1 /*- 2 * Copyright 1998 Massachusetts Institute of Technology 3 * 4 * Permission to use, copy, modify, and distribute this software and 5 * its documentation for any purpose and without fee is hereby 6 * granted, provided that both the above copyright notice and this 7 * permission notice appear in all copies, that both the above 8 * copyright notice and this permission notice appear in all 9 * supporting documentation, and that the name of M.I.T. not be used 10 * in advertising or publicity pertaining to distribution of the 11 * software without specific, written prior permission. M.I.T. makes 12 * no representations about the suitability of this software for any 13 * purpose. It is provided "as is" without express or implied 14 * warranty. 15 * 16 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS 17 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE, 18 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT 20 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF 23 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 25 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 26 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 /* 31 * The kernel resource manager. This code is responsible for keeping track 32 * of hardware resources which are apportioned out to various drivers. 33 * It does not actually assign those resources, and it is not expected 34 * that end-device drivers will call into this code directly. Rather, 35 * the code which implements the buses that those devices are attached to, 36 * and the code which manages CPU resources, will call this code, and the 37 * end-device drivers will make upcalls to that code to actually perform 38 * the allocation. 39 * 40 * There are two sorts of resources managed by this code. The first is 41 * the more familiar array (RMAN_ARRAY) type; resources in this class 42 * consist of a sequence of individually-allocatable objects which have 43 * been numbered in some well-defined order. Most of the resources 44 * are of this type, as it is the most familiar. The second type is 45 * called a gauge (RMAN_GAUGE), and models fungible resources (i.e., 46 * resources in which each instance is indistinguishable from every 47 * other instance). The principal anticipated application of gauges 48 * is in the context of power consumption, where a bus may have a specific 49 * power budget which all attached devices share. RMAN_GAUGE is not 50 * implemented yet. 51 * 52 * For array resources, we make one simplifying assumption: two clients 53 * sharing the same resource must use the same range of indices. That 54 * is to say, sharing of overlapping-but-not-identical regions is not 55 * permitted. 56 */ 57 58 #include <sys/cdefs.h> 59 __FBSDID("$FreeBSD$"); 60 61 #include <sys/param.h> 62 #include <sys/systm.h> 63 #include <sys/kernel.h> 64 #include <sys/lock.h> 65 #include <sys/malloc.h> 66 #include <sys/mutex.h> 67 #include <sys/bus.h> /* XXX debugging */ 68 #include <machine/bus.h> 69 #include <sys/rman.h> 70 #include <sys/sysctl.h> 71 72 /* 73 * We use a linked list rather than a bitmap because we need to be able to 74 * represent potentially huge objects (like all of a processor's physical 75 * address space). That is also why the indices are defined to have type 76 * `unsigned long' -- that being the largest integral type in ISO C (1990). 