1 /*- 2 * Copyright 1998 Massachusetts Institute of Technology 3 * 4 * Permission to use, copy, modify, and distribute this software and 5 * its documentation for any purpose and without fee is hereby 6 * granted, provided that both the above copyright notice and this 7 * permission notice appear in all copies, that both the above 8 * copyright notice and this permission notice appear in all 9 * supporting documentation, and that the name of M.I.T. not be used 10 * in advertising or publicity pertaining to distribution of the 11 * software without specific, written prior permission. M.I.T. makes 12 * no representations about the suitability of this software for any 13 * purpose. It is provided "as is" without express or implied 14 * warranty. 15 * 16 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS 17 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE, 18 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT 20 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF 23 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 25 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 26 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 /* 31 * The kernel resource manager. This code is responsible for keeping track 32 * of hardware resources which are apportioned out to various drivers. 33 * It does not actually assign those resources, and it is not expected 34 * that end-device drivers will call into this code directly. Rather, 35 * the code which implements the buses that those devices are attached to, 36 * and the code which manages CPU resources, will call this code, and the 37 * end-device drivers will make upcalls to that code to actually perform 38 * the allocation. 39 * 40 * There are two sorts of resources managed by this code. The first is 41 * the more familiar array (RMAN_ARRAY) type; resources in this class 42 * consist of a sequence of individually-allocatable objects which have 43 * been numbered in some well-defined order. Most of the resources 44 * are of this type, as it is the most familiar. The second type is 45 * called a gauge (RMAN_GAUGE), and models fungible resources (i.e., 46 * resources in which each instance is indistinguishable from every 47 * other instance). The principal anticipated application of gauges 48 * is in the context of power consumption, where a bus may have a specific 49 * power budget which all attached devices share. RMAN_GAUGE is not 50 * implemented yet. 51 * 52 * For array resources, we make one simplifying assumption: two clients 53 * sharing the same resource must use the same range of indices. That 54 * is to say, sharing of overlapping-but-not-identical regions is not 55 * permitted. 56 */ 57 58 #include "opt_ddb.h" 59 60 #include <sys/param.h> 61 #include <sys/systm.h> 62 #include <sys/kernel.h> 63 #include <sys/limits.h> 64 #include <sys/lock.h> 65 #include <sys/malloc.h> 66 #include <sys/mutex.h> 67 #include <sys/bus.h> /* XXX debugging */ 68 #include <machine/bus.h> 69 #include <sys/rman.h> 70 #include <sys/sysctl.h> 71 72 #ifdef DDB 73 #include <ddb/ddb.h> 74 #endif 75 76 /* 77 * We use a linked list rather than a bitmap because we need to be able to 78 * represent potentially huge objects (like all of a processor's physical 79 * address space). 