xref: /freebsd/sys/kern/subr_rman.c (revision daf1cffce2e07931f27c6c6998652e90df6ba87e)
1 /*
2  * Copyright 1998 Massachusetts Institute of Technology
3  *
4  * Permission to use, copy, modify, and distribute this software and
5  * its documentation for any purpose and without fee is hereby
6  * granted, provided that both the above copyright notice and this
7  * permission notice appear in all copies, that both the above
8  * copyright notice and this permission notice appear in all
9  * supporting documentation, and that the name of M.I.T. not be used
10  * in advertising or publicity pertaining to distribution of the
11  * software without specific, written prior permission.  M.I.T. makes
12  * no representations about the suitability of this software for any
13  * purpose.  It is provided "as is" without express or implied
14  * warranty.
15  *
16  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
17  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD$
30  */
31 
32 /*
33  * The kernel resource manager.  This code is responsible for keeping track
34  * of hardware resources which are apportioned out to various drivers.
35  * It does not actually assign those resources, and it is not expected
36  * that end-device drivers will call into this code directly.  Rather,
37  * the code which implements the buses that those devices are attached to,
38  * and the code which manages CPU resources, will call this code, and the
39  * end-device drivers will make upcalls to that code to actually perform
40  * the allocation.
41  *
42  * There are two sorts of resources managed by this code.  The first is
43  * the more familiar array (RMAN_ARRAY) type; resources in this class
44  * consist of a sequence of individually-allocatable objects which have
45  * been numbered in some well-defined order.  Most of the resources
46  * are of this type, as it is the most familiar.  The second type is
47  * called a gauge (RMAN_GAUGE), and models fungible resources (i.e.,
48  * resources in which each instance is indistinguishable from every
49  * other instance).  The principal anticipated application of gauges
50  * is in the context of power consumption, where a bus may have a specific
51  * power budget which all attached devices share.  RMAN_GAUGE is not
52  * implemented yet.
53  *
54  * For array resources, we make one simplifying assumption: two clients
55  * sharing the same resource must use the same range of indices.  That
56  * is to say, sharing of overlapping-but-not-identical regions is not
57  * permitted.
58  */
59 
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/kernel.h>
63 #include <sys/lock.h>
64 #include <sys/malloc.h>
65 #include <sys/bus.h>		/* XXX debugging */
66 #include <machine/bus.h>
67 #include <sys/rman.h>
68 
69 static MALLOC_DEFINE(M_RMAN, "rman", "Resource manager");
70 
71 struct	rman_head rman_head;
72 #ifndef NULL_SIMPLELOCKS
73 static	struct simplelock rman_lock; /* mutex to protect rman_head */
74 #endif
75 static	int int_rman_activate_resource(struct rman *rm, struct resource *r,
76 				       struct resource **whohas);
77 static	int int_rman_deactivate_resource(struct resource *r);
78 static	int int_rman_release_resource(struct rman *rm, struct resource *r);
79 
80 #define	CIRCLEQ_TERMCOND(var, head)	(var == (void *)&(head))
81 
82 int
83 rman_init(struct rman *rm)
84 {
85 	static int once;
86 
87 	if (once == 0) {
88 		once = 1;
89 		TAILQ_INIT(&rman_head);
90 		simple_lock_init(&rman_lock);
91 	}
92 
93 	if (rm->rm_type == RMAN_UNINIT)
94 		panic("rman_init");
95 	if (rm->rm_type == RMAN_GAUGE)
96 		panic("implement RMAN_GAUGE");
97 
98 	CIRCLEQ_INIT(&rm->rm_list);
99 	rm->rm_slock = malloc(sizeof *rm->rm_slock, M_RMAN, M_NOWAIT);
100 	if (rm->rm_slock == 0)
101 		return ENOMEM;
102 	simple_lock_init(rm->rm_slock);
103 
104 	simple_lock(&rman_lock);
105 	TAILQ_INSERT_TAIL(&rman_head, rm, rm_link);
106 	simple_unlock(&rman_lock);
107 	return 0;
108 }
109 
110 /*
111  * NB: this interface is not robust against programming errors which
112  * add multiple copies of the same region.