77 * The 1999 version of C allows `long long'; we may need to switch to that 78 * at some point in the future, particularly if we want to support 36-bit 79 * addresses on IA32 hardware. 80 */ 81 struct resource_i { 82 struct resource r_r; 83 TAILQ_ENTRY(resource_i) r_link; 84 LIST_ENTRY(resource_i) r_sharelink; 85 LIST_HEAD(, resource_i) *r_sharehead; 86 u_long r_start; /* index of the first entry in this resource */ 87 u_long r_end; /* index of the last entry (inclusive) */ 88 u_int r_flags; 89 void *r_virtual; /* virtual address of this resource */ 90 struct device *r_dev; /* device which has allocated this resource */ 91 struct rman *r_rm; /* resource manager from whence this came */ 92 int r_rid; /* optional rid for this resource. */ 93 }; 94 95 int rman_debug = 0; 96 TUNABLE_INT("debug.rman_debug", &rman_debug); 97 SYSCTL_INT(_debug, OID_AUTO, rman_debug, CTLFLAG_RW, 98 &rman_debug, 0, "rman debug"); 99 100 #define DPRINTF(params) if (rman_debug) printf params 101 102 static MALLOC_DEFINE(M_RMAN, "rman", "Resource manager"); 103 104 struct rman_head rman_head; 105 static struct mtx rman_mtx; /* mutex to protect rman_head */ 106 static int int_rman_activate_resource(struct rman *rm, struct resource_i *r, 107 struct resource_i **whohas); 108 static int int_rman_deactivate_resource(struct resource_i *r); 109 static int int_rman_release_resource(struct rman *rm, struct resource_i *r); 110 111 static __inline struct resource_i * 112 int_alloc_resource(int malloc_flag) 113 { 114 struct resource_i *r; 115 116 r = malloc(sizeof *r, M_RMAN, malloc_flag | M_ZERO); 117 if (r != NULL) { 118 r->r_r.__r_i = r; 119 } 120 return (r); 121 } 122 123 int 124 rman_init(struct rman *rm) 125 { 126 static int once = 0; 127 128 if (once == 0) { 129 once = 1; 130 TAILQ_INIT(&rman_head); 131 mtx_init(&rman_mtx, "rman head", NULL, MTX_DEF); 132 } 133 134 if (rm->rm_type == RMAN_UNINIT) 135 panic("rman_init"); 136 if (rm->rm_type == RMAN_GAUGE) 137 panic("implement RMAN_GAUGE"); 138 139 TAILQ_INIT(&rm->rm_list); 140 rm->rm_mtx = malloc(sizeof *rm->rm_mtx, M_RMAN, M_NOWAIT | M_ZERO); 141 if (rm->rm_mtx == NULL) 142 return ENOMEM; 143 mtx_init(rm->rm_mtx, "rman", NULL, MTX_DEF); 144 145 mtx_lock(&rman_mtx); 146 TAILQ_INSERT_TAIL(&rman_head, rm, rm_link); 147 mtx_unlock(&rman_mtx); 148 return 0; 149 } 150 151 /* 152 * NB: this interface is not robust against programming errors which 153 * add multiple copies of the same region. 154 */ 155 int 156 rman_manage_region(struct rman *rm, u_long start, u_long end) 157 { 158 struct resource_i *r, *s; 159 160 DPRINTF(("rman_manage_region: <%s> request: start %#lx, end %#lx\n", 161 rm->rm_descr, start, end)); 162 r = int_alloc_resource(M_NOWAIT); 163 if (r == NULL) 164 return ENOMEM; 165 r->r_start = start; 166 r->r_end = end; 167 r->r_rm = rm; 168 169 mtx_lock(rm->rm_mtx); 170 for (s = TAILQ_FIRST(&rm->rm_list); 171 s && s->r_end < r->r_start; 172 s = TAILQ_NEXT(s, r_link)) 173 ; 174 175 if (s == NULL) { 176 TAILQ_INSERT_TAIL(&rm->rm_list, r, r_link); 177 } else { 178 TAILQ_INSERT_BEFORE(s, r, r_link); 179 } 180 181 mtx_unlock(rm->rm_mtx); 182 return 0; 183 } 184 185 int 186 rman_init_from_resource(struct rman *rm, struct resource *r) 187 { 188 int rv; 189 190 if ((rv = rman_init(rm)) != 0) 191 return (rv); 192 return (rman_manage_region(rm, r->__r_i->r_start, r->__r_i->r_end)); 193 } 194 195 int 196 rman_fini(struct rman *rm) 197 { 198 struct resource_i *r; 