (~(1 << i) & size)
606 		i++;
607 
608 	return(RF_ALIGNMENT_LOG2(i));
609 }
610