80 */ 81 struct resource_i { 82 struct resource r_r; 83 TAILQ_ENTRY(resource_i) r_link; 84 LIST_ENTRY(resource_i) r_sharelink; 85 LIST_HEAD(, resource_i) *r_sharehead; 86 rman_res_t r_start; /* index of the first entry in this resource */ 87 rman_res_t r_end; /* index of the last entry (inclusive) */ 88 u_int r_flags; 89 void *r_virtual; /* virtual address of this resource */ 90 void *r_irq_cookie; /* interrupt cookie for this (interrupt) resource */ 91 device_t r_dev; /* device which has allocated this resource */ 92 struct rman *r_rm; /* resource manager from whence this came */ 93 int r_rid; /* optional rid for this resource. */ 94 }; 95 96 static int rman_debug = 0; 97 SYSCTL_INT(_debug, OID_AUTO, rman_debug, CTLFLAG_RWTUN, 98 &rman_debug, 0, "rman debug"); 99 100 #define DPRINTF(params) if (rman_debug) printf params 101 102 static MALLOC_DEFINE(M_RMAN, "rman", "Resource manager"); 103 104 struct rman_head rman_head; 105 static struct mtx rman_mtx; /* mutex to protect rman_head */ 106 static int int_rman_release_resource(struct rman *rm, struct resource_i *r); 107 108 static __inline struct resource_i * 109 int_alloc_resource(int malloc_flag) 110 { 111 struct resource_i *r; 112 113 r = malloc(sizeof *r, M_RMAN, malloc_flag | M_ZERO); 114 if (r != NULL) { 115 r->r_r.__r_i = r; 116 } 117 return (r); 118 } 119 120 int 121 rman_init(struct rman *rm) 122 { 123 static int once = 0; 124 125 if (once == 0) { 126 once = 1; 127 TAILQ_INIT(&rman_head); 128 mtx_init(&rman_mtx, "rman head", NULL, MTX_DEF); 129 } 130 131 if (rm->rm_start == 0 && rm->rm_end == 0) 132 rm->rm_end = ~0; 133 if (rm->rm_type == RMAN_UNINIT) 134 panic("rman_init"); 135 if (rm->rm_type == RMAN_GAUGE) 136 panic("implement RMAN_GAUGE"); 137 138 TAILQ_INIT(&rm->rm_list); 139 rm->rm_mtx = malloc(sizeof *rm->rm_mtx, M_RMAN, M_NOWAIT | M_ZERO); 140 if (rm->rm_mtx == NULL) 141 return ENOMEM; 142 mtx_init(rm->rm_mtx, "rman", NULL, MTX_DEF); 143 144 mtx_lock(&rman_mtx); 145 TAILQ_INSERT_TAIL(&rman_head, rm, rm_link); 146 mtx_unlock(&rman_mtx); 147 return 0; 148 } 149 150 int 151 rman_manage_region(struct rman *rm, rman_res_t start, rman_res_t end) 152 { 153 struct resource_i *r, *s, *t; 154 int rv = 0; 155 156 DPRINTF(("rman_manage_region: <%s> request: start %#jx, end %#jx\n", 157 rm->rm_descr, start, end)); 158 if (start < rm->rm_start || end > rm->rm_end) 159 return EINVAL; 160 r = int_alloc_resource(M_NOWAIT); 161 if (r == NULL) 162 return ENOMEM; 163 r->r_start = start; 164 r->r_end = end; 165 r->r_rm = rm; 166 167 mtx_lock(rm->rm_mtx); 168 169 /* Skip entries before us. */ 170 TAILQ_FOREACH(s, &rm->rm_list, r_link) { 171 if (s->r_end == ~0) 172 break; 173 if (s->r_end + 1 >= r->r_start) 174 break; 175 } 176 177 /* If we ran off the end of the list, insert at the tail. */ 178 if (s == NULL) { 179 TAILQ_INSERT_TAIL(&rm->rm_list, r, r_link); 180 } else { 181 /* Check for any overlap with the current region. */ 182 if (r->r_start <= s->r_end && r->r_end >= s->r_start) { 183 rv = EBUSY; 184 goto out; 185 } 186 187 /* Check for any overlap with the next region. */ 188 t = TAILQ_NEXT(s, r_link); 189 if (t && r->r_start <= t->r_end && r->r_end >= t->r_start) { 190 rv = EBUSY; 191 goto out; 192 } 193 194 /* 195 * See if this region can be merged with the next region. If 196 * not, clear the pointer. 197 */ 198 if (t && (r->r_end + 1 != t->r_start || t->r_flags != 0)) 199 t = NULL; 200 201 /* See if we can merge with the current region. */ 202 if (s->r_end + 1 == r->r_start && s->r_flags == 0) { 203 /* Can we merge all 3 regions? */ 204 if (t != NULL) { 205 s->r_end = t->r_end; 206 TAILQ_REMOVE(&rm->rm_list, t, r_link); 207 free(r, M_RMAN); 208 free(t, M_RMAN); 209 } else { 210 s->r_end = r->r_end; 211 free(r, M_RMAN); 212 } 213 } else if (t != NULL) { 214 /* Can we merge with just the next region? */ 215 t->r_start = r->r_start; 216 free(r, M_RMAN); 217 } else if (s->r_end < r->r_start) { 218 TAILQ_INSERT_AFTER(&rm->rm_list, s, r, r_link); 219 } else { 220 TAILQ_INSERT_BEFORE(s, r, r_link); 221 } 222 } 223 out: 224 mtx_unlock(rm->rm_mtx); 225 return rv; 226 } 227 228 int 229 rman_init_from_resource(struct rman *rm, struct resource *r) 230 { 231 int rv; 232 233 if ((rv = rman_init(rm)) != 0) 234 return (rv); 235 return (rman_manage_region(rm, r->__r_i->r_start, r->__r_i->r_end)); 