113  */
114 int
115 rman_manage_region(struct rman *rm, u_long start, u_long end)
116 {
117 	struct resource *r, *s;
118 
119 	r = malloc(sizeof *r, M_RMAN, M_NOWAIT);
120 	if (r == 0)
121 		return ENOMEM;
122 	bzero(r, sizeof *r);
123 	r->r_sharehead = 0;
124 	r->r_start = start;
125 	r->r_end = end;
126 	r->r_flags = 0;
127 	r->r_dev = 0;
128 	r->r_rm = rm;
129 
130 	simple_lock(rm->rm_slock);
131 	for (s = CIRCLEQ_FIRST(&rm->rm_list);
132 	     !CIRCLEQ_TERMCOND(s, rm->rm_list) && s->r_end < r->r_start;
133 	     s = CIRCLEQ_NEXT(s, r_link))
134 		;
135 
136 	if (CIRCLEQ_TERMCOND(s, rm->rm_list)) {
137 		CIRCLEQ_INSERT_TAIL(&rm->rm_list, r, r_link);
138 	} else {
139 		CIRCLEQ_INSERT_BEFORE(&rm->rm_list, s, r, r_link);
140 	}
141 
142 	simple_unlock(rm->rm_slock);
143 	return 0;
144 }
145 
146 int
147 rman_fini(struct rman *rm)
148 {
149 	struct resource *r;
150 
151 	simple_lock(rm->rm_slock);
152 	CIRCLEQ_FOREACH(r, &rm->rm_list, r_link) {
153 		if (r->r_flags & RF_ALLOCATED) {
154 			simple_unlock(rm->rm_slock);
155 			return EBUSY;
156 		}
157 	}
158 
159 	/*
160 	 * There really should only be one of these if we are in this
161 	 * state and the code is working properly, but it can't hurt.
162 	 */
163 	while (!CIRCLEQ_EMPTY(&rm->rm_list)) {
164 		r = CIRCLEQ_FIRST(&rm->rm_list);
165 		CIRCLEQ_REMOVE(&rm->rm_list, r, r_link);
166 		free(r, M_RMAN);
167 	}
168 	simple_unlock(rm->rm_slock);
169 	simple_lock(&rman_lock);
170 	TAILQ_REMOVE(&rman_head, rm, rm_link);
171 	simple_unlock(&rman_lock);
172 	free(rm->rm_slock, M_RMAN);
173 
174 	return 0;
175 }
176 
177 struct resource *
178 rman_reserve_resource(struct rman *rm, u_long start, u_long end, u_long count,
179 		      u_int flags, struct device *dev)
180 {
181 	u_int	want_activate;
182 	struct	resource *r, *s, *rv;
183 	u_long	rstart, rend;
184 
185 	rv = 0;
186 
187 #ifdef RMAN_DEBUG
188 	printf("rman_reserve_resource: <%s> request: [%#lx, %#lx], length "
189 	       "%#lx, flags %u, device %s%d\n", rm->rm_descr, start, end,
190 	       count, flags, device_get_name(dev), device_get_unit(dev));
191 #endif /* RMAN_DEBUG */
192 	want_activate = (flags & RF_ACTIVE);
193 	flags &= ~RF_ACTIVE;
194 
195 	simple_lock(rm->rm_slock);
196 
197 	for (r = CIRCLEQ_FIRST(&rm->rm_list);
198 	     !CIRCLEQ_TERMCOND(r, rm->rm_list) && r->r_end < start;
199 	     r = CIRCLEQ_NEXT(r, r_link))
200 		;
201 
202 	if (CIRCLEQ_TERMCOND(r, rm->rm_list)) {
203 #ifdef RMAN_DEBUG
204 		printf("could not find a region\n");
205 #endif RMAN_DEBUG
206 		goto out;
207 	}
208 
209 	/*
210 	 * First try to find an acceptable totally-unshared region.
