1 /*- 2 * Copyright 1998 Massachusetts Institute of Technology 3 * 4 * Permission to use, copy, modify, and distribute this software and 5 * its documentation for any purpose and without fee is hereby 6 * granted, provided that both the above copyright notice and this 7 * permission notice appear in all copies, that both the above 8 * copyright notice and this permission notice appear in all 9 * supporting documentation, and that the name of M.I.T. not be used 10 * in advertising or publicity pertaining to distribution of the 11 * software without specific, written prior permission. M.I.T. makes 12 * no representations about the suitability of this software for any 13 * purpose. It is provided "as is" without express or implied 14 * warranty. 15 * 16 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS 17 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE, 18 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT 20 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF 23 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 25 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 26 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 /* 31 * The kernel resource manager. This code is responsible for keeping track 32 * of hardware resources which are apportioned out to various drivers. 33 * It does not actually assign those resources, and it is not expected 34 * that end-device drivers will call into this code directly. Rather, 35 * the code which implements the buses that those devices are attached to, 36 * and the code which manages CPU resources, will call this code, and the 37 * end-device drivers will make upcalls to that code to actually perform 38 * the allocation. 39 * 40 * There are two sorts of resources managed by this code. The first is 41 * the more familiar array (RMAN_ARRAY) type; resources in this class 42 * consist of a sequence of individually-allocatable objects which have 43 * been numbered in some well-defined order. Most of the resources 44 * are of this type, as it is the most familiar. The second type is 45 * called a gauge (RMAN_GAUGE), and models fungible resources (i.e., 46 * resources in which each instance is indistinguishable from every 47 * other instance). The principal anticipated application of gauges 48 * is in the context of power consumption, where a bus may have a specific 49 * power budget which all attached devices share. RMAN_GAUGE is not 50 * implemented yet. 51 * 52 * For array resources, we make one simplifying assumption: two clients 53 * sharing the same resource must use the same range of indices. That 54 * is to say, sharing of overlapping-but-not-identical regions is not 55 * permitted. 56 */ 57 58 #include "opt_ddb.h" 59 60 #include <sys/param.h> 61 #include <sys/systm.h> 62 #include <sys/kernel.h> 63 #include <sys/limits.h> 64 #include <sys/lock.h> 65 #include <sys/malloc.h> 66 #include <sys/mutex.h> 67 #include <sys/bus.h> /* XXX debugging */ 68 #include <machine/bus.h> 69 #include <sys/rman.h> 70 #include <sys/sysctl.h> 71 72 #ifdef DDB 73 #include <ddb/ddb.h> 74 #endif 75 76 /* 77 * We use a linked list rather than a bitmap because we need to be able to 78 * represent potentially huge objects (like all of a processor's physical 79 * address space). 