236 } 237 238 int 239 rman_fini(struct rman *rm) 240 { 241 struct resource_i *r; 242 243 mtx_lock(rm->rm_mtx); 244 TAILQ_FOREACH(r, &rm->rm_list, r_link) { 245 if (r->r_flags & RF_ALLOCATED) { 246 mtx_unlock(rm->rm_mtx); 247 return EBUSY; 248 } 249 } 250 251 /* 252 * There really should only be one of these if we are in this 253 * state and the code is working properly, but it can't hurt. 254 */ 255 while (!TAILQ_EMPTY(&rm->rm_list)) { 256 r = TAILQ_FIRST(&rm->rm_list); 257 TAILQ_REMOVE(&rm->rm_list, r, r_link); 258 free(r, M_RMAN); 259 } 260 mtx_unlock(rm->rm_mtx); 261 mtx_lock(&rman_mtx); 262 TAILQ_REMOVE(&rman_head, rm, rm_link); 263 mtx_unlock(&rman_mtx); 264 mtx_destroy(rm->rm_mtx); 265 free(rm->rm_mtx, M_RMAN); 266 267 return 0; 268 } 269 270 int 271 rman_first_free_region(struct rman *rm, rman_res_t *start, rman_res_t *end) 272 { 273 struct resource_i *r; 274 275 mtx_lock(rm->rm_mtx); 276 TAILQ_FOREACH(r, &rm->rm_list, r_link) { 277 if (!(r->r_flags & RF_ALLOCATED)) { 278 *start = r->r_start; 279 *end = r->r_end; 280 mtx_unlock(rm->rm_mtx); 281 return (0); 282 } 283 } 284 mtx_unlock(rm->rm_mtx); 285 return (ENOENT); 286 } 287 288 int 289 rman_last_free_region(struct rman *rm, rman_res_t *start, rman_res_t *end) 290 { 291 struct resource_i *r; 292 293 mtx_lock(rm->rm_mtx); 294 TAILQ_FOREACH_REVERSE(r, &rm->rm_list, resource_head, r_link) { 295 if (!(r->r_flags & RF_ALLOCATED)) { 296 *start = r->r_start; 297 *end = r->r_end; 298 mtx_unlock(rm->rm_mtx); 299 return (0); 300 } 301 } 302 mtx_unlock(rm->rm_mtx); 303 return (ENOENT); 304 } 305 306 /* Shrink or extend one or both ends of an allocated resource. */ 307 int 308 rman_adjust_resource(struct resource *rr, rman_res_t start, rman_res_t end) 309 { 310 struct resource_i *r, *s, *t, *new; 311 struct rman *rm; 312 313 /* Not supported for shared resources. */ 314 r = rr->__r_i; 315 if (r->r_flags & RF_SHAREABLE) 316 return (EINVAL); 317 318 /* 319 * This does not support wholesale moving of a resource. At 320 * least part of the desired new range must overlap with the 321 * existing resource. 322 */ 323 if (end < r->r_start || r->r_end < start) 324 return (EINVAL); 325 326 /* 327 * Find the two resource regions immediately adjacent to the 328 * allocated resource. 329 */ 330 rm = r->r_rm; 331 mtx_lock(rm->rm_mtx); 332 #ifdef INVARIANTS 333 TAILQ_FOREACH(s, &rm->rm_list, r_link) { 334 if (s == r) 335 break; 336 } 337 if (s == NULL) 338 panic("resource not in list"); 339 #endif 340 s = TAILQ_PREV(r, resource_head, r_link); 341 t = TAILQ_NEXT(r, r_link); 342 KASSERT(s == NULL || s->r_end + 1 == r->r_start, 343 ("prev resource mismatch")); 344 KASSERT(t == NULL || r->r_end + 1 == t->r_start, 345 ("next resource mismatch")); 346 347 /* 348 * See if the changes are permitted. Shrinking is always allowed, 349 * but growing requires sufficient room in the adjacent region. 350 */ 351 if (start < r->r_start && (s == NULL || (s->r_flags & RF_ALLOCATED) || 352 s->r_start > start)) { 353 mtx_unlock(rm->rm_mtx); 354 return (EBUSY); 355 } 356 if (end > r->r_end && (t == NULL || (t->r_flags & RF_ALLOCATED) || 357 t->r_end < end)) { 358 mtx_unlock(rm->rm_mtx); 359 return (EBUSY); 360 } 361 362 /* 363 * While holding the lock, grow either end of the resource as 364 * needed and shrink either end if the shrinking does not require 365 * allocating a new resource. We can safely drop the lock and then 366 * insert a new range to handle the shrinking case afterwards. 367 */ 368 if (start < r->r_start || 369 (start > r->r_start && s != NULL && !(s->r_flags & RF_ALLOCATED))) { 370 KASSERT(s->r_flags == 0, ("prev is busy")); 371 r->r_start = start; 372 if (s->r_start == start) { 373 TAILQ_REMOVE(&rm->rm_list, s, r_link); 374 free(s, M_RMAN); 375 } else 376 s->r_end = start - 1; 377 } 378 if (end > r->r_end || 379 (end < r->r_end && t != NULL && !