1 /*- 2 * Copyright 1998 Massachusetts Institute of Technology 3 * 4 * Permission to use, copy, modify, and distribute this software and 5 * its documentation for any purpose and without fee is hereby 6 * granted, provided that both the above copyright notice and this 7 * permission notice appear in all copies, that both the above 8 * copyright notice and this permission notice appear in all 9 * supporting documentation, and that the name of M.I.T. not be used 10 * in advertising or publicity pertaining to distribution of the 11 * software without specific, written prior permission. M.I.T. makes 12 * no representations about the suitability of this software for any 13 * purpose. It is provided "as is" without express or implied 14 * warranty. 15 * 16 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS 17 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE, 18 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT 20 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF 23 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 25 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 26 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 /* 31 * The kernel resource manager. This code is responsible for keeping track 32 * of hardware resources which are apportioned out to various drivers. 33 * It does not actually assign those resources, and it is not expected 34 * that end-device drivers will call into this code directly. Rather, 35 * the code which implements the buses that those devices are attached to, 36 * and the code which manages CPU resources, will call this code, and the 37 * end-device drivers will make upcalls to that code to actually perform 38 * the allocation. 39 * 40 * There are two sorts of resources managed by this code. The first is 41 * the more familiar array (RMAN_ARRAY) type; resources in this class 42 * consist of a sequence of individually-allocatable objects which have 43 * been numbered in some well-defined order. Most of the resources 44 * are of this type, as it is the most familiar. The second type is 45 * called a gauge (RMAN_GAUGE), and models fungible resources (i.e., 46 * resources in which each instance is indistinguishable from every 47 * other instance). The principal anticipated application of gauges 48 * is in the context of power consumption, where a bus may have a specific 49 * power budget which all attached devices share. RMAN_GAUGE is not 50 * implemented yet. 51 * 52 * For array resources, we make one simplifying assumption: two clients 53 * sharing the same resource must use the same range of indices. That 54 * is to say, sharing of overlapping-but-not-identical regions is not 55 * permitted. 56 */ 57 58 #include "opt_ddb.h" 59 60 #include <sys/cdefs.h> 61 __FBSDID("$FreeBSD$"); 62 63 #include <sys/param.h> 64 #include <sys/systm.h> 65 #include <sys/kernel.h> 66 #include <sys/limits.h> 67 #include <sys/lock.h> 68 #include <sys/malloc.h> 69 #include <sys/mutex.h> 70 #include <sys/bus.h> /* XXX debugging */ 71 #include <machine/bus.h> 72 #include <sys/rman.h> 73 #include <sys/sysctl.h> 74 75 #ifdef DDB 76 #include <ddb/ddb.h> 77 #endif 78 79 /* 80 * We use a linked list rather than a bitmap because we need to be able to 81 * represent potentially huge objects (like all of a processor's physical 82 * address space). That is also why the indices are defined to have type 83 * `unsigned long' -- that being the largest integral type in ISO C (1990). 