80 */ 81 struct resource_i { 82 struct resource r_r; 83 TAILQ_ENTRY(resource_i) r_link; 84 LIST_ENTRY(resource_i) r_sharelink; 85 LIST_HEAD(, resource_i) *r_sharehead; 86 rman_res_t r_start; /* index of the first entry in this resource */ 87 rman_res_t r_end; /* index of the last entry (inclusive) */ 88 u_int r_flags; 89 void *r_virtual; /* virtual address of this resource */ 90 void *r_irq_cookie; /* interrupt cookie for this (interrupt) resource */ 91 device_t r_dev; /* device which has allocated this resource */ 92 struct rman *r_rm; /* resource manager from whence this came */ 93 int r_rid; /* optional rid for this resource. */ 94 int r_type; /* optional type for this resource. */ 95 }; 96 97 static int rman_debug = 0; 98 SYSCTL_INT(_debug, OID_AUTO, rman_debug, CTLFLAG_RWTUN, 99 &rman_debug, 0, "rman debug"); 100 101 #define DPRINTF(...) do { if (rman_debug) printf(__VA_ARGS__); } while (0) 102 103 static MALLOC_DEFINE(M_RMAN, "rman", "Resource manager"); 104 105 struct rman_head rman_head; 106 static struct mtx rman_mtx; /* mutex to protect rman_head */ 107 static int int_rman_release_resource(struct rman *rm, struct resource_i *r); 108 109 static __inline struct resource_i * 110 int_alloc_resource(int malloc_flag) 111 { 112 struct resource_i *r; 113 114 r = malloc(sizeof *r, M_RMAN, malloc_flag | M_ZERO); 115 if (r != NULL) { 116 r->r_r.__r_i = r; 117 } 118 return (r); 119 } 120 121 int 122 rman_init(struct rman *rm) 123 { 124 static int once = 0; 125 126 if (once == 0) { 127 once = 1; 128 TAILQ_INIT(&rman_head); 129 mtx_init(&rman_mtx, "rman head", NULL, MTX_DEF); 130 } 131 132 if (rm->rm_start == 0 && rm->rm_end == 0) 133 rm->rm_end = ~0; 134 if (rm->rm_type == RMAN_UNINIT) 135 panic("rman_init"); 136 if (rm->rm_type == RMAN_GAUGE) 137 panic("implement RMAN_GAUGE"); 138 139 TAILQ_INIT(&rm->rm_list); 140 rm->rm_mtx = malloc(sizeof *rm->rm_mtx, M_RMAN, M_NOWAIT | M_ZERO); 141 if (rm->rm_mtx == NULL) 142 return ENOMEM; 143 mtx_init(rm->rm_mtx, "rman", NULL, MTX_DEF); 144 145 mtx_lock(&rman_mtx); 146 TAILQ_INSERT_TAIL(&rman_head, rm, rm_link); 147 mtx_unlock(&rman_mtx); 148 return 0; 149 } 150 151 int 152 rman_manage_region(struct rman *rm, rman_res_t start, rman_res_t end) 153 { 154 struct resource_i *r, *s, *t; 155 int rv = 0; 156 157 DPRINTF("%s: <%s> request: start %#jx, end %#jx\n", __func__, 158 rm->rm_descr, start, end); 159 if (start < rm->rm_start || end > rm->rm_end) 160 return EINVAL; 161 r = int_alloc_resource(M_NOWAIT); 162 if (r == NULL) 163 return ENOMEM; 164 r->r_start = start; 165 r->r_end = end; 166 r->r_rm = rm; 167 168 mtx_lock(rm->rm_mtx); 169 170 /* Skip entries before us. */ 171 TAILQ_FOREACH(s, &rm->rm_list, r_link) { 172 if (s->r_end == ~0) 173 break; 174 if (s->r_end + 1 >= r->r_start) 175 break; 176 } 177 178 /* If we ran off the end of the list, insert at the tail. */ 179 if (s == NULL) { 180 TAILQ_INSERT_TAIL(&rm->rm_list, r, r_link); 181 } else { 182 /* Check for any overlap with the current region. */ 183 if (r->r_start <= s->r_end && r->r_end >= s->r_start) { 184 rv = EBUSY; 185 goto out; 186 } 187 188 /* Check for any overlap with the next region. */ 189 t = TAILQ_NEXT(s, r_link); 190 if (t && r->r_start <= t->r_end && r->r_end >= t->r_start) { 191 rv = EBUSY; 192 goto out; 193 } 194 195 /* 196 * See if this region can be merged with the next region. If 197 * not, clear the pointer. 198 */ 199 if (t && (r->r_end + 1 != t->r_start || t->r_flags != 0)) 200 t = NULL; 201 202 /* See if we can merge with the current region. */ 203 if (s->r_end + 1 == r->r_start && s->r_flags == 0) { 204 /* Can we merge all 3 regions? */ 205 if (t != NULL) { 206 s->r_end = t->r_end; 207 TAILQ_REMOVE(&rm->rm_list, t, r_link); 208 free(r, M_RMAN); 209 free(t, M_RMAN); 210 } else { 211 s->r_end = r->r_end; 212 free(r, M_RMAN); 213 } 214 } else if (t != NULL) { 215 /* Can we merge with just the next region? */ 216 t->r_start = r->r_start; 217 free(r, M_RMAN); 218 } else if (s->r_end < r->r_start) { 219 TAILQ_INSERT_AFTER(&rm->rm_list, s, r, r_link); 220 } else { 221 TAILQ_INSERT_BEFORE(s, r, r_link); 222 } 223 } 224 out: 225 mtx_unlock(rm->rm_mtx); 226 return rv; 227 } 228 