211 	 */
212 	for (s = r; !CIRCLEQ_TERMCOND(s, rm->rm_list);
213 	     s = CIRCLEQ_NEXT(s, r_link)) {
214 #ifdef RMAN_DEBUG
215 		printf("considering [%#lx, %#lx]\n", s->r_start, s->r_end);
216 #endif /* RMAN_DEBUG */
217 		if (s->r_start > end) {
218 #ifdef RMAN_DEBUG
219 			printf("s->r_start (%#lx) > end (%#lx)\n", s->r_start, end);
220 #endif /* RMAN_DEBUG */
221 			break;
222 		}
223 		if (s->r_flags & RF_ALLOCATED) {
224 #ifdef RMAN_DEBUG
225 			printf("region is allocated\n");
226 #endif /* RMAN_DEBUG */
227 			continue;
228 		}
229 		rstart = max(s->r_start, start);
230 		rend = min(s->r_end, max(start + count, end));
231 #ifdef RMAN_DEBUG
232 		printf("truncated region: [%#lx, %#lx]; size %#lx (requested %#lx)\n",
233 		       rstart, rend, (rend - rstart + 1), count);
234 #endif /* RMAN_DEBUG */
235 
236 		if ((rend - rstart + 1) >= count) {
237 #ifdef RMAN_DEBUG
238 			printf("candidate region: [%#lx, %#lx], size %#lx\n",
239 			       rend, rstart, (rend - rstart + 1));
240 #endif /* RMAN_DEBUG */
241 			if ((s->r_end - s->r_start + 1) == count) {
242 #ifdef RMAN_DEBUG
243 				printf("candidate region is entire chunk\n");
244 #endif /* RMAN_DEBUG */
245 				rv = s;
246 				rv->r_flags |= RF_ALLOCATED | flags;
247 				rv->r_dev = dev;
248 				goto out;
249 			}
250 
251 			/*
252 			 * If s->r_start < rstart and
253 			 *    s->r_end > rstart + count - 1, then
254 			 * we need to split the region into three pieces
255 			 * (the middle one will get returned to the user).
256 			 * Otherwise, we are allocating at either the
257 			 * beginning or the end of s, so we only need to
258 			 * split it in two.  The first case requires
259 			 * two new allocations; the second requires but one.
260 			 */
261 			rv = malloc(sizeof *rv, M_RMAN, M_NOWAIT);
262 			if (rv == 0)
263 				goto out;
264 			bzero(rv, sizeof *rv);
265 			rv->r_start = rstart;
266 			rv->r_end = rstart + count - 1;
267 			rv->r_flags = flags | RF_ALLOCATED;
268 			rv->r_dev = dev;
269 			rv->r_sharehead = 0;
270 			rv->r_rm = rm;
271 
272 			if (s->r_start < rv->r_start && s->r_end > rv->r_end) {
273 #ifdef RMAN_DEBUG
274 				printf("splitting region in three parts: "
275 				       "[%#lx, %#lx]; [%#lx, %#lx]; [%#lx, %#lx]\n",
276 				       s->r_start, rv->r_start - 1,
277 				       rv->r_start, rv->r_end,
278 				       rv->r_end + 1, s->r_end);
279 #endif /* RMAN_DEBUG */
280 				/*
281 				 * We are allocating in the middle.