199 200 mtx_lock(rm->rm_mtx); 201 TAILQ_FOREACH(r, &rm->rm_list, r_link) { 202 if (r->r_flags & RF_ALLOCATED) { 203 mtx_unlock(rm->rm_mtx); 204 return EBUSY; 205 } 206 } 207 208 /* 209 * There really should only be one of these if we are in this 210 * state and the code is working properly, but it can't hurt. 211 */ 212 while (!TAILQ_EMPTY(&rm->rm_list)) { 213 r = TAILQ_FIRST(&rm->rm_list); 214 TAILQ_REMOVE(&rm->rm_list, r, r_link); 215 free(r, M_RMAN); 216 } 217 mtx_unlock(rm->rm_mtx); 218 mtx_lock(&rman_mtx); 219 TAILQ_REMOVE(&rman_head, rm, rm_link); 220 mtx_unlock(&rman_mtx); 221 mtx_destroy(rm->rm_mtx); 222 free(rm->rm_mtx, M_RMAN); 223 224 return 0; 225 } 226 227 struct resource * 228 rman_reserve_resource_bound(struct rman *rm, u_long start, u_long end, 229 u_long count, u_long bound, u_int flags, 230 struct device *dev) 231 { 232 u_int want_activate; 233 struct resource_i *r, *s, *rv; 234 u_long rstart, rend, amask, bmask; 235 236 rv = NULL; 237 238 DPRINTF(("rman_reserve_resource_bound: <%s> request: [%#lx, %#lx], " 239 "length %#lx, flags %u, device %s\n", rm->rm_descr, start, end, 240 count, flags, 241 dev == NULL ? "<null>" : device_get_nameunit(dev))); 242 want_activate = (flags & RF_ACTIVE); 243 flags &= ~RF_ACTIVE; 244 245 mtx_lock(rm->rm_mtx); 246 247 for (r = TAILQ_FIRST(&rm->rm_list); 248 r && r->r_end < start; 249 r = TAILQ_NEXT(r, r_link)) 250 ; 251 252 if (r == NULL) { 253 DPRINTF(("could not find a region\n")); 254 goto out; 255 } 256 257 amask = (1ul << RF_ALIGNMENT(flags)) - 1; 258 /* If bound is 0, bmask will also be 0 */ 259 bmask = ~(bound - 1); 260 /* 261 * First try to find an acceptable totally-unshared region. 262 */ 263 for (s = r; s; s = TAILQ_NEXT(s, r_link)) { 264 DPRINTF(("considering [%#lx, %#lx]\n", s->r_start, s->r_end)); 265 if (s->r_start + count - 1 > end) { 266 DPRINTF(("s->r_start (%#lx) + count - 1> end (%#lx)\n", 267 s->r_start, end)); 268 break; 269 } 270 if (s->r_flags & RF_ALLOCATED) { 271 DPRINTF(("region is allocated\n")); 272 continue; 273 } 274 rstart = ulmax(s->r_start, start); 275 /* 276 * Try to find a region by adjusting to boundary and alignment 277 * until both conditions are satisfied. This is not an optimal 278 * algorithm, but in most cases it isn't really bad, either. 279 */ 280 do { 281 rstart = (rstart + amask) & ~amask; 282 if (((rstart ^ (rstart + count - 1)) & bmask) != 0) 283 rstart += bound - (rstart & ~bmask); 284 } while ((rstart & amask) != 0 && rstart < end && 285 rstart < s->r_end); 286 rend = ulmin(s->r_end, ulmax(rstart + count - 1, end)); 287 if (rstart > rend) { 288 DPRINTF(("adjusted start exceeds end\n")); 289 continue; 290 } 291 DPRINTF(("truncated region: [%#lx, %#lx]; size %#lx (requested %#lx)\n", 292 rstart, rend, (rend - rstart + 1), count)); 293 294 if ((rend - rstart + 1) >= count) { 295 DPRINTF(("candidate region: [%#lx, %#lx], size %#lx\n", 296 rstart, rend, (rend - rstart + 1))); 297 if ((s->r_end - s->r_start + 1) == count) { 298 DPRINTF(("candidate region is entire chunk\n")); 299 rv = s; 300 rv->r_flags |= RF_ALLOCATED | flags; 301 rv->r_dev = dev; 302 goto out; 303 } 304 305 /* 306 * If s->r_start < rstart and 307 * s->r_end > rstart + count - 1, then 308 * we need to split the region into three pieces 309 * (the middle one will get returned to the user). 