229 int 230 rman_init_from_resource(struct rman *rm, struct resource *r) 231 { 232 int rv; 233 234 if ((rv = rman_init(rm)) != 0) 235 return (rv); 236 return (rman_manage_region(rm, r->__r_i->r_start, r->__r_i->r_end)); 237 } 238 239 int 240 rman_fini(struct rman *rm) 241 { 242 struct resource_i *r; 243 244 mtx_lock(rm->rm_mtx); 245 TAILQ_FOREACH(r, &rm->rm_list, r_link) { 246 if (r->r_flags & RF_ALLOCATED) { 247 mtx_unlock(rm->rm_mtx); 248 return EBUSY; 249 } 250 } 251 252 /* 253 * There really should only be one of these if we are in this 254 * state and the code is working properly, but it can't hurt. 255 */ 256 while (!TAILQ_EMPTY(&rm->rm_list)) { 257 r = TAILQ_FIRST(&rm->rm_list); 258 TAILQ_REMOVE(&rm->rm_list, r, r_link); 259 free(r, M_RMAN); 260 } 261 mtx_unlock(rm->rm_mtx); 262 mtx_lock(&rman_mtx); 263 TAILQ_REMOVE(&rman_head, rm, rm_link); 264 mtx_unlock(&rman_mtx); 265 mtx_destroy(rm->rm_mtx); 266 free(rm->rm_mtx, M_RMAN); 267 268 return 0; 269 } 270 271 int 272 rman_first_free_region(struct rman *rm, rman_res_t *start, rman_res_t *end) 273 { 274 struct resource_i *r; 275 276 mtx_lock(rm->rm_mtx); 277 TAILQ_FOREACH(r, &rm->rm_list, r_link) { 278 if (!(r->r_flags & RF_ALLOCATED)) { 279 *start = r->r_start; 280 *end = r->r_end; 281 mtx_unlock(rm->rm_mtx); 282 return (0); 283 } 284 } 285 mtx_unlock(rm->rm_mtx); 286 return (ENOENT); 287 } 288 289 int 290 rman_last_free_region(struct rman *rm, rman_res_t *start, rman_res_t *end) 291 { 292 struct resource_i *r; 293 294 mtx_lock(rm->rm_mtx); 295 TAILQ_FOREACH_REVERSE(r, &rm->rm_list, resource_head, r_link) { 296 if (!(r->r_flags & RF_ALLOCATED)) { 297 *start = r->r_start; 298 *end = r->r_end; 299 mtx_unlock(rm->rm_mtx); 300 return (0); 301 } 302 } 303 mtx_unlock(rm->rm_mtx); 304 return (ENOENT); 305 } 306 307 /* Shrink or extend one or both ends of an allocated resource. */ 308 int 309 rman_adjust_resource(struct resource *rr, rman_res_t start, rman_res_t end) 310 { 311 struct resource_i *r, *s, *t, *new; 312 struct rman *rm; 313 314 /* Not supported for shared resources. */ 315 r = rr->__r_i; 316 if (r->r_flags & RF_SHAREABLE) 317 return (EINVAL); 318 319 /* 320 * This does not support wholesale moving of a resource. At 321 * least part of the desired new range must overlap with the 322 * existing resource. 323 */ 324 if (end < r->r_start || r->r_end < start) 325 return (EINVAL); 326 327 /* 328 * Find the two resource regions immediately adjacent to the 329 * allocated resource. 330 */ 331 rm = r->r_rm; 332 mtx_lock(rm->rm_mtx); 333 #ifdef INVARIANTS 334 TAILQ_FOREACH(s, &rm->rm_list, r_link) { 335 if (s == r) 336 break; 337 } 338 if (s == NULL) 339 panic("resource not in list"); 340 #endif 341 s = TAILQ_PREV(r, resource_head, r_link); 342 t = TAILQ_NEXT(r, r_link); 343 KASSERT(s == NULL || s->r_end + 1 == r->r_start, 344 ("prev resource mismatch")); 345 KASSERT(t == NULL || r->r_end + 1 == t->r_start, 346 ("next resource mismatch")); 347 348 /* 349 * See if the changes are permitted. Shrinking is always allowed, 350 * but growing requires sufficient room in the adjacent region. 351 */ 352 if (start < r->r_start && (s == NULL || (s->r_flags & RF_ALLOCATED) || 353 s->r_start > start)) { 354 mtx_unlock(rm->rm_mtx); 355 return (EBUSY); 356 } 357 if (end > r->r_end && (t == NULL || (t->r_flags & RF_ALLOCATED) || 358 t->r_end < end)) { 359 mtx_unlock(rm->rm_mtx); 360 return (EBUSY); 361 } 362 363 /* 364 * While holding the lock, grow either end of the resource as 365 * needed and shrink either end if the shrinking does not require 366 * allocating a new resource. We can safely drop the lock and then 367 * insert a new range to handle the shrinking case afterwards. 