(t->r_flags & RF_ALLOCATED))) { 380 KASSERT(t->r_flags == 0, ("next is busy")); 381 r->r_end = end; 382 if (t->r_end == end) { 383 TAILQ_REMOVE(&rm->rm_list, t, r_link); 384 free(t, M_RMAN); 385 } else 386 t->r_start = end + 1; 387 } 388 mtx_unlock(rm->rm_mtx); 389 390 /* 391 * Handle the shrinking cases that require allocating a new 392 * resource to hold the newly-free region. We have to recheck 393 * if we still need this new region after acquiring the lock. 394 */ 395 if (start > r->r_start) { 396 new = int_alloc_resource(M_WAITOK); 397 new->r_start = r->r_start; 398 new->r_end = start - 1; 399 new->r_rm = rm; 400 mtx_lock(rm->rm_mtx); 401 r->r_start = start; 402 s = TAILQ_PREV(r, resource_head, r_link); 403 if (s != NULL && !(s->r_flags & RF_ALLOCATED)) { 404 s->r_end = start - 1; 405 free(new, M_RMAN); 406 } else 407 TAILQ_INSERT_BEFORE(r, new, r_link); 408 mtx_unlock(rm->rm_mtx); 409 } 410 if (end < r->r_end) { 411 new = int_alloc_resource(M_WAITOK); 412 new->r_start = end + 1; 413 new->r_end = r->r_end; 414 new->r_rm = rm; 415 mtx_lock(rm->rm_mtx); 416 r->r_end = end; 417 t = TAILQ_NEXT(r, r_link); 418 if (t != NULL && !(t->r_flags & RF_ALLOCATED)) { 419 t->r_start = end + 1; 420 free(new, M_RMAN); 421 } else 422 TAILQ_INSERT_AFTER(&rm->rm_list, r, new, r_link); 423 mtx_unlock(rm->rm_mtx); 424 } 425 return (0); 426 } 427 428 #define SHARE_TYPE(f) (f & (RF_SHAREABLE | RF_PREFETCHABLE)) 429 430 struct resource * 431 rman_reserve_resource_bound(struct rman *rm, rman_res_t start, rman_res_t end, 432 rman_res_t count, rman_res_t bound, u_int flags, 433 device_t dev) 434 { 435 u_int new_rflags; 436 struct resource_i *r, *s, *rv; 437 rman_res_t rstart, rend, amask, bmask; 438 439 rv = NULL; 440 441 DPRINTF(("rman_reserve_resource_bound: <%s> request: [%#jx, %#jx], " 442 "length %#jx, flags %x, device %s\n", rm->rm_descr, start, end, 443 count, flags, 444 dev == NULL ? "<null>" : device_get_nameunit(dev))); 445 KASSERT(count != 0, ("%s: attempted to allocate an empty range", 446 __func__)); 447 KASSERT((flags & RF_FIRSTSHARE) == 0, 448 ("invalid flags %#x", flags)); 449 new_rflags = (flags & ~RF_FIRSTSHARE) | RF_ALLOCATED; 450 451 mtx_lock(rm->rm_mtx); 452 453 r = TAILQ_FIRST(&rm->rm_list); 454 if (r == NULL) { 455 DPRINTF(("NULL list head\n")); 456 } else { 457 DPRINTF(("rman_reserve_resource_bound: trying %#jx <%#jx,%#jx>\n", 458 r->r_end, start, count-1)); 459 } 460 for (r = TAILQ_FIRST(&rm->rm_list); 461 r && r->r_end < start + count - 1; 462 r = TAILQ_NEXT(r, r_link)) { 463 ; 464 DPRINTF(("rman_reserve_resource_bound: tried %#jx <%#jx,%#jx>\n", 465 r->r_end, start, count-1)); 466 } 467 468 if (r == NULL) { 469 DPRINTF(("could not find a region\n")); 470 goto out; 471 } 472 473 amask = (1ull << RF_ALIGNMENT(flags)) - 1; 474 KASSERT(start <= RM_MAX_END - amask, 475 ("start (%#jx) + amask (%#jx) would wrap around", start, amask)); 476 477 /* If bound is 0, bmask will also be 0 */ 478 bmask = ~(bound - 1); 479 /* 480 * First try to find an acceptable totally-unshared region. 481 */ 482 for (s = r; s; s = TAILQ_NEXT(s, r_link)) { 483 DPRINTF(("considering [%#jx, %#jx]\n", s->r_start, s->r_end)); 484 /* 485 * The resource list is sorted, so there is no point in 486 * searching further once r_start is too large. 487 */ 488 if (s->r_start > end - (count - 1)) { 489 DPRINTF(("s->r_start (%#jx) + count - 1> end (%#jx)\n", 490 s->r_start, end)); 491 break; 492 } 493 if (s->r_start > RM_MAX_END - amask) { 494 DPRINTF(("s->r_start (%#jx) + amask (%#jx) too large\n", 495 s->r_start, amask)); 496 break; 497 } 498 if (s->r_flags & RF_ALLOCATED) { 499 DPRINTF(("region is allocated\n")); 500 continue; 501 } 502 rstart = ummax(s->r_start, start); 503 /* 504 * Try to find a region by adjusting to boundary and alignment 505 * until both conditions are satisfied. This is not an optimal 506 * algorithm, but in most cases it isn't really bad, either. 