84 * The 1999 version of C allows `long long'; we may need to switch to that 85 * at some point in the future, particularly if we want to support 36-bit 86 * addresses on IA32 hardware. 87 */ 88 struct resource_i { 89 struct resource r_r; 90 TAILQ_ENTRY(resource_i) r_link; 91 LIST_ENTRY(resource_i) r_sharelink; 92 LIST_HEAD(, resource_i) *r_sharehead; 93 u_long r_start; /* index of the first entry in this resource */ 94 u_long r_end; /* index of the last entry (inclusive) */ 95 u_int r_flags; 96 void *r_virtual; /* virtual address of this resource */ 97 struct device *r_dev; /* device which has allocated this resource */ 98 struct rman *r_rm; /* resource manager from whence this came */ 99 int r_rid; /* optional rid for this resource. */ 100 }; 101 102 static int rman_debug = 0; 103 TUNABLE_INT("debug.rman_debug", &rman_debug); 104 SYSCTL_INT(_debug, OID_AUTO, rman_debug, CTLFLAG_RW, 105 &rman_debug, 0, "rman debug"); 106 107 #define DPRINTF(params) if (rman_debug) printf params 108 109 static MALLOC_DEFINE(M_RMAN, "rman", "Resource manager"); 110 111 struct rman_head rman_head; 112 static struct mtx rman_mtx; /* mutex to protect rman_head */ 113 static int int_rman_activate_resource(struct rman *rm, struct resource_i *r, 114 struct resource_i **whohas); 115 static int int_rman_deactivate_resource(struct resource_i *r); 116 static int int_rman_release_resource(struct rman *rm, struct resource_i *r); 117 118 static __inline struct resource_i * 119 int_alloc_resource(int malloc_flag) 120 { 121 struct resource_i *r; 122 123 r = malloc(sizeof *r, M_RMAN, malloc_flag | M_ZERO); 124 if (r != NULL) { 125 r->r_r.__r_i = r; 126 } 127 return (r); 128 } 129 130 int 131 rman_init(struct rman *rm) 132 { 133 static int once = 0; 134 135 if (once == 0) { 136 once = 1; 137 TAILQ_INIT(&rman_head); 138 mtx_init(&rman_mtx, "rman head", NULL, MTX_DEF); 139 } 140 141 if (rm->rm_type == RMAN_UNINIT) 142 panic("rman_init"); 143 if (rm->rm_type == RMAN_GAUGE) 144 panic("implement RMAN_GAUGE"); 145 146 TAILQ_INIT(&rm->rm_list); 147 rm->rm_mtx = malloc(sizeof *rm->rm_mtx, M_RMAN, M_NOWAIT | M_ZERO); 148 if (rm->rm_mtx == NULL) 149 return ENOMEM; 150 mtx_init(rm->rm_mtx, "rman", NULL, MTX_DEF); 151 152 mtx_lock(&rman_mtx); 153 TAILQ_INSERT_TAIL(&rman_head, rm, rm_link); 154 mtx_unlock(&rman_mtx); 155 return 0; 156 } 157 158 int 159 rman_manage_region(struct rman *rm, u_long start, u_long end) 160 { 161 struct resource_i *r, *s, *t; 162 163 DPRINTF(("rman_manage_region: <%s> request: start %#lx, end %#lx\n", 164 rm->rm_descr, start, end)); 165 r = int_alloc_resource(M_NOWAIT); 166 if (r == NULL) 167 return ENOMEM; 168 r->r_start = start; 169 r->r_end = end; 170 r->r_rm = rm; 171 172 mtx_lock(rm->rm_mtx); 173 174 /* Skip entries before us. */ 175 TAILQ_FOREACH(s, &rm->rm_list, r_link) { 176 if (s->r_end == ULONG_MAX) 177 break; 178 if (s->r_end + 1 >= r->r_start) 179 break; 180 } 181 182 /* If we ran off the end of the list, insert at the tail. */ 183 if (s == NULL) { 184 TAILQ_INSERT_TAIL(&rm->rm_list, r, r_link); 185 } else { 186 /* Check for any overlap with the current region. */ 187 if (r->r_start <= s->r_end && r->r_end >= s->r_start) 188 return EBUSY; 189 190 /* Check for any overlap with the next region. */ 191 t = TAILQ_NEXT(s, r_link); 192 if (t && r->r_start <= t->r_end && r->r_end >= t->r_start) 193 return EBUSY; 194 195 /* 196 * See if this region can be merged with the next region. If 197 * not, clear the pointer. 