368 */ 369 if (start < r->r_start || 370 (start > r->r_start && s != NULL && !(s->r_flags & RF_ALLOCATED))) { 371 KASSERT(s->r_flags == 0, ("prev is busy")); 372 r->r_start = start; 373 if (s->r_start == start) { 374 TAILQ_REMOVE(&rm->rm_list, s, r_link); 375 free(s, M_RMAN); 376 } else 377 s->r_end = start - 1; 378 } 379 if (end > r->r_end || 380 (end < r->r_end && t != NULL && !(t->r_flags & RF_ALLOCATED))) { 381 KASSERT(t->r_flags == 0, ("next is busy")); 382 r->r_end = end; 383 if (t->r_end == end) { 384 TAILQ_REMOVE(&rm->rm_list, t, r_link); 385 free(t, M_RMAN); 386 } else 387 t->r_start = end + 1; 388 } 389 mtx_unlock(rm->rm_mtx); 390 391 /* 392 * Handle the shrinking cases that require allocating a new 393 * resource to hold the newly-free region. We have to recheck 394 * if we still need this new region after acquiring the lock. 395 */ 396 if (start > r->r_start) { 397 new = int_alloc_resource(M_WAITOK); 398 new->r_start = r->r_start; 399 new->r_end = start - 1; 400 new->r_rm = rm; 401 mtx_lock(rm->rm_mtx); 402 r->r_start = start; 403 s = TAILQ_PREV(r, resource_head, r_link); 404 if (s != NULL && !(s->r_flags & RF_ALLOCATED)) { 405 s->r_end = start - 1; 406 free(new, M_RMAN); 407 } else 408 TAILQ_INSERT_BEFORE(r, new, r_link); 409 mtx_unlock(rm->rm_mtx); 410 } 411 if (end < r->r_end) { 412 new = int_alloc_resource(M_WAITOK); 413 new->r_start = end + 1; 414 new->r_end = r->r_end; 415 new->r_rm = rm; 416 mtx_lock(rm->rm_mtx); 417 r->r_end = end; 418 t = TAILQ_NEXT(r, r_link); 419 if (t != NULL && !(t->r_flags & RF_ALLOCATED)) { 420 t->r_start = end + 1; 421 free(new, M_RMAN); 422 } else 423 TAILQ_INSERT_AFTER(&rm->rm_list, r, new, r_link); 424 mtx_unlock(rm->rm_mtx); 425 } 426 return (0); 427 } 428 429 #define SHARE_TYPE(f) (f & (RF_SHAREABLE | RF_PREFETCHABLE)) 430 431 struct resource * 432 rman_reserve_resource(struct rman *rm, rman_res_t start, rman_res_t end, 433 rman_res_t count, u_int flags, device_t dev) 434 { 435 u_int new_rflags; 436 struct resource_i *r, *s, *rv; 437 rman_res_t rstart, rend, amask; 438 439 rv = NULL; 440 441 DPRINTF("%s: <%s> request: [%#jx, %#jx], length %#jx, flags %x, " 442 "device %s\n", __func__, rm->rm_descr, start, end, count, flags, 443 dev == NULL ? "<null>" : device_get_nameunit(dev)); 444 KASSERT(count != 0, ("%s: attempted to allocate an empty range", 445 __func__)); 446 KASSERT((flags & RF_FIRSTSHARE) == 0, 447 ("invalid flags %#x", flags)); 448 new_rflags = (flags & ~RF_FIRSTSHARE) | RF_ALLOCATED; 449 450 mtx_lock(rm->rm_mtx); 451 452 r = TAILQ_FIRST(&rm->rm_list); 453 if (r == NULL) 454 DPRINTF("NULL list head\n"); 455 else 456 DPRINTF("%s: trying %#jx <%#jx,%#jx>\n", __func__, r->r_end, 457 start, count-1); 458 459 for (r = TAILQ_FIRST(&rm->rm_list); 460 r && r->r_end < start + count - 1; 461 r = TAILQ_NEXT(r, r_link)) 462 DPRINTF("%s: tried %#jx <%#jx,%#jx>\n", __func__, r->r_end, 463 start, count-1); 464 465 if (r == NULL) { 466 DPRINTF("could not find a region\n"); 467 goto out; 468 } 469 470 amask = (1ull << RF_ALIGNMENT(flags)) - 1; 471 KASSERT(start <= RM_MAX_END - amask, 472 ("start (%#jx) + amask (%#jx) would wrap around", start, amask)); 473 474 /* 475 * First try to find an acceptable totally-unshared region. 476 */ 477 for (s = r; s; s = TAILQ_NEXT(s, r_link)) { 478 DPRINTF("considering [%#jx, %#jx]\n", s->r_start, s->r_end); 479 /* 480 * The resource list is sorted, so there is no point in 481 * searching further once r_start is too large. 