507 */ 508 do { 509 rstart = (rstart + amask) & ~amask; 510 if (((rstart ^ (rstart + count - 1)) & bmask) != 0) 511 rstart += bound - (rstart & ~bmask); 512 } while ((rstart & amask) != 0 && rstart < end && 513 rstart < s->r_end); 514 rend = ummin(s->r_end, ummax(rstart + count - 1, end)); 515 if (rstart > rend) { 516 DPRINTF(("adjusted start exceeds end\n")); 517 continue; 518 } 519 DPRINTF(("truncated region: [%#jx, %#jx]; size %#jx (requested %#jx)\n", 520 rstart, rend, (rend - rstart + 1), count)); 521 522 if ((rend - rstart) >= (count - 1)) { 523 DPRINTF(("candidate region: [%#jx, %#jx], size %#jx\n", 524 rstart, rend, (rend - rstart + 1))); 525 if ((s->r_end - s->r_start + 1) == count) { 526 DPRINTF(("candidate region is entire chunk\n")); 527 rv = s; 528 rv->r_flags = new_rflags; 529 rv->r_dev = dev; 530 goto out; 531 } 532 533 /* 534 * If s->r_start < rstart and 535 * s->r_end > rstart + count - 1, then 536 * we need to split the region into three pieces 537 * (the middle one will get returned to the user). 538 * Otherwise, we are allocating at either the 539 * beginning or the end of s, so we only need to 540 * split it in two. The first case requires 541 * two new allocations; the second requires but one. 542 */ 543 rv = int_alloc_resource(M_NOWAIT); 544 if (rv == NULL) 545 goto out; 546 rv->r_start = rstart; 547 rv->r_end = rstart + count - 1; 548 rv->r_flags = new_rflags; 549 rv->r_dev = dev; 550 rv->r_rm = rm; 551 552 if (s->r_start < rv->r_start && s->r_end > rv->r_end) { 553 DPRINTF(("splitting region in three parts: " 554 "[%#jx, %#jx]; [%#jx, %#jx]; [%#jx, %#jx]\n", 555 s->r_start, rv->r_start - 1, 556 rv->r_start, rv->r_end, 557 rv->r_end + 1, s->r_end)); 558 /* 559 * We are allocating in the middle. 560 */ 561 r = int_alloc_resource(M_NOWAIT); 562 if (r == NULL) { 563 free(rv, M_RMAN); 564 rv = NULL; 565 goto out; 566 } 567 r->r_start = rv->r_end + 1; 568 r->r_end = s->r_end; 569 r->r_flags = s->r_flags; 570 r->r_rm = rm; 571 s->r_end = rv->r_start - 1; 572 TAILQ_INSERT_AFTER(&rm->rm_list, s, rv, 573 r_link); 574 TAILQ_INSERT_AFTER(&rm->rm_list, rv, r, 575 r_link); 576 } else if (s->r_start == rv->r_start) { 577 DPRINTF(("allocating from the beginning\n")); 578 /* 579 * We are allocating at the beginning. 580 */ 581 s->r_start = rv->r_end + 1; 582 TAILQ_INSERT_BEFORE(s, rv, r_link); 583 } else { 584 DPRINTF(("allocating at the end\n")); 585 /* 586 * We are allocating at the end. 587 */ 588 s->r_end = rv->r_start - 1; 589 TAILQ_INSERT_AFTER(&rm->rm_list, s, rv, 590 r_link); 591 } 592 goto out; 593 } 594 } 595 596 /* 597 * Now find an acceptable shared region, if the client's requirements 598 * allow sharing. By our implementation restriction, a candidate 599 * region must match exactly by both size and sharing type in order 600 * to be considered compatible with the client's request. (The 601 * former restriction could probably be lifted without too much 602 * additional work, but this does not seem warranted.) 603 */ 604 DPRINTF(("no unshared regions found\n")); 605 if ((flags & RF_SHAREABLE) == 0) 606 goto out; 607 608 for (s = r; s && s->r_end <= end; s = TAILQ_NEXT(s, r_link)) { 609 if (SHARE_TYPE(s->r_flags) == SHARE_TYPE(flags) && 610 s->r_start >= start && 611 (s->r_end - s->r_start + 1) == count && 612 (s->r_start & amask) == 0 && 613 ((s->r_start ^ s->r_end) & bmask) == 0) { 614 rv = int_alloc_resource(M_NOWAIT); 615 if (rv == NULL) 616 goto out; 617 rv->r_start = s->r_start; 618 rv->r_end = s->r_end; 619 rv->r_flags = new_rflags; 620 rv->r_dev = dev; 621 rv->r_rm = rm; 622 if (s->r_sharehead == NULL) { 623 s->r_sharehead = malloc(sizeof *s->r_sharehead, 624 M_RMAN, M_NOWAIT | M_ZERO); 625 if (s->r_sharehead == NULL) { 626 free(rv, M_RMAN); 627 rv = NULL; 628 goto out; 629 } 630 LIST_INIT(s->r_sharehead); 631 LIST_INSERT_HEAD(s->r_sharehead, s, 632 r_sharelink); 633 s->r_flags |= RF_FIRSTSHARE; 634 } 635 rv->r_sharehead = s->r_sharehead; 636 LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink); 637 goto out; 638 } 639 } 640 /* 641 * We couldn't find anything. 