310 * Otherwise, we are allocating at either the 311 * beginning or the end of s, so we only need to 312 * split it in two. The first case requires 313 * two new allocations; the second requires but one. 314 */ 315 rv = int_alloc_resource(M_NOWAIT); 316 if (rv == NULL) 317 goto out; 318 rv->r_start = rstart; 319 rv->r_end = rstart + count - 1; 320 rv->r_flags = flags | RF_ALLOCATED; 321 rv->r_dev = dev; 322 rv->r_rm = rm; 323 324 if (s->r_start < rv->r_start && s->r_end > rv->r_end) { 325 DPRINTF(("splitting region in three parts: " 326 "[%#lx, %#lx]; [%#lx, %#lx]; [%#lx, %#lx]\n", 327 s->r_start, rv->r_start - 1, 328 rv->r_start, rv->r_end, 329 rv->r_end + 1, s->r_end)); 330 /* 331 * We are allocating in the middle. 332 */ 333 r = int_alloc_resource(M_NOWAIT); 334 if (r == NULL) { 335 free(rv, M_RMAN); 336 rv = NULL; 337 goto out; 338 } 339 r->r_start = rv->r_end + 1; 340 r->r_end = s->r_end; 341 r->r_flags = s->r_flags; 342 r->r_rm = rm; 343 s->r_end = rv->r_start - 1; 344 TAILQ_INSERT_AFTER(&rm->rm_list, s, rv, 345 r_link); 346 TAILQ_INSERT_AFTER(&rm->rm_list, rv, r, 347 r_link); 348 } else if (s->r_start == rv->r_start) { 349 DPRINTF(("allocating from the beginning\n")); 350 /* 351 * We are allocating at the beginning. 352 */ 353 s->r_start = rv->r_end + 1; 354 TAILQ_INSERT_BEFORE(s, rv, r_link); 355 } else { 356 DPRINTF(("allocating at the end\n")); 357 /* 358 * We are allocating at the end. 359 */ 360 s->r_end = rv->r_start - 1; 361 TAILQ_INSERT_AFTER(&rm->rm_list, s, rv, 362 r_link); 363 } 364 goto out; 365 } 366 } 367 368 /* 369 * Now find an acceptable shared region, if the client's requirements 370 * allow sharing. By our implementation restriction, a candidate 371 * region must match exactly by both size and sharing type in order 372 * to be considered compatible with the client's request. (The 373 * former restriction could probably be lifted without too much 374 * additional work, but this does not seem warranted.) 375 */ 376 DPRINTF(("no unshared regions found\n")); 377 if ((flags & (RF_SHAREABLE | RF_TIMESHARE)) == 0) 378 goto out; 379 380 for (s = r; s; s = TAILQ_NEXT(s, r_link)) { 381 if (s->r_start > end) 382 break; 383 if ((s->r_flags & flags) != flags) 384 continue; 385 rstart = ulmax(s->r_start, start); 386 rend = ulmin(s->r_end, ulmax(start + count - 1, end)); 387 if (s->r_start >= start && s->r_end <= end 388 && (s->r_end - s->r_start + 1) == count && 389 (s->r_start & amask) == 0 && 390 ((s->r_start ^ s->r_end) & bmask) == 0) { 391 rv = int_alloc_resource(M_NOWAIT); 392 if (rv == NULL) 393 goto out; 394 rv->r_start = s->r_start; 395 rv->r_end = s->r_end; 396 rv->r_flags = s->r_flags & 397 (RF_ALLOCATED | RF_SHAREABLE | RF_TIMESHARE); 398 rv->r_dev = dev; 399 rv->r_rm = rm; 400 if (s->r_sharehead == NULL) { 401 s->r_sharehead = malloc(sizeof *s->r_sharehead, 402 M_RMAN, M_NOWAIT | M_ZERO); 403 if (s->r_sharehead == NULL) { 404 free(rv, M_RMAN); 405 rv = NULL; 406 goto out; 407 } 408 LIST_INIT(s->r_sharehead); 409 LIST_INSERT_HEAD(s->r_sharehead, s, 410 r_sharelink); 411 s->r_flags |= RF_FIRSTSHARE; 412 } 413 rv->r_sharehead = s->r_sharehead; 414 LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink); 415 goto out; 416 } 417 } 418 419 /* 420 * We couldn't find anything. 421 */ 422 out: 423 /* 424 * If the user specified RF_ACTIVE in the initial flags, 425 * which is reflected in `want_activate', we attempt to atomically 426 * activate the resource. If this fails, we release the resource 427 * and indicate overall failure. (This behavior probably doesn't 428 * make sense for RF_TIMESHARE-type resources.) 