482 */ 483 if (s->r_start > end - (count - 1)) { 484 DPRINTF("s->r_start (%#jx) + count - 1> end (%#jx)\n", 485 s->r_start, end); 486 break; 487 } 488 if (s->r_start > RM_MAX_END - amask) { 489 DPRINTF("s->r_start (%#jx) + amask (%#jx) too large\n", 490 s->r_start, amask); 491 break; 492 } 493 if (s->r_flags & RF_ALLOCATED) { 494 DPRINTF("region is allocated\n"); 495 continue; 496 } 497 rstart = ummax(s->r_start, start); 498 /* 499 * Try to find a region by adjusting to boundary and alignment 500 * until both conditions are satisfied. This is not an optimal 501 * algorithm, but in most cases it isn't really bad, either. 502 */ 503 do { 504 rstart = (rstart + amask) & ~amask; 505 } while ((rstart & amask) != 0 && rstart < end && 506 rstart < s->r_end); 507 rend = ummin(s->r_end, ummax(rstart + count - 1, end)); 508 if (rstart > rend) { 509 DPRINTF("adjusted start exceeds end\n"); 510 continue; 511 } 512 DPRINTF("truncated region: [%#jx, %#jx]; size %#jx (requested %#jx)\n", 513 rstart, rend, (rend - rstart + 1), count); 514 515 if ((rend - rstart) >= (count - 1)) { 516 DPRINTF("candidate region: [%#jx, %#jx], size %#jx\n", 517 rstart, rend, (rend - rstart + 1)); 518 if ((s->r_end - s->r_start + 1) == count) { 519 DPRINTF("candidate region is entire chunk\n"); 520 rv = s; 521 rv->r_flags = new_rflags; 522 rv->r_dev = dev; 523 goto out; 524 } 525 526 /* 527 * If s->r_start < rstart and 528 * s->r_end > rstart + count - 1, then 529 * we need to split the region into three pieces 530 * (the middle one will get returned to the user). 531 * Otherwise, we are allocating at either the 532 * beginning or the end of s, so we only need to 533 * split it in two. The first case requires 534 * two new allocations; the second requires but one. 535 */ 536 rv = int_alloc_resource(M_NOWAIT); 537 if (rv == NULL) 538 goto out; 539 rv->r_start = rstart; 540 rv->r_end = rstart + count - 1; 541 rv->r_flags = new_rflags; 542 rv->r_dev = dev; 543 rv->r_rm = rm; 544 545 if (s->r_start < rv->r_start && s->r_end > rv->r_end) { 546 DPRINTF("splitting region in three parts: " 547 "[%#jx, %#jx]; [%#jx, %#jx]; [%#jx, %#jx]\n", 548 s->r_start, rv->r_start - 1, 549 rv->r_start, rv->r_end, 550 rv->r_end + 1, s->r_end); 551 /* 552 * We are allocating in the middle. 553 */ 554 r = int_alloc_resource(M_NOWAIT); 555 if (r == NULL) { 556 free(rv, M_RMAN); 557 rv = NULL; 558 goto out; 559 } 560 r->r_start = rv->r_end + 1; 561 r->r_end = s->r_end; 562 r->r_flags = s->r_flags; 563 r->r_rm = rm; 564 s->r_end = rv->r_start - 1; 565 TAILQ_INSERT_AFTER(&rm->rm_list, s, rv, 566 r_link); 567 TAILQ_INSERT_AFTER(&rm->rm_list, rv, r, 568 r_link); 569 } else if (s->r_start == rv->r_start) { 570 DPRINTF("allocating from the beginning\n"); 571 /* 572 * We are allocating at the beginning. 573 */ 574 s->r_start = rv->r_end + 1; 575 TAILQ_INSERT_BEFORE(s, rv, r_link); 576 } else { 577 DPRINTF("allocating at the end\n"); 578 /* 579 * We are allocating at the end. 580 */ 581 s->r_end = rv->r_start - 1; 582 TAILQ_INSERT_AFTER(&rm->rm_list, s, rv, 583 r_link); 584 } 585 goto out; 586 } 587 } 588 589 /* 590 * Now find an acceptable shared region, if the client's requirements 591 * allow sharing. By our implementation restriction, a candidate 592 * region must match exactly by both size and sharing type in order 593 * to be considered compatible with the client's request. (The 594 * former restriction could probably be lifted without too much 595 * additional work, but this does not seem warranted.) 