198 */ 199 if (t && (r->r_end + 1 != t->r_start || t->r_flags != 0)) 200 t = NULL; 201 202 /* See if we can merge with the current region. */ 203 if (s->r_end + 1 == r->r_start && s->r_flags == 0) { 204 /* Can we merge all 3 regions? */ 205 if (t != NULL) { 206 s->r_end = t->r_end; 207 TAILQ_REMOVE(&rm->rm_list, t, r_link); 208 free(r, M_RMAN); 209 free(t, M_RMAN); 210 } else { 211 s->r_end = r->r_end; 212 free(r, M_RMAN); 213 } 214 } else if (t != NULL) { 215 /* Can we merge with just the next region? */ 216 t->r_start = r->r_start; 217 free(r, M_RMAN); 218 } else if (s->r_end < r->r_start) { 219 TAILQ_INSERT_AFTER(&rm->rm_list, s, r, r_link); 220 } else { 221 TAILQ_INSERT_BEFORE(s, r, r_link); 222 } 223 } 224 225 mtx_unlock(rm->rm_mtx); 226 return 0; 227 } 228 229 int 230 rman_init_from_resource(struct rman *rm, struct resource *r) 231 { 232 int rv; 233 234 if ((rv = rman_init(rm)) != 0) 235 return (rv); 236 return (rman_manage_region(rm, r->__r_i->r_start, r->__r_i->r_end)); 237 } 238 239 int 240 rman_fini(struct rman *rm) 241 { 242 struct resource_i *r; 243 244 mtx_lock(rm->rm_mtx); 245 TAILQ_FOREACH(r, &rm->rm_list, r_link) { 246 if (r->r_flags & RF_ALLOCATED) { 247 mtx_unlock(rm->rm_mtx); 248 return EBUSY; 249 } 250 } 251 252 /* 253 * There really should only be one of these if we are in this 254 * state and the code is working properly, but it can't hurt. 255 */ 256 while (!TAILQ_EMPTY(&rm->rm_list)) { 257 r = TAILQ_FIRST(&rm->rm_list); 258 TAILQ_REMOVE(&rm->rm_list, r, r_link); 259 free(r, M_RMAN); 260 } 261 mtx_unlock(rm->rm_mtx); 262 mtx_lock(&rman_mtx); 263 TAILQ_REMOVE(&rman_head, rm, rm_link); 264 mtx_unlock(&rman_mtx); 265 mtx_destroy(rm->rm_mtx); 266 free(rm->rm_mtx, M_RMAN); 267 268 return 0; 269 } 270 271 struct resource * 272 rman_reserve_resource_bound(struct rman *rm, u_long start, u_long end, 273 u_long count, u_long bound, u_int flags, 274 struct device *dev) 275 { 276 u_int want_activate; 277 struct resource_i *r, *s, *rv; 278 u_long rstart, rend, amask, bmask; 279 280 rv = NULL; 281 282 DPRINTF(("rman_reserve_resource_bound: <%s> request: [%#lx, %#lx], " 283 "length %#lx, flags %u, device %s\n", rm->rm_descr, start, end, 284 count, flags, 285 dev == NULL ? "<null>" : device_get_nameunit(dev))); 286 want_activate = (flags & RF_ACTIVE); 287 flags &= ~RF_ACTIVE; 288 289 mtx_lock(rm->rm_mtx); 290 291 for (r = TAILQ_FIRST(&rm->rm_list); 292 r && r->r_end < start; 293 r = TAILQ_NEXT(r, r_link)) 294 ; 295 296 if (r == NULL) { 297 DPRINTF(("could not find a region\n")); 298 goto out; 299 } 300 301 amask = (1ul << RF_ALIGNMENT(flags)) - 1; 302 /* If bound is 0, bmask will also be 0 */ 303 bmask = ~(bound - 1); 304 /* 305 * First try to find an acceptable totally-unshared region. 