642 */ 643 644 out: 645 mtx_unlock(rm->rm_mtx); 646 return (rv == NULL ? NULL : &rv->r_r); 647 } 648 649 struct resource * 650 rman_reserve_resource(struct rman *rm, rman_res_t start, rman_res_t end, 651 rman_res_t count, u_int flags, device_t dev) 652 { 653 654 return (rman_reserve_resource_bound(rm, start, end, count, 0, flags, 655 dev)); 656 } 657 658 int 659 rman_activate_resource(struct resource *re) 660 { 661 struct resource_i *r; 662 struct rman *rm; 663 664 r = re->__r_i; 665 rm = r->r_rm; 666 mtx_lock(rm->rm_mtx); 667 r->r_flags |= RF_ACTIVE; 668 mtx_unlock(rm->rm_mtx); 669 return 0; 670 } 671 672 int 673 rman_deactivate_resource(struct resource *r) 674 { 675 struct rman *rm; 676 677 rm = r->__r_i->r_rm; 678 mtx_lock(rm->rm_mtx); 679 r->__r_i->r_flags &= ~RF_ACTIVE; 680 mtx_unlock(rm->rm_mtx); 681 return 0; 682 } 683 684 static int 685 int_rman_release_resource(struct rman *rm, struct resource_i *r) 686 { 687 struct resource_i *s, *t; 688 689 if (r->r_flags & RF_ACTIVE) 690 r->r_flags &= ~RF_ACTIVE; 691 692 /* 693 * Check for a sharing list first. If there is one, then we don't 694 * have to think as hard. 695 */ 696 if (r->r_sharehead) { 697 /* 698 * If a sharing list exists, then we know there are at 699 * least two sharers. 700 * 701 * If we are in the main circleq, appoint someone else. 702 */ 703 LIST_REMOVE(r, r_sharelink); 704 s = LIST_FIRST(r->r_sharehead); 705 if (r->r_flags & RF_FIRSTSHARE) { 706 s->r_flags |= RF_FIRSTSHARE; 707 TAILQ_INSERT_BEFORE(r, s, r_link); 708 TAILQ_REMOVE(&rm->rm_list, r, r_link); 709 } 710 711 /* 712 * Make sure that the sharing list goes away completely 713 * if the resource is no longer being shared at all. 714 */ 715 if (LIST_NEXT(s, r_sharelink) == NULL) { 716 free(s->r_sharehead, M_RMAN); 717 s->r_sharehead = NULL; 718 s->r_flags &= ~RF_FIRSTSHARE; 719 } 720 goto out; 721 } 722 723 /* 724 * Look at the adjacent resources in the list and see if our 725 * segment can be merged with any of them. If either of the 726 * resources is allocated or is not exactly adjacent then they 727 * cannot be merged with our segment. 728 */ 729 s = TAILQ_PREV(r, resource_head, r_link); 730 if (s != NULL && ((s->r_flags & RF_ALLOCATED) != 0 || 731 s->r_end + 1 != r->r_start)) 732 s = NULL; 733 t = TAILQ_NEXT(r, r_link); 734 if (t != NULL && ((t->r_flags & RF_ALLOCATED) != 0 || 735 r->r_end + 1 != t->r_start)) 736 t = NULL; 737 738 if (s != NULL && t != NULL) { 739 /* 740 * Merge all three segments. 741 */ 742 s->r_end = t->r_end; 743 TAILQ_REMOVE(&rm->rm_list, r, r_link); 744 TAILQ_REMOVE(&rm->rm_list, t, r_link); 745 free(t, M_RMAN); 746 } else if (s != NULL) { 747 /* 748 * Merge previous segment with ours. 749 */ 750 s->r_end = r->r_end; 751 TAILQ_REMOVE(&rm->rm_list, r, r_link); 752 } else if (t != NULL) { 753 /* 754 * Merge next segment with ours. 755 */ 756 t->r_start = r->r_start; 757 TAILQ_REMOVE(&rm->rm_list, r, r_link); 758 } else { 759 /* 760 * At this point, we know there is nothing we 761 * can potentially merge with, because on each 762 * side, there is either nothing there or what is 763 * there is still allocated. In that case, we don't 764 * want to remove r from the list; we simply want to 765 * change it to an unallocated region and return 766 * without freeing anything. 