429 */ 430 if (rv && want_activate) { 431 struct resource_i *whohas; 432 if (int_rman_activate_resource(rm, rv, &whohas)) { 433 int_rman_release_resource(rm, rv); 434 rv = NULL; 435 } 436 } 437 438 mtx_unlock(rm->rm_mtx); 439 return (rv == NULL ? NULL : &rv->r_r); 440 } 441 442 struct resource * 443 rman_reserve_resource(struct rman *rm, u_long start, u_long end, u_long count, 444 u_int flags, struct device *dev) 445 { 446 447 return (rman_reserve_resource_bound(rm, start, end, count, 0, flags, 448 dev)); 449 } 450 451 static int 452 int_rman_activate_resource(struct rman *rm, struct resource_i *r, 453 struct resource_i **whohas) 454 { 455 struct resource_i *s; 456 int ok; 457 458 /* 459 * If we are not timesharing, then there is nothing much to do. 460 * If we already have the resource, then there is nothing at all to do. 461 * If we are not on a sharing list with anybody else, then there is 462 * little to do. 463 */ 464 if ((r->r_flags & RF_TIMESHARE) == 0 465 || (r->r_flags & RF_ACTIVE) != 0 466 || r->r_sharehead == NULL) { 467 r->r_flags |= RF_ACTIVE; 468 return 0; 469 } 470 471 ok = 1; 472 for (s = LIST_FIRST(r->r_sharehead); s && ok; 473 s = LIST_NEXT(s, r_sharelink)) { 474 if ((s->r_flags & RF_ACTIVE) != 0) { 475 ok = 0; 476 *whohas = s; 477 } 478 } 479 if (ok) { 480 r->r_flags |= RF_ACTIVE; 481 return 0; 482 } 483 return EBUSY; 484 } 485 486 int 487 rman_activate_resource(struct resource *re) 488 { 489 int rv; 490 struct resource_i *r, *whohas; 491 struct rman *rm; 492 493 r = re->__r_i; 494 rm = r->r_rm; 495 mtx_lock(rm->rm_mtx); 496 rv = int_rman_activate_resource(rm, r, &whohas); 497 mtx_unlock(rm->rm_mtx); 498 return rv; 499 } 500 501 int 502 rman_await_resource(struct resource *re, int pri, int timo) 503 { 504 int rv; 505 struct resource_i *r, *whohas; 506 struct rman *rm; 507 508 r = re->__r_i; 509 rm = r->r_rm; 510 mtx_lock(rm->rm_mtx); 511 for (;;) { 512 rv = int_rman_activate_resource(rm, r, &whohas); 513 if (rv != EBUSY) 514 return (rv); /* returns with mutex held */ 515 516 if (r->r_sharehead == NULL) 517 panic("rman_await_resource"); 518 whohas->r_flags |= RF_WANTED; 519 rv = msleep(r->r_sharehead, rm->rm_mtx, pri, "rmwait", timo); 520 if (rv) { 521 mtx_unlock(rm->rm_mtx); 522 return (rv); 523 } 524 } 525 } 526 527 static int 528 int_rman_deactivate_resource(struct resource_i *r) 529 { 530 531 r->r_flags &= ~RF_ACTIVE; 532 if (r->r_flags & RF_WANTED) { 533 r->r_flags &= ~RF_WANTED; 534 wakeup(r->r_sharehead); 535 } 536 return 0; 537 } 538 539 int 540 rman_deactivate_resource(struct resource *r) 541 { 542 struct rman *rm; 543 544 rm = r->__r_i->r_rm; 545 mtx_lock(rm->rm_mtx); 546 int_rman_deactivate_resource(r->__r_i); 547 mtx_unlock(rm->rm_mtx); 548 return 0; 549 } 550 551 static int 552 int_rman_release_resource(struct rman *rm, struct resource_i *r) 553 { 554 struct resource_i *s, *t; 555 556 if (r->r_flags & RF_ACTIVE) 557 int_rman_deactivate_resource(r); 558 559 /* 560 * Check for a sharing list first. If there is one, then we don't 561 * have to think as hard. 562 */ 563 if (r->r_sharehead) { 564 /* 565 * If a sharing list exists, then we know there are at 566 * least two sharers. 