306 */ 307 for (s = r; s; s = TAILQ_NEXT(s, r_link)) { 308 DPRINTF(("considering [%#lx, %#lx]\n", s->r_start, s->r_end)); 309 if (s->r_start + count - 1 > end) { 310 DPRINTF(("s->r_start (%#lx) + count - 1> end (%#lx)\n", 311 s->r_start, end)); 312 break; 313 } 314 if (s->r_flags & RF_ALLOCATED) { 315 DPRINTF(("region is allocated\n")); 316 continue; 317 } 318 rstart = ulmax(s->r_start, start); 319 /* 320 * Try to find a region by adjusting to boundary and alignment 321 * until both conditions are satisfied. This is not an optimal 322 * algorithm, but in most cases it isn't really bad, either. 323 */ 324 do { 325 rstart = (rstart + amask) & ~amask; 326 if (((rstart ^ (rstart + count - 1)) & bmask) != 0) 327 rstart += bound - (rstart & ~bmask); 328 } while ((rstart & amask) != 0 && rstart < end && 329 rstart < s->r_end); 330 rend = ulmin(s->r_end, ulmax(rstart + count - 1, end)); 331 if (rstart > rend) { 332 DPRINTF(("adjusted start exceeds end\n")); 333 continue; 334 } 335 DPRINTF(("truncated region: [%#lx, %#lx]; size %#lx (requested %#lx)\n", 336 rstart, rend, (rend - rstart + 1), count)); 337 338 if ((rend - rstart + 1) >= count) { 339 DPRINTF(("candidate region: [%#lx, %#lx], size %#lx\n", 340 rstart, rend, (rend - rstart + 1))); 341 if ((s->r_end - s->r_start + 1) == count) { 342 DPRINTF(("candidate region is entire chunk\n")); 343 rv = s; 344 rv->r_flags |= RF_ALLOCATED | flags; 345 rv->r_dev = dev; 346 goto out; 347 } 348 349 /* 350 * If s->r_start < rstart and 351 * s->r_end > rstart + count - 1, then 352 * we need to split the region into three pieces 353 * (the middle one will get returned to the user). 354 * Otherwise, we are allocating at either the 355 * beginning or the end of s, so we only need to 356 * split it in two. The first case requires 357 * two new allocations; the second requires but one. 358 */ 359 rv = int_alloc_resource(M_NOWAIT); 360 if (rv == NULL) 361 goto out; 362 rv->r_start = rstart; 363 rv->r_end = rstart + count - 1; 364 rv->r_flags = flags | RF_ALLOCATED; 365 rv->r_dev = dev; 366 rv->r_rm = rm; 367 368 if (s->r_start < rv->r_start && s->r_end > rv->r_end) { 369 DPRINTF(("splitting region in three parts: " 370 "[%#lx, %#lx]; [%#lx, %#lx]; [%#lx, %#lx]\n", 371 s->r_start, rv->r_start - 1, 372 rv->r_start, rv->r_end, 373 rv->r_end + 1, s->r_end)); 374 /* 375 * We are allocating in the middle. 376 */ 377 r = int_alloc_resource(M_NOWAIT); 378 if (r == NULL) { 379 free(rv, M_RMAN); 380 rv = NULL; 381 goto out; 382 } 383 r->r_start = rv->r_end + 1; 384 r->r_end = s->r_end; 385 r->r_flags = s->r_flags; 386 r->r_rm = rm; 387 s->r_end = rv->r_start - 1; 388 TAILQ_INSERT_AFTER(&rm->rm_list, s, rv, 389 r_link); 390 TAILQ_INSERT_AFTER(&rm->rm_list, rv, r, 391 r_link); 392 } else if (s->r_start == rv->r_start) { 393 DPRINTF(("allocating from the beginning\n")); 394 /* 395 * We are allocating at the beginning. 396 */ 397 s->r_start = rv->r_end + 1; 398 TAILQ_INSERT_BEFORE(s, rv, r_link); 399 } else { 400 DPRINTF(("allocating at the end\n")); 401 /* 402 * We are allocating at the end. 403 */ 404 s->r_end = rv->r_start - 1; 405 TAILQ_INSERT_AFTER(&rm->rm_list, s, rv, 406 r_link); 407 } 408 goto out; 409 } 410 } 411 412 /* 413 * Now find an acceptable shared region, if the client's requirements 414 * allow sharing. By our implementation restriction, a candidate 415 * region must match exactly by both size and sharing type in order 416 * to be considered compatible with the client's request. (The 417 * former restriction could probably be lifted without too much 418 * additional work, but this does not seem warranted.) 