596 */ 597 DPRINTF("no unshared regions found\n"); 598 if ((flags & RF_SHAREABLE) == 0) 599 goto out; 600 601 for (s = r; s && s->r_end <= end; s = TAILQ_NEXT(s, r_link)) { 602 if (SHARE_TYPE(s->r_flags) == SHARE_TYPE(flags) && 603 s->r_start >= start && 604 (s->r_end - s->r_start + 1) == count && 605 (s->r_start & amask) == 0) { 606 rv = int_alloc_resource(M_NOWAIT); 607 if (rv == NULL) 608 goto out; 609 rv->r_start = s->r_start; 610 rv->r_end = s->r_end; 611 rv->r_flags = new_rflags; 612 rv->r_dev = dev; 613 rv->r_rm = rm; 614 if (s->r_sharehead == NULL) { 615 s->r_sharehead = malloc(sizeof *s->r_sharehead, 616 M_RMAN, M_NOWAIT | M_ZERO); 617 if (s->r_sharehead == NULL) { 618 free(rv, M_RMAN); 619 rv = NULL; 620 goto out; 621 } 622 LIST_INIT(s->r_sharehead); 623 LIST_INSERT_HEAD(s->r_sharehead, s, 624 r_sharelink); 625 s->r_flags |= RF_FIRSTSHARE; 626 } 627 rv->r_sharehead = s->r_sharehead; 628 LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink); 629 goto out; 630 } 631 } 632 /* 633 * We couldn't find anything. 634 */ 635 636 out: 637 mtx_unlock(rm->rm_mtx); 638 return (rv == NULL ? NULL : &rv->r_r); 639 } 640 641 int 642 rman_activate_resource(struct resource *re) 643 { 644 struct resource_i *r; 645 struct rman *rm; 646 647 r = re->__r_i; 648 rm = r->r_rm; 649 mtx_lock(rm->rm_mtx); 650 r->r_flags |= RF_ACTIVE; 651 mtx_unlock(rm->rm_mtx); 652 return 0; 653 } 654 655 int 656 rman_deactivate_resource(struct resource *r) 657 { 658 struct rman *rm; 659 660 rm = r->__r_i->r_rm; 661 mtx_lock(rm->rm_mtx); 662 r->__r_i->r_flags &= ~RF_ACTIVE; 663 mtx_unlock(rm->rm_mtx); 664 return 0; 665 } 666 667 static int 668 int_rman_release_resource(struct rman *rm, struct resource_i *r) 669 { 670 struct resource_i *s, *t; 671 672 if (r->r_flags & RF_ACTIVE) 673 r->r_flags &= ~RF_ACTIVE; 674 675 /* 676 * Check for a sharing list first. If there is one, then we don't 677 * have to think as hard. 678 */ 679 if (r->r_sharehead) { 680 /* 681 * If a sharing list exists, then we know there are at 682 * least two sharers. 683 * 684 * If we are in the main circleq, appoint someone else. 685 */ 686 LIST_REMOVE(r, r_sharelink); 687 s = LIST_FIRST(r->r_sharehead); 688 if (r->r_flags & RF_FIRSTSHARE) { 689 s->r_flags |= RF_FIRSTSHARE; 690 TAILQ_INSERT_BEFORE(r, s, r_link); 691 TAILQ_REMOVE(&rm->rm_list, r, r_link); 692 } 693 694 /* 695 * Make sure that the sharing list goes away completely 696 * if the resource is no longer being shared at all. 697 */ 698 if (LIST_NEXT(s, r_sharelink) == NULL) { 699 free(s->r_sharehead, M_RMAN); 700 s->r_sharehead = NULL; 701 s->r_flags &= ~RF_FIRSTSHARE; 702 } 703 goto out; 704 } 705 706 /* 707 * Look at the adjacent resources in the list and see if our 708 * segment can be merged with any of them. If either of the 709 * resources is allocated or is not exactly adjacent then they 710 * cannot be merged with our segment. 711 */ 712 s = TAILQ_PREV(r, resource_head, r_link); 713 if (s != NULL && ((s->r_flags & RF_ALLOCATED) != 0 || 714 s->r_end + 1 != r->r_start)) 715 s = NULL; 716 t = TAILQ_NEXT(r, r_link); 717 if (t != NULL && ((t->r_flags & RF_ALLOCATED) != 0 || 718 r->r_end + 1 != t->r_start)) 719 t = NULL; 720 721 if (s != NULL && t != NULL) { 722 /* 723 * Merge all three segments. 724 */ 725 s->r_end = t->r_end; 726 TAILQ_REMOVE(&rm->rm_list, r, r_link); 727 TAILQ_REMOVE(&rm->rm_list, t, r_link); 728 free(t, M_RMAN); 729 } else if (s != NULL) { 730 /* 731 * Merge previous segment with ours. 732 */ 733 s->r_end = r->r_end; 734 TAILQ_REMOVE(&rm->rm_list, r, r_link); 735 } else if (t != NULL) { 736 /* 737 * Merge next segment with ours. 738 */ 739 t->r_start = r->r_start; 740 TAILQ_REMOVE(&rm->rm_list, r, r_link); 741 } else { 742 /* 743 * At this point, we know there is nothing we 744 * can potentially merge with, because on each 745 * side, there is either nothing there or what is 746 * there is still allocated. In that case, we don't 747 * want to remove r from the list; we simply want to 748 * change it to an unallocated region and return 749 * without freeing anything. 