282 				 */
283 				r = malloc(sizeof *r, M_RMAN, M_NOWAIT);
284 				if (r == 0) {
285 					free(rv, M_RMAN);
286 					rv = 0;
287 					goto out;
288 				}
289 				bzero(r, sizeof *r);
290 				r->r_start = rv->r_end + 1;
291 				r->r_end = s->r_end;
292 				r->r_flags = s->r_flags;
293 				r->r_dev = 0;
294 				r->r_sharehead = 0;
295 				r->r_rm = rm;
296 				s->r_end = rv->r_start - 1;
297 				CIRCLEQ_INSERT_AFTER(&rm->rm_list, s, rv,
298 						     r_link);
299 				CIRCLEQ_INSERT_AFTER(&rm->rm_list, rv, r,
300 						     r_link);
301 			} else if (s->r_start == rv->r_start) {
302 #ifdef RMAN_DEBUG
303 				printf("allocating from the beginning\n");
304 #endif /* RMAN_DEBUG */
305 				/*
306 				 * We are allocating at the beginning.
307 				 */
308 				s->r_start = rv->r_end + 1;
309 				CIRCLEQ_INSERT_BEFORE(&rm->rm_list, s, rv,
310 						      r_link);
311 			} else {
312 #ifdef RMAN_DEBUG
313 				printf("allocating at the end\n");
314 #endif /* RMAN_DEBUG */
315 				/*
316 				 * We are allocating at the end.
317 				 */
318 				s->r_end = rv->r_start - 1;
319 				CIRCLEQ_INSERT_AFTER(&rm->rm_list, s, rv,
320 						     r_link);
321 			}
322 			goto out;
323 		}
324 	}
325 
326 	/*
327 	 * Now find an acceptable shared region, if the client's requirements
328 	 * allow sharing.  By our implementation restriction, a candidate
329 	 * region must match exactly by both size and sharing type in order
330 	 * to be considered compatible with the client's request.  (The
331 	 * former restriction could probably be lifted without too much
332 	 * additional work, but this does not seem warranted.)
333 	 */
334 #ifdef RMAN_DEBUG
335 	printf("no unshared regions found\n");
336 #endif /* RMAN_DEBUG */
337 	if ((flags & (RF_SHAREABLE | RF_TIMESHARE)) == 0)
338 		goto out;
339 
340 	for (s = r; !CIRCLEQ_TERMCOND(s, rm->rm_list);
341 	     s = CIRCLEQ_NEXT(s, r_link)) {
342 		if (s->r_start > end)
343 			break;
344 		if ((s->r_flags & flags) != flags)
345 			continue;
346 		rstart = max(s->r_start, start);
347 		rend = min(s->r_end, max(start + count, end));
348 		if (s->r_start >= start && s->r_end <= end
349 		    && (s->r_end - s->r_start + 1) == count) {
350 			rv = malloc(sizeof *rv, M_RMAN, M_NOWAIT);
351 			if (rv == 0)
352 				goto out;
353 			bzero(rv, sizeof *rv);
354 			rv->r_start = s->r_start;
355 			rv->r_end = s->r_end;
356 			rv->r_flags = s->r_flags &
357 				(RF_ALLOCATED | RF_SHAREABLE | RF_TIMESHARE);
358 			rv->r_dev = dev;
359 			rv->r_rm = rm;
360 			if (s->r_sharehead == 0) {
361 				s->r_sharehead = malloc(sizeof *s->r_sharehead,
362 							M_RMAN, M_NOWAIT);
363 				if (s->r_sharehead == 0) {
364 					free(rv, M_RMAN);
365 					rv = 0;
366 					goto out;
367 				}
368 				bzero(s->r_sharehead, sizeof *s->r_sharehead);
369 				LIST_INIT(s->r_sharehead);
370 				LIST_INSERT_HEAD(s->r_sharehead, s,
371 						 r_sharelink);
372 				s->r_flags |= RF_FIRSTSHARE;
373 			}
374 			rv->r_sharehead = s->r_sharehead;
375 			LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink);
376 			goto out;
377 		}
378 	}
379 
380 	/*
381 	 * We couldn't find anything.
382 	 */
383 out:
384 	/*
385 	 * If the user specified RF_ACTIVE in the initial flags,
386 	 * which is reflected in `want_activate', we attempt to atomically
387 	 * activate the resource.  If this fails, we release the resource
388 	 * and indicate overall failure.  (This behavior probably doesn't
389 	 * make sense for RF_TIMESHARE-type resources.)