767 */ 768 r->r_flags &= ~RF_ALLOCATED; 769 r->r_dev = NULL; 770 return 0; 771 } 772 773 out: 774 free(r, M_RMAN); 775 return 0; 776 } 777 778 int 779 rman_release_resource(struct resource *re) 780 { 781 int rv; 782 struct resource_i *r; 783 struct rman *rm; 784 785 r = re->__r_i; 786 rm = r->r_rm; 787 mtx_lock(rm->rm_mtx); 788 rv = int_rman_release_resource(rm, r); 789 mtx_unlock(rm->rm_mtx); 790 return (rv); 791 } 792 793 uint32_t 794 rman_make_alignment_flags(uint32_t size) 795 { 796 int i; 797 798 /* 799 * Find the hightest bit set, and add one if more than one bit 800 * set. We're effectively computing the ceil(log2(size)) here. 801 */ 802 for (i = 31; i > 0; i--) 803 if ((1 << i) & size) 804 break; 805 if (~(1 << i) & size) 806 i++; 807 808 return(RF_ALIGNMENT_LOG2(i)); 809 } 810 811 void 812 rman_set_start(struct resource *r, rman_res_t start) 813 { 814 815 r->__r_i->r_start = start; 816 } 817 818 rman_res_t 819 rman_get_start(struct resource *r) 820 { 821 822 return (r->__r_i->r_start); 823 } 824 825 void 826 rman_set_end(struct resource *r, rman_res_t end) 827 { 828 829 r->__r_i->r_end = end; 830 } 831 832 rman_res_t 833 rman_get_end(struct resource *r) 834 { 835 836 return (r->__r_i->r_end); 837 } 838 839 rman_res_t 840 rman_get_size(struct resource *r) 841 { 842 843 return (r->__r_i->r_end - r->__r_i->r_start + 1); 844 } 845 846 u_int 847 rman_get_flags(struct resource *r) 848 { 849 850 return (r->__r_i->r_flags); 851 } 852 853 void 854 rman_set_virtual(struct resource *r, void *v) 855 { 856 857 r->__r_i->r_virtual = v; 858 } 859 860 void * 861 rman_get_virtual(struct resource *r) 862 { 863 864 return (r->__r_i->r_virtual); 865 } 866 867 void 868 rman_set_irq_cookie(struct resource *r, void *c) 869 { 870 871 r->__r_i->r_irq_cookie = c; 872 } 873 874 void * 875 rman_get_irq_cookie(struct resource *r) 876 { 877 878 return (r->__r_i->r_irq_cookie); 879 } 880 881 void 882 rman_set_bustag(struct resource *r, bus_space_tag_t t) 883 { 884 885 r->r_bustag = t; 886 } 887 888 bus_space_tag_t 889 rman_get_bustag(struct resource *r) 890 { 891 892 return (r->r_bustag); 893 } 894 895 void 896 rman_set_bushandle(struct resource *r, bus_space_handle_t h) 897 { 898 899 r->r_bushandle = h; 900 } 901 902 bus_space_handle_t 903 rman_get_bushandle(struct resource *r) 904 { 905 906 return (r->r_bushandle); 907 } 908 909 void 910 rman_set_mapping(struct resource *r, struct resource_map *map) 911 { 912 913 KASSERT(rman_get_size(r) == map->r_size, 914 ("rman_set_mapping: size mismatch")); 915 rman_set_bustag(r, map->r_bustag); 916 rman_set_bushandle(r, map->r_bushandle); 917 rman_set_virtual(r, map->r_vaddr); 918 } 919 920 void 921 rman_get_mapping(struct resource *r, struct resource_map *map) 922 { 923 924 map->r_bustag = rman_get_bustag(r); 925 map->r_bushandle = rman_get_bushandle(r); 926 map->r_size = rman_get_size(r); 927 map->r_vaddr = rman_get_virtual(r); 928 } 929 930 void 931 rman_set_rid(struct resource *r, int rid) 932 { 933 934 r->__r_i->r_rid = rid; 935 } 936 937 int 938 rman_get_rid(struct resource *r) 939 { 940 941 return (r->__r_i->r_rid); 942 } 943 944 void 945 rman_set_device(struct resource *r, device_t dev) 946 { 947 948 r->__r_i->r_dev = dev; 949 } 950 951 device_t 952 rman_get_device(struct resource *r) 953 { 954 955 return (r->__r_i->r_dev); 956 } 957 958 int 959 rman_is_region_manager(struct resource *r, struct rman *rm) 960 { 961 962 return (r->__r_i->r_rm == rm); 963 } 964 965 /* 966 * Sysctl interface for scanning the resource lists. 