419 */ 420 DPRINTF(("no unshared regions found\n")); 421 if ((flags & (RF_SHAREABLE | RF_TIMESHARE)) == 0) 422 goto out; 423 424 for (s = r; s; s = TAILQ_NEXT(s, r_link)) { 425 if (s->r_start > end) 426 break; 427 if ((s->r_flags & flags) != flags) 428 continue; 429 rstart = ulmax(s->r_start, start); 430 rend = ulmin(s->r_end, ulmax(start + count - 1, end)); 431 if (s->r_start >= start && s->r_end <= end 432 && (s->r_end - s->r_start + 1) == count && 433 (s->r_start & amask) == 0 && 434 ((s->r_start ^ s->r_end) & bmask) == 0) { 435 rv = int_alloc_resource(M_NOWAIT); 436 if (rv == NULL) 437 goto out; 438 rv->r_start = s->r_start; 439 rv->r_end = s->r_end; 440 rv->r_flags = s->r_flags & 441 (RF_ALLOCATED | RF_SHAREABLE | RF_TIMESHARE); 442 rv->r_dev = dev; 443 rv->r_rm = rm; 444 if (s->r_sharehead == NULL) { 445 s->r_sharehead = malloc(sizeof *s->r_sharehead, 446 M_RMAN, M_NOWAIT | M_ZERO); 447 if (s->r_sharehead == NULL) { 448 free(rv, M_RMAN); 449 rv = NULL; 450 goto out; 451 } 452 LIST_INIT(s->r_sharehead); 453 LIST_INSERT_HEAD(s->r_sharehead, s, 454 r_sharelink); 455 s->r_flags |= RF_FIRSTSHARE; 456 } 457 rv->r_sharehead = s->r_sharehead; 458 LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink); 459 goto out; 460 } 461 } 462 463 /* 464 * We couldn't find anything. 465 */ 466 out: 467 /* 468 * If the user specified RF_ACTIVE in the initial flags, 469 * which is reflected in `want_activate', we attempt to atomically 470 * activate the resource. If this fails, we release the resource 471 * and indicate overall failure. (This behavior probably doesn't 472 * make sense for RF_TIMESHARE-type resources.) 473 */ 474 if (rv && want_activate) { 475 struct resource_i *whohas; 476 if (int_rman_activate_resource(rm, rv, &whohas)) { 477 int_rman_release_resource(rm, rv); 478 rv = NULL; 479 } 480 } 481 482 mtx_unlock(rm->rm_mtx); 483 return (rv == NULL ? NULL : &rv->r_r); 484 } 485 486 struct resource * 487 rman_reserve_resource(struct rman *rm, u_long start, u_long end, u_long count, 488 u_int flags, struct device *dev) 489 { 490 491 return (rman_reserve_resource_bound(rm, start, end, count, 0, flags, 492 dev)); 493 } 494 495 static int 496 int_rman_activate_resource(struct rman *rm, struct resource_i *r, 497 struct resource_i **whohas) 498 { 499 struct resource_i *s; 500 int ok; 501 502 /* 503 * If we are not timesharing, then there is nothing much to do. 504 * If we already have the resource, then there is nothing at all to do. 505 * If we are not on a sharing list with anybody else, then there is 506 * little to do. 507 */ 508 if ((r->r_flags & RF_TIMESHARE) == 0 509 || (r->r_flags & RF_ACTIVE) != 0 510 || r->r_sharehead == NULL) { 511 r->r_flags |= RF_ACTIVE; 512 return 0; 513 } 514 515 ok = 1; 516 for (s = LIST_FIRST(r->r_sharehead); s && ok; 517 s = LIST_NEXT(s, r_sharelink)) { 518 if ((s->r_flags & RF_ACTIVE) != 0) { 519 ok = 0; 520 *whohas = s; 521 } 522 } 523 if (ok) { 524 r->r_flags |= RF_ACTIVE; 525 return 0; 526 } 527 return EBUSY; 528 } 529 530 int 531 rman_activate_resource(struct resource *re) 532 { 533 int rv; 534 struct resource_i *r, *whohas; 535 