750 */ 751 r->r_flags &= ~RF_ALLOCATED; 752 r->r_dev = NULL; 753 return 0; 754 } 755 756 out: 757 free(r, M_RMAN); 758 return 0; 759 } 760 761 int 762 rman_release_resource(struct resource *re) 763 { 764 int rv; 765 struct resource_i *r; 766 struct rman *rm; 767 768 r = re->__r_i; 769 rm = r->r_rm; 770 mtx_lock(rm->rm_mtx); 771 rv = int_rman_release_resource(rm, r); 772 mtx_unlock(rm->rm_mtx); 773 return (rv); 774 } 775 776 uint32_t 777 rman_make_alignment_flags(uint32_t size) 778 { 779 780 /* 781 * Find the hightest bit set, and add one if more than one bit 782 * set. We're effectively computing the ceil(log2(size)) here. 783 */ 784 if (__predict_false(size == 0)) 785 return (0); 786 return (RF_ALIGNMENT_LOG2(flsl(size - 1))); 787 } 788 789 rman_res_t 790 rman_get_start(const struct resource *r) 791 { 792 793 return (r->__r_i->r_start); 794 } 795 796 rman_res_t 797 rman_get_end(const struct resource *r) 798 { 799 800 return (r->__r_i->r_end); 801 } 802 803 rman_res_t 804 rman_get_size(const struct resource *r) 805 { 806 807 return (r->__r_i->r_end - r->__r_i->r_start + 1); 808 } 809 810 u_int 811 rman_get_flags(const struct resource *r) 812 { 813 814 return (r->__r_i->r_flags); 815 } 816 817 void 818 rman_set_virtual(struct resource *r, void *v) 819 { 820 821 r->__r_i->r_virtual = v; 822 } 823 824 void * 825 rman_get_virtual(const struct resource *r) 826 { 827 828 return (r->__r_i->r_virtual); 829 } 830 831 void 832 rman_set_irq_cookie(struct resource *r, void *c) 833 { 834 835 r->__r_i->r_irq_cookie = c; 836 } 837 838 void * 839 rman_get_irq_cookie(const struct resource *r) 840 { 841 842 return (r->__r_i->r_irq_cookie); 843 } 844 845 void 846 rman_set_bustag(struct resource *r, bus_space_tag_t t) 847 { 848 849 r->r_bustag = t; 850 } 851 852 bus_space_tag_t 853 rman_get_bustag(const struct resource *r) 854 { 855 856 return (r->r_bustag); 857 } 858 859 void 860 rman_set_bushandle(struct resource *r, bus_space_handle_t h) 861 { 862 863 r->r_bushandle = h; 864 } 865 866 bus_space_handle_t 867 rman_get_bushandle(const struct resource *r) 868 { 869 870 return (r->r_bushandle); 871 } 872 873 void 874 rman_set_mapping(struct resource *r, struct resource_map *map) 875 { 876 877 KASSERT(rman_get_size(r) == map->r_size, 878 ("rman_set_mapping: size mismatch")); 879 rman_set_bustag(r, map->r_bustag); 880 rman_set_bushandle(r, map->r_bushandle); 881 rman_set_virtual(r, map->r_vaddr); 882 } 883 884 void 885 rman_get_mapping(const struct resource *r, struct resource_map *map) 886 { 887 888 map->r_bustag = rman_get_bustag(r); 889 map->r_bushandle = rman_get_bushandle(r); 890 map->r_size = rman_get_size(r); 891 map->r_vaddr = rman_get_virtual(r); 892 } 893 894 void 895 rman_set_rid(struct resource *r, int rid) 896 { 897 898 r->__r_i->r_rid = rid; 899 } 900 901 int 902 rman_get_rid(const struct resource *r) 903 { 904 905 return (r->__r_i->r_rid); 906 } 907 908 void 909 rman_set_type(struct resource *r, int type) 910 { 911 r->__r_i->r_type = type; 912 } 913 914 int 915 rman_get_type(const struct resource *r) 916 { 917 return (r->__r_i->r_type); 918 } 919 920 void 921 rman_set_device(struct resource *r, device_t dev) 922 { 923 924 r->__r_i->r_dev = dev; 925 } 926 927 device_t 928 rman_get_device(const struct resource *r) 929 { 930 931 return (r->__r_i->r_dev); 932 } 933 934 int 935 rman_is_region_manager(const struct resource *r, const struct rman *rm) 936 { 937 938 return (r->__r_i->r_rm == rm); 939 } 940 941 /* 942 * Sysctl interface for scanning the resource lists. 