567 * 568 * If we are in the main circleq, appoint someone else. 569 */ 570 LIST_REMOVE(r, r_sharelink); 571 s = LIST_FIRST(r->r_sharehead); 572 if (r->r_flags & RF_FIRSTSHARE) { 573 s->r_flags |= RF_FIRSTSHARE; 574 TAILQ_INSERT_BEFORE(r, s, r_link); 575 TAILQ_REMOVE(&rm->rm_list, r, r_link); 576 } 577 578 /* 579 * Make sure that the sharing list goes away completely 580 * if the resource is no longer being shared at all. 581 */ 582 if (LIST_NEXT(s, r_sharelink) == NULL) { 583 free(s->r_sharehead, M_RMAN); 584 s->r_sharehead = NULL; 585 s->r_flags &= ~RF_FIRSTSHARE; 586 } 587 goto out; 588 } 589 590 /* 591 * Look at the adjacent resources in the list and see if our 592 * segment can be merged with any of them. If either of the 593 * resources is allocated or is not exactly adjacent then they 594 * cannot be merged with our segment. 595 */ 596 s = TAILQ_PREV(r, resource_head, r_link); 597 if (s != NULL && ((s->r_flags & RF_ALLOCATED) != 0 || 598 s->r_end + 1 != r->r_start)) 599 s = NULL; 600 t = TAILQ_NEXT(r, r_link); 601 if (t != NULL && ((t->r_flags & RF_ALLOCATED) != 0 || 602 r->r_end + 1 != t->r_start)) 603 t = NULL; 604 605 if (s != NULL && t != NULL) { 606 /* 607 * Merge all three segments. 608 */ 609 s->r_end = t->r_end; 610 TAILQ_REMOVE(&rm->rm_list, r, r_link); 611 TAILQ_REMOVE(&rm->rm_list, t, r_link); 612 free(t, M_RMAN); 613 } else if (s != NULL) { 614 /* 615 * Merge previous segment with ours. 616 */ 617 s->r_end = r->r_end; 618 TAILQ_REMOVE(&rm->rm_list, r, r_link); 619 } else if (t != NULL) { 620 /* 621 * Merge next segment with ours. 622 */ 623 t->r_start = r->r_start; 624 TAILQ_REMOVE(&rm->rm_list, r, r_link); 625 } else { 626 /* 627 * At this point, we know there is nothing we 628 * can potentially merge with, because on each 629 * side, there is either nothing there or what is 630 * there is still allocated. In that case, we don't 631 * want to remove r from the list; we simply want to 632 * change it to an unallocated region and return 633 * without freeing anything. 634 */ 635 r->r_flags &= ~RF_ALLOCATED; 636 return 0; 637 } 638 639 out: 640 free(r, M_RMAN); 641 return 0; 642 } 643 644 int 645 rman_release_resource(struct resource *re) 646 { 647 int rv; 648 struct resource_i *r; 649 struct rman *rm; 650 651 r = re->__r_i; 652 rm = r->r_rm; 653 mtx_lock(rm->rm_mtx); 654 rv = int_rman_release_resource(rm, r); 655 mtx_unlock(rm->rm_mtx); 656 return (rv); 657 } 658 659 uint32_t 660 rman_make_alignment_flags(uint32_t size) 661 { 662 int i; 663 664 /* 665 * Find the hightest bit set, and add one if more than one bit 666 * set. We're effectively computing the ceil(log2(size)) here. 667 */ 668 for (i = 31; i > 0; i--) 669 if ((1 << i) & size) 670 break; 671 if (~(1 << i) & size) 672 i++; 673 674 return(RF_ALIGNMENT_LOG2(i)); 675 } 676 677 u_long 678 rman_get_start(struct resource *r) 679 { 680 return (r->__r_i->r_start); 681 } 682 683 u_long 684 rman_get_end(struct resource *r) 685 { 686 return (r->__r_i->r_end); 687 } 688 689 u_long 690 rman_get_size(struct resource *r) 691 { 692 return (r->__r_i->r_end - r->__r_i->r_start + 1); 693 } 694 695 u_int 696 rman_get_flags(struct resource *r) 697 { 698 return (r->__r_i->r_flags); 699 } 700 701 void 702 rman_set_virtual(struct resource *r, void *v) 703 { 704 r->__r_i->r_virtual = v; 705 } 706 707 void * 708 rman_get_virtual(struct resource *r) 709 { 710 return (r->__r_i->r_virtual); 711 } 712 713 void 714 rman_set_bustag(struct resource *r, bus_space_tag_t t) 715 { 716 r->r_bustag = t; 717 } 