struct rman *rm; 536 537 r = re->__r_i; 538 rm = r->r_rm; 539 mtx_lock(rm->rm_mtx); 540 rv = int_rman_activate_resource(rm, r, &whohas); 541 mtx_unlock(rm->rm_mtx); 542 return rv; 543 } 544 545 int 546 rman_await_resource(struct resource *re, int pri, int timo) 547 { 548 int rv; 549 struct resource_i *r, *whohas; 550 struct rman *rm; 551 552 r = re->__r_i; 553 rm = r->r_rm; 554 mtx_lock(rm->rm_mtx); 555 for (;;) { 556 rv = int_rman_activate_resource(rm, r, &whohas); 557 if (rv != EBUSY) 558 return (rv); /* returns with mutex held */ 559 560 if (r->r_sharehead == NULL) 561 panic("rman_await_resource"); 562 whohas->r_flags |= RF_WANTED; 563 rv = msleep(r->r_sharehead, rm->rm_mtx, pri, "rmwait", timo); 564 if (rv) { 565 mtx_unlock(rm->rm_mtx); 566 return (rv); 567 } 568 } 569 } 570 571 static int 572 int_rman_deactivate_resource(struct resource_i *r) 573 { 574 575 r->r_flags &= ~RF_ACTIVE; 576 if (r->r_flags & RF_WANTED) { 577 r->r_flags &= ~RF_WANTED; 578 wakeup(r->r_sharehead); 579 } 580 return 0; 581 } 582 583 int 584 rman_deactivate_resource(struct resource *r) 585 { 586 struct rman *rm; 587 588 rm = r->__r_i->r_rm; 589 mtx_lock(rm->rm_mtx); 590 int_rman_deactivate_resource(r->__r_i); 591 mtx_unlock(rm->rm_mtx); 592 return 0; 593 } 594 595 static int 596 int_rman_release_resource(struct rman *rm, struct resource_i *r) 597 { 598 struct resource_i *s, *t; 599 600 if (r->r_flags & RF_ACTIVE) 601 int_rman_deactivate_resource(r); 602 603 /* 604 * Check for a sharing list first. If there is one, then we don't 605 * have to think as hard. 606 */ 607 if (r->r_sharehead) { 608 /* 609 * If a sharing list exists, then we know there are at 610 * least two sharers. 611 * 612 * If we are in the main circleq, appoint someone else. 613 */ 614 LIST_REMOVE(r, r_sharelink); 615 s = LIST_FIRST(r->r_sharehead); 616 if (r->r_flags & RF_FIRSTSHARE) { 617 s->r_flags |= RF_FIRSTSHARE; 618 TAILQ_INSERT_BEFORE(r, s, r_link); 619 TAILQ_REMOVE(&rm->rm_list, r, r_link); 620 } 621 622 /* 623 * Make sure that the sharing list goes away completely 624 * if the resource is no longer being shared at all. 625 */ 626 if (LIST_NEXT(s, r_sharelink) == NULL) { 627 free(s->r_sharehead, M_RMAN); 628 s->r_sharehead = NULL; 629 s->r_flags &= ~RF_FIRSTSHARE; 630 } 631 goto out; 632 } 633 634 /* 635 * Look at the adjacent resources in the list and see if our 636 * segment can be merged with any of them. If either of the 637 * resources is allocated or is not exactly adjacent then they 638 * cannot be merged with our segment. 639 */ 640 s = TAILQ_PREV(r, resource_head, r_link); 641 if (s != NULL && ((s->r_flags & RF_ALLOCATED) != 0 || 642 s->r_end + 1 != r->r_start)) 643 s = NULL; 644 t = TAILQ_NEXT(r, r_link); 645 if (t != NULL && ((t->r_flags & RF_ALLOCATED) != 0 || 646 r->r_end + 1 != t->r_start)) 647 t = NULL; 648 649 if (s != NULL && t != NULL) { 650 /* 651 * Merge all three segments. 