943 * 944 * We take two input parameters; the index into the list of resource 945 * managers, and the resource offset into the list. 946 */ 947 static int 948 sysctl_rman(SYSCTL_HANDLER_ARGS) 949 { 950 int *name = (int *)arg1; 951 u_int namelen = arg2; 952 int rman_idx, res_idx; 953 struct rman *rm; 954 struct resource_i *res; 955 struct resource_i *sres; 956 struct u_rman urm; 957 struct u_resource ures; 958 int error; 959 960 if (namelen != 3) 961 return (EINVAL); 962 963 if (bus_data_generation_check(name[0])) 964 return (EINVAL); 965 rman_idx = name[1]; 966 res_idx = name[2]; 967 968 /* 969 * Find the indexed resource manager 970 */ 971 mtx_lock(&rman_mtx); 972 TAILQ_FOREACH(rm, &rman_head, rm_link) { 973 if (rman_idx-- == 0) 974 break; 975 } 976 mtx_unlock(&rman_mtx); 977 if (rm == NULL) 978 return (ENOENT); 979 980 /* 981 * If the resource index is -1, we want details on the 982 * resource manager. 983 */ 984 if (res_idx == -1) { 985 bzero(&urm, sizeof(urm)); 986 urm.rm_handle = (uintptr_t)rm; 987 if (rm->rm_descr != NULL) 988 strlcpy(urm.rm_descr, rm->rm_descr, RM_TEXTLEN); 989 urm.rm_start = rm->rm_start; 990 urm.rm_size = rm->rm_end - rm->rm_start + 1; 991 urm.rm_type = rm->rm_type; 992 993 error = SYSCTL_OUT(req, &urm, sizeof(urm)); 994 return (error); 995 } 996 997 /* 998 * Find the indexed resource and return it. 999 */ 1000 mtx_lock(rm->rm_mtx); 1001 TAILQ_FOREACH(res, &rm->rm_list, r_link) { 1002 if (res->r_sharehead != NULL) { 1003 LIST_FOREACH(sres, res->r_sharehead, r_sharelink) 1004 if (res_idx-- == 0) { 1005 res = sres; 1006 goto found; 1007 } 1008 } 1009 else if (res_idx-- == 0) 1010 goto found; 1011 } 1012 mtx_unlock(rm->rm_mtx); 1013 return (ENOENT); 1014 1015 found: 1016 bzero(&ures, sizeof(ures)); 1017 ures.r_handle = (uintptr_t)res; 1018 ures.r_parent = (uintptr_t)res->r_rm; 1019 ures.r_device = (uintptr_t)res->r_dev; 1020 if (res->r_dev != NULL) { 1021 if (device_get_name(res->r_dev) != NULL) { 1022 snprintf(ures.r_devname, RM_TEXTLEN, 1023 "%s%d", 1024 device_get_name(res->r_dev), 1025 device_get_unit(res->r_dev)); 1026 } else { 1027 strlcpy(ures.r_devname, "nomatch", 1028 RM_TEXTLEN); 1029 } 1030 } else { 1031 ures.r_devname[0] = '\0'; 1032 } 1033 ures.r_start = res->r_start; 1034 ures.r_size = res->r_end - res->r_start + 1; 1035 ures.r_flags = res->r_flags; 1036 1037 mtx_unlock(rm->rm_mtx); 1038 error = SYSCTL_OUT(req, &ures, sizeof(ures)); 1039 return (error); 1040 } 1041 1042 static SYSCTL_NODE(_hw_bus, OID_AUTO, rman, CTLFLAG_RD | CTLFLAG_MPSAFE, 1043 sysctl_rman, 1044 "kernel resource manager"); 1045 1046 #ifdef DDB 1047 static void 1048 dump_rman_header(struct rman *rm) 1049 { 1050 1051 if (db_pager_quit) 1052 return; 1053 db_printf("rman %p: %s (0x%jx-0x%jx full range)\n", 1054 rm, rm->rm_descr, (rman_res_t)rm->rm_start, (rman_res_t)rm->rm_end); 1055 } 1056 1057 static void 1058 dump_rman(struct rman *rm) 1059 { 1060 struct resource_i *r; 1061 const char *devname; 1062 1063 if (db_pager_quit) 1064 return; 1065 TAILQ_FOREACH(r, &rm->rm_list, r_link) { 1066 if (r->r_dev != NULL) { 1067 devname = device_get_nameunit(r->r_dev); 1068 if (devname == NULL) 1069 devname = "nomatch"; 1070 } else 1071 devname = NULL; 1072 db_printf(" 0x%jx-0x%jx (RID=%d) ", 1073 r->r_start, r->r_end, r->r_rid); 1074 if (devname != NULL) 1075 db_printf("(%s)\n", devname); 1076 else 1077 db_printf("----\n"); 1078 if (db_pager_quit) 1079 return; 1080 } 1081 } 1082 1083 DB_SHOW_COMMAND(rman, db_show_rman) 1084 { 1085 1086 if (have_addr) { 1087 dump_rman_header((struct rman *)addr); 1088 dump_rman((struct rman *)addr); 1089 } 1090 } 1091 1092 DB_SHOW_COMMAND_FLAGS(rmans, db_show_rmans, DB_CMD_MEMSAFE) 1093 { 1094 struct rman *rm; 1095 1096 TAILQ_FOREACH(rm, &rman_head, rm_link) { 1097 dump_rman_header(rm); 1098 } 1099 } 1100 1101 DB_SHOW_ALL_COMMAND(rman, db_show_all_rman) 1102 { 1103 struct rman *rm; 1104 1105 TAILQ_FOREACH(rm, &rman_head, rm_link) { 1106 dump_rman_header(rm); 1107 dump_rman(rm); 1108 } 1109 } 1110 DB_SHOW_ALIAS_FLAGS(allrman, db_show_all_rman, DB_CMD_MEMSAFE); 1111 #endif 1112