390 	 */
391 	if (rv && want_activate) {
392 		struct resource *whohas;
393 		if (int_rman_activate_resource(rm, rv, &whohas)) {
394 			int_rman_release_resource(rm, rv);
395 			rv = 0;
396 		}
397 	}
398 
399 	simple_unlock(rm->rm_slock);
400 	return (rv);
401 }
402 
403 static int
404 int_rman_activate_resource(struct rman *rm, struct resource *r,
405 			   struct resource **whohas)
406 {
407 	struct resource *s;
408 	int ok;
409 
410 	/*
411 	 * If we are not timesharing, then there is nothing much to do.
412 	 * If we already have the resource, then there is nothing at all to do.
413 	 * If we are not on a sharing list with anybody else, then there is
414 	 * little to do.
415 	 */
416 	if ((r->r_flags & RF_TIMESHARE) == 0
417 	    || (r->r_flags & RF_ACTIVE) != 0
418 	    || r->r_sharehead == 0) {
419 		r->r_flags |= RF_ACTIVE;
420 		return 0;
421 	}
422 
423 	ok = 1;
424 	for (s = LIST_FIRST(r->r_sharehead); s && ok;
425 	     s = LIST_NEXT(s, r_sharelink)) {
426 		if ((s->r_flags & RF_ACTIVE) != 0) {
427 			ok = 0;
428 			*whohas = s;
429 		}
430 	}
431 	if (ok) {
432 		r->r_flags |= RF_ACTIVE;
433 		return 0;
434 	}
435 	return EBUSY;
436 }
437 
438 int
439 rman_activate_resource(struct resource *r)
440 {
441 	int rv;
442 	struct resource *whohas;
443 	struct rman *rm;
444 
445 	rm = r->r_rm;
446 	simple_lock(rm->rm_slock);
447 	rv = int_rman_activate_resource(rm, r, &whohas);
448 	simple_unlock(rm->rm_slock);
449 	return rv;
450 }
451 
452 int
453 rman_await_resource(struct resource *r, int pri, int timo)
454 {
455 	int	rv, s;
456 	struct	resource *whohas;
457 	struct	rman *rm;
458 
459 	rm = r->r_rm;
460 	for (;;) {
461 		simple_lock(rm->rm_slock);
462 		rv = int_rman_activate_resource(rm, r, &whohas);
463 		if (rv != EBUSY)
464 			return (rv);	/* returns with simplelock */
465 
466 		if (r->r_sharehead == 0)
467 			panic("rman_await_resource");
468 		/*
469 		 * splhigh hopefully will prevent a race between
470 		 * simple_unlock and tsleep where a process
471 		 * could conceivably get in and release the resource
472 		 * before we have a chance to sleep on it.
473 		 */
474 		s = splhigh();
475 		whohas->r_flags |= RF_WANTED;
476 		simple_unlock(rm->rm_slock);
477 		rv = tsleep(r->r_sharehead, pri, "rmwait", timo);
478 		if (rv) {
479 			splx(s);
480 			return rv;
481 		}
482 		simple_lock(rm->rm_slock);
483 		splx(s);
484 	}
485 }
486 
487 static int
488 int_rman_deactivate_resource(struct resource *r)
489 {
490 	struct	rman *rm;
491 
492 	rm = r->r_rm;
493 	r->r_flags &= ~RF_ACTIVE;
494 	if (r->r_flags & RF_WANTED) {
495 		r->r_flags &= ~RF_WANTED;
496 		wakeup(r->r_sharehead);
497 	}
498 	return 0;
499 }
500 
501 int
502 rman_deactivate_resource(struct resource *r)
503 {
504 	struct	rman *rm;
505 
506 	rm = r->r_rm;
507 	simple_lock(rm->rm_slock);
508 	int_rman_deactivate_resource(r);
509 	simple_unlock(rm->rm_slock);
510 	return 0;
511 }
512 
513 static int
514 int_rman_release_resource(struct rman *rm, struct resource *r)
515 {
516 	struct	resource *s, *t;
517 
518 	if (r->r_flags & RF_ACTIVE)
519 		int_rman_deactivate_resource(r);
520 
521 	/*
522 	 * Check for a sharing list first.  If there is one, then we don't
523 	 * have to think as hard.