652 */ 653 s->r_end = t->r_end; 654 TAILQ_REMOVE(&rm->rm_list, r, r_link); 655 TAILQ_REMOVE(&rm->rm_list, t, r_link); 656 free(t, M_RMAN); 657 } else if (s != NULL) { 658 /* 659 * Merge previous segment with ours. 660 */ 661 s->r_end = r->r_end; 662 TAILQ_REMOVE(&rm->rm_list, r, r_link); 663 } else if (t != NULL) { 664 /* 665 * Merge next segment with ours. 666 */ 667 t->r_start = r->r_start; 668 TAILQ_REMOVE(&rm->rm_list, r, r_link); 669 } else { 670 /* 671 * At this point, we know there is nothing we 672 * can potentially merge with, because on each 673 * side, there is either nothing there or what is 674 * there is still allocated. In that case, we don't 675 * want to remove r from the list; we simply want to 676 * change it to an unallocated region and return 677 * without freeing anything. 678 */ 679 r->r_flags &= ~RF_ALLOCATED; 680 return 0; 681 } 682 683 out: 684 free(r, M_RMAN); 685 return 0; 686 } 687 688 int 689 rman_release_resource(struct resource *re) 690 { 691 int rv; 692 struct resource_i *r; 693 struct rman *rm; 694 695 r = re->__r_i; 696 rm = r->r_rm; 697 mtx_lock(rm->rm_mtx); 698 rv = int_rman_release_resource(rm, r); 699 mtx_unlock(rm->rm_mtx); 700 return (rv); 701 } 702 703 uint32_t 704 rman_make_alignment_flags(uint32_t size) 705 { 706 int i; 707 708 /* 709 * Find the hightest bit set, and add one if more than one bit 710 * set. We're effectively computing the ceil(log2(size)) here. 711 */ 712 for (i = 31; i > 0; i--) 713 if ((1 << i) & size) 714 break; 715 if (~(1 << i) & size) 716 i++; 717 718 return(RF_ALIGNMENT_LOG2(i)); 719 } 720 721 void 722 rman_set_start(struct resource *r, u_long start) 723 { 724 r->__r_i->r_start = start; 725 } 726 727 u_long 728 rman_get_start(struct resource *r) 729 { 730 return (r->__r_i->r_start); 731 } 732 733 void 734 rman_set_end(struct resource *r, u_long end) 735 { 736 r->__r_i->r_end = end; 737 } 738 739 u_long 740 rman_get_end(struct resource *r) 741 { 742 return (r->__r_i->r_end); 743 } 744 745 u_long 746 rman_get_size(struct resource *r) 747 { 748 return (r->__r_i->r_end - r->__r_i->r_start + 1); 749 } 750 751 u_int 752 rman_get_flags(struct resource *r) 753 { 754 return (r->__r_i->r_flags); 755 } 756 757 void 758 rman_set_virtual(struct resource *r, void *v) 759 { 760 r->__r_i->r_virtual = v; 761 } 762 763 void * 764 rman_get_virtual(struct resource *r) 765 { 766 return (r->__r_i->r_virtual); 767 } 768 769 void 770 rman_set_bustag(struct resource *r, bus_space_tag_t t) 771 { 772 r->r_bustag = t; 773 } 774 775 bus_space_tag_t 776 rman_get_bustag(struct resource *r) 777 { 778 return (r->r_bustag); 779 } 780 781 void 782 rman_set_bushandle(struct resource *r, bus_space_handle_t h) 783 { 784 r->r_bushandle = h; 785 } 786 787 bus_space_handle_t 788 rman_get_bushandle(struct resource *r) 789 { 790 return (r->r_bushandle); 791 } 792 793 void 794 rman_set_rid(struct resource *r, int rid) 795 { 796 r->__r_i->r_rid = rid; 797 } 798 799 int 800 rman_get_rid(struct resource *r) 801 { 802 return (r->__r_i->r_rid); 803 } 804 805 void 806 rman_set_device(struct resource *r, struct device *dev) 807 { 808 r->__r_i->r_dev = dev; 809 } 810 811 struct device * 812 rman_get_device(struct resource *r) 813 { 814 return (r->__r_i->r_dev); 815 } 816 817 int 818 rman_is_region_manager(struct resource *r, struct rman *rm) 819 { 820 821 return (r->__r_i->r_rm == rm); 822 } 823 824 /* 825 * Sysctl interface for scanning the resource lists. 