718 719 bus_space_tag_t 720 rman_get_bustag(struct resource *r) 721 { 722 return (r->r_bustag); 723 } 724 725 void 726 rman_set_bushandle(struct resource *r, bus_space_handle_t h) 727 { 728 r->r_bushandle = h; 729 } 730 731 bus_space_handle_t 732 rman_get_bushandle(struct resource *r) 733 { 734 return (r->r_bushandle); 735 } 736 737 void 738 rman_set_rid(struct resource *r, int rid) 739 { 740 r->__r_i->r_rid = rid; 741 } 742 743 void 744 rman_set_start(struct resource *r, u_long start) 745 { 746 r->__r_i->r_start = start; 747 } 748 749 void 750 rman_set_end(struct resource *r, u_long end) 751 { 752 r->__r_i->r_end = end; 753 } 754 755 int 756 rman_get_rid(struct resource *r) 757 { 758 return (r->__r_i->r_rid); 759 } 760 761 struct device * 762 rman_get_device(struct resource *r) 763 { 764 return (r->__r_i->r_dev); 765 } 766 767 void 768 rman_set_device(struct resource *r, struct device *dev) 769 { 770 r->__r_i->r_dev = dev; 771 } 772 773 int 774 rman_is_region_manager(struct resource *r, struct rman *rm) 775 { 776 777 return (r->__r_i->r_rm == rm); 778 } 779 780 /* 781 * Sysctl interface for scanning the resource lists. 782 * 783 * We take two input parameters; the index into the list of resource 784 * managers, and the resource offset into the list. 785 */ 786 static int 787 sysctl_rman(SYSCTL_HANDLER_ARGS) 788 { 789 int *name = (int *)arg1; 790 u_int namelen = arg2; 791 int rman_idx, res_idx; 792 struct rman *rm; 793 struct resource_i *res; 794 struct u_rman urm; 795 struct u_resource ures; 796 int error; 797 798 if (namelen != 3) 799 return (EINVAL); 800 801 if (bus_data_generation_check(name[0])) 802 return (EINVAL); 803 rman_idx = name[1]; 804 res_idx = name[2]; 805 806 /* 807 * Find the indexed resource manager 808 */ 809 mtx_lock(&rman_mtx); 810 TAILQ_FOREACH(rm, &rman_head, rm_link) { 811 if (rman_idx-- == 0) 812 break; 813 } 814 mtx_unlock(&rman_mtx); 815 if (rm == NULL) 816 return (ENOENT); 817 818 /* 819 * If the resource index is -1, we want details on the 820 * resource manager. 821 */ 822 if (res_idx == -1) { 823 bzero(&urm, sizeof(urm)); 824 urm.rm_handle = (uintptr_t)rm; 825 strlcpy(urm.rm_descr, rm->rm_descr, RM_TEXTLEN); 826 urm.rm_start = rm->rm_start; 827 urm.rm_size = rm->rm_end - rm->rm_start + 1; 828 urm.rm_type = rm->rm_type; 829 830 error = SYSCTL_OUT(req, &urm, sizeof(urm)); 831 return (error); 832 } 833 834 /* 835 * Find the indexed resource and return it. 836 */ 837 mtx_lock(rm->rm_mtx); 838 TAILQ_FOREACH(res, &rm->rm_list, r_link) { 839 if (res_idx-- == 0) { 840 bzero(&ures, sizeof(ures)); 841 ures.r_handle = (uintptr_t)res; 842 ures.r_parent = (uintptr_t)res->r_rm; 843 ures.r_device = (uintptr_t)res->r_dev; 844 if (res->r_dev != NULL) { 845 if (device_get_name(res->r_dev) != NULL) { 846 snprintf(ures.r_devname, RM_TEXTLEN, 847 "%s%d", 848 device_get_name(res->r_dev), 849 device_get_unit(res->r_dev)); 850 } else { 851 strlcpy(ures.r_devname, "nomatch", 852 RM_TEXTLEN); 853 } 854 } else { 855 ures.r_devname[0] = '\0'; 856 } 857 ures.r_start = res->r_start; 858 ures.r_size = res->r_end - res->r_start + 1; 859 ures.r_flags = res->r_flags; 860 861 mtx_unlock(rm->rm_mtx); 862 error = SYSCTL_OUT(req, &ures, sizeof(ures)); 863 return (error); 864 } 865 } 866 mtx_unlock(rm->rm_mtx); 867 return (ENOENT); 868 } 869 870 SYSCTL_NODE(_hw_bus, OID_AUTO, rman, CTLFLAG_RD, sysctl_rman, 871 "kernel resource manager"); 872