524 	 */
525 	if (r->r_sharehead) {
526 		/*
527 		 * If a sharing list exists, then we know there are at
528 		 * least two sharers.
529 		 *
530 		 * If we are in the main circleq, appoint someone else.
531 		 */
532 		LIST_REMOVE(r, r_sharelink);
533 		s = LIST_FIRST(r->r_sharehead);
534 		if (r->r_flags & RF_FIRSTSHARE) {
535 			s->r_flags |= RF_FIRSTSHARE;
536 			CIRCLEQ_INSERT_BEFORE(&rm->rm_list, r, s, r_link);
537 			CIRCLEQ_REMOVE(&rm->rm_list, r, r_link);
538 		}
539 
540 		/*
541 		 * Make sure that the sharing list goes away completely
542 		 * if the resource is no longer being shared at all.
543 		 */
544 		if (LIST_NEXT(s, r_sharelink) == 0) {
545 			free(s->r_sharehead, M_RMAN);
546 			s->r_sharehead = 0;
547 			s->r_flags &= ~RF_FIRSTSHARE;
548 		}
549 		goto out;
550 	}
551 
552 	/*
553 	 * Look at the adjacent resources in the list and see if our
554 	 * segment can be merged with any of them.
555 	 */
556 	s = CIRCLEQ_PREV(r, r_link);
557 	t = CIRCLEQ_NEXT(r, r_link);
558 
559 	if (s != (void *)&rm->rm_list && (s->r_flags & RF_ALLOCATED) == 0
560 	    && t != (void *)&rm->rm_list && (t->r_flags & RF_ALLOCATED) == 0) {
561 		/*
562 		 * Merge all three segments.
563 		 */
564 		s->r_end = t->r_end;
565 		CIRCLEQ_REMOVE(&rm->rm_list, r, r_link);
566 		CIRCLEQ_REMOVE(&rm->rm_list, t, r_link);
567 		free(t, M_RMAN);
568 	} else if (s != (void *)&rm->rm_list
569 		   && (s->r_flags & RF_ALLOCATED) == 0) {
570 		/*
571 		 * Merge previous segment with ours.
572 		 */
573 		s->r_end = r->r_end;
574 		CIRCLEQ_REMOVE(&rm->rm_list, r, r_link);
575 	} else if (t != (void *)&rm->rm_list
576 		   && (t->r_flags & RF_ALLOCATED) == 0) {
577 		/*
578 		 * Merge next segment with ours.
579 		 */
580 		t->r_start = r->r_start;
581 		CIRCLEQ_REMOVE(&rm->rm_list, r, r_link);
582 	} else {
583 		/*
584 		 * At this point, we know there is nothing we
585 		 * can potentially merge with, because on each
586 		 * side, there is either nothing there or what is
587 		 * there is still allocated.  In that case, we don't
588 		 * want to remove r from the list; we simply want to
589 		 * change it to an unallocated region and return
590 		 * without freeing anything.
591 		 */
592 		r->r_flags &= ~RF_ALLOCATED;
593 		return 0;
594 	}
595 
596 out:
597 	free(r, M_RMAN);
598 	return 0;
599 }
600 
601 int
602 rman_release_resource(struct resource *r)
603 {
604 	int	rv;
605 	struct	rman *rm = r->r_rm;
606 
607 	simple_lock(rm->rm_slock);
608 	rv = int_rman_release_resource(rm, r);
609 	simple_unlock(rm->rm_slock);
610 	return (rv);
611 }
612