826 * 827 * We take two input parameters; the index into the list of resource 828 * managers, and the resource offset into the list. 829 */ 830 static int 831 sysctl_rman(SYSCTL_HANDLER_ARGS) 832 { 833 int *name = (int *)arg1; 834 u_int namelen = arg2; 835 int rman_idx, res_idx; 836 struct rman *rm; 837 struct resource_i *res; 838 struct resource_i *sres; 839 struct u_rman urm; 840 struct u_resource ures; 841 int error; 842 843 if (namelen != 3) 844 return (EINVAL); 845 846 if (bus_data_generation_check(name[0])) 847 return (EINVAL); 848 rman_idx = name[1]; 849 res_idx = name[2]; 850 851 /* 852 * Find the indexed resource manager 853 */ 854 mtx_lock(&rman_mtx); 855 TAILQ_FOREACH(rm, &rman_head, rm_link) { 856 if (rman_idx-- == 0) 857 break; 858 } 859 mtx_unlock(&rman_mtx); 860 if (rm == NULL) 861 return (ENOENT); 862 863 /* 864 * If the resource index is -1, we want details on the 865 * resource manager. 866 */ 867 if (res_idx == -1) { 868 bzero(&urm, sizeof(urm)); 869 urm.rm_handle = (uintptr_t)rm; 870 if (rm->rm_descr != NULL) 871 strlcpy(urm.rm_descr, rm->rm_descr, RM_TEXTLEN); 872 urm.rm_start = rm->rm_start; 873 urm.rm_size = rm->rm_end - rm->rm_start + 1; 874 urm.rm_type = rm->rm_type; 875 876 error = SYSCTL_OUT(req, &urm, sizeof(urm)); 877 return (error); 878 } 879 880 /* 881 * Find the indexed resource and return it. 882 */ 883 mtx_lock(rm->rm_mtx); 884 TAILQ_FOREACH(res, &rm->rm_list, r_link) { 885 if (res->r_sharehead != NULL) { 886 LIST_FOREACH(sres, res->r_sharehead, r_sharelink) 887 if (res_idx-- == 0) { 888 res = sres; 889 goto found; 890 } 891 } 892 else if (res_idx-- == 0) 893 goto found; 894 } 895 mtx_unlock(rm->rm_mtx); 896 return (ENOENT); 897 898 found: 899 bzero(&ures, sizeof(ures)); 900 ures.r_handle = (uintptr_t)res; 901 ures.r_parent = (uintptr_t)res->r_rm; 902 ures.r_device = (uintptr_t)res->r_dev; 903 if (res->r_dev != NULL) { 904 if (device_get_name(res->r_dev) != NULL) { 905 snprintf(ures.r_devname, RM_TEXTLEN, 906 "%s%d", 907 device_get_name(res->r_dev), 908 device_get_unit(res->r_dev)); 909 } else { 910 strlcpy(ures.r_devname, "nomatch", 911 RM_TEXTLEN); 912 } 913 } else { 914 ures.r_devname[0] = '\0'; 915 } 916 ures.r_start = res->r_start; 917 ures.r_size = res->r_end - res->r_start + 1; 918 ures.r_flags = res->r_flags; 919 920 mtx_unlock(rm->rm_mtx); 921 error = SYSCTL_OUT(req, &ures, sizeof(ures)); 922 return (error); 923 } 924 925 SYSCTL_NODE(_hw_bus, OID_AUTO, rman, CTLFLAG_RD, sysctl_rman, 926 "kernel resource manager"); 927 928 #ifdef DDB 929 static void 930 dump_rman(struct rman *rm) 931 { 932 struct resource_i *r; 933 const char *devname; 934 935 if (db_pager_quit) 936 return; 937 db_printf("rman: %s\n", rm->rm_descr); 938 db_printf(" 0x%lx-0x%lx (full range)\n", rm->rm_start, rm->rm_end); 939 TAILQ_FOREACH(r, &rm->rm_list, r_link) { 940 if (r->r_dev != NULL) { 941 devname = device_get_nameunit(r->r_dev); 942 if (devname == NULL) 943 devname = "nomatch"; 944 } else 945 devname = NULL; 946 db_printf(" 0x%lx-0x%lx ", r->r_start, r->r_end); 947 if (devname != NULL) 948 db_printf("(%s)\n", devname); 949 else 950 db_printf("----\n"); 951 if (db_pager_quit) 952 return; 953 } 954 } 955 956 DB_SHOW_COMMAND(rman, db_show_rman) 957 { 958 959 if (have_addr) 960 dump_rman((struct rman *)addr); 961 } 962 963 DB_SHOW_ALL_COMMAND(rman, db_show_all_rman) 964 { 965 struct rman *rm; 966 967 TAILQ_FOREACH(rm, &rman_head, rm_link) 968 dump_rman(rm); 969 } 970 DB_SHOW_ALIAS(allrman, db_show_all_rman); 971 #endif 972