967 * 968 * We take two input parameters; the index into the list of resource 969 * managers, and the resource offset into the list. 970 */ 971 static int 972 sysctl_rman(SYSCTL_HANDLER_ARGS) 973 { 974 int *name = (int *)arg1; 975 u_int namelen = arg2; 976 int rman_idx, res_idx; 977 struct rman *rm; 978 struct resource_i *res; 979 struct resource_i *sres; 980 struct u_rman urm; 981 struct u_resource ures; 982 int error; 983 984 if (namelen != 3) 985 return (EINVAL); 986 987 if (bus_data_generation_check(name[0])) 988 return (EINVAL); 989 rman_idx = name[1]; 990 res_idx = name[2]; 991 992 /* 993 * Find the indexed resource manager 994 */ 995 mtx_lock(&rman_mtx); 996 TAILQ_FOREACH(rm, &rman_head, rm_link) { 997 if (rman_idx-- == 0) 998 break; 999 } 1000 mtx_unlock(&rman_mtx); 1001 if (rm == NULL) 1002 return (ENOENT); 1003 1004 /* 1005 * If the resource index is -1, we want details on the 1006 * resource manager. 1007 */ 1008 if (res_idx == -1) { 1009 bzero(&urm, sizeof(urm)); 1010 urm.rm_handle = (uintptr_t)rm; 1011 if (rm->rm_descr != NULL) 1012 strlcpy(urm.rm_descr, rm->rm_descr, RM_TEXTLEN); 1013 urm.rm_start = rm->rm_start; 1014 urm.rm_size = rm->rm_end - rm->rm_start + 1; 1015 urm.rm_type = rm->rm_type; 1016 1017 error = SYSCTL_OUT(req, &urm, sizeof(urm)); 1018 return (error); 1019 } 1020 1021 /* 1022 * Find the indexed resource and return it. 1023 */ 1024 mtx_lock(rm->rm_mtx); 1025 TAILQ_FOREACH(res, &rm->rm_list, r_link) { 1026 if (res->r_sharehead != NULL) { 1027 LIST_FOREACH(sres, res->r_sharehead, r_sharelink) 1028 if (res_idx-- == 0) { 1029 res = sres; 1030 goto found; 1031 } 1032 } 1033 else if (res_idx-- == 0) 1034 goto found; 1035 } 1036 mtx_unlock(rm->rm_mtx); 1037 return (ENOENT); 1038 1039 found: 1040 bzero(&ures, sizeof(ures)); 1041 ures.r_handle = (uintptr_t)res; 1042 ures.r_parent = (uintptr_t)res->r_rm; 1043 ures.r_device = (uintptr_t)res->r_dev; 1044 if (res->r_dev != NULL) { 1045 if (device_get_name(res->r_dev) != NULL) { 1046 snprintf(ures.r_devname, RM_TEXTLEN, 1047 "%s%d", 1048 device_get_name(res->r_dev), 1049 device_get_unit(res->r_dev)); 1050 } else { 1051 strlcpy(ures.r_devname, "nomatch", 1052 RM_TEXTLEN); 1053 } 1054 } else { 1055 ures.r_devname[0] = '\0'; 1056 } 1057 ures.r_start = res->r_start; 1058 ures.r_size = res->r_end - res->r_start + 1; 1059 ures.r_flags = res->r_flags; 1060 1061 mtx_unlock(rm->rm_mtx); 1062 error = SYSCTL_OUT(req, &ures, sizeof(ures)); 1063 return (error); 1064 } 1065 1066 static SYSCTL_NODE(_hw_bus, OID_AUTO, rman, CTLFLAG_RD | CTLFLAG_MPSAFE, 1067 sysctl_rman, 1068 "kernel resource manager"); 1069 1070 #ifdef DDB 1071 static void 1072 dump_rman_header(struct rman *rm) 1073 { 1074 1075 if (db_pager_quit) 1076 return; 1077 db_printf("rman %p: %s (0x%jx-0x%jx full range)\n", 1078 rm, rm->rm_descr, (rman_res_t)rm->rm_start, (rman_res_t)rm->rm_end); 1079 } 1080 1081 static void 1082 dump_rman(struct rman *rm) 1083 { 1084 struct resource_i *r; 1085 const char *devname; 1086 1087 if (db_pager_quit) 1088 return; 1089 TAILQ_FOREACH(r, &rm->rm_list, r_link) { 1090 if (r->r_dev != NULL) { 1091 devname = device_get_nameunit(r->r_dev); 1092 if (devname == NULL) 1093 devname = "nomatch"; 1094 } else 1095 devname = NULL; 1096 db_printf(" 0x%jx-0x%jx (RID=%d) ", 1097 r->r_start, r->r_end, r->r_rid); 1098 if (devname != NULL) 1099 db_printf("(%s)\n", devname); 1100 else 1101 db_printf("----\n"); 1102 if (db_pager_quit) 1103 return; 1104 } 1105 } 1106 1107 DB_SHOW_COMMAND(rman, db_show_rman) 1108 { 1109 1110 if (have_addr) { 1111 dump_rman_header((struct rman *)addr); 1112 dump_rman((struct rman *)addr); 1113 } 1114 } 1115 1116 DB_SHOW_COMMAND_FLAGS(rmans, db_show_rmans, DB_CMD_MEMSAFE) 1117 { 1118 struct rman *rm; 1119 1120 TAILQ_FOREACH(rm, &rman_head, rm_link) { 1121 dump_rman_header(rm); 1122 } 1123 } 1124 1125 DB_SHOW_ALL_COMMAND(rman, db_show_all_rman) 1126 { 1127 struct rman *rm; 1128 1129 TAILQ_FOREACH(rm, &rman_head, rm_link) { 1130 dump_rman_header(rm); 1131 dump_rman(rm); 1132 } 1133 } 1134 DB_SHOW_ALIAS_FLAGS(allrman, db_show_all_rman, DB_CMD_MEMSAFE); 1135 #endif 1136