1 /*- 2 * Copyright 1998 Massachusetts Institute of Technology 3 * 4 * Permission to use, copy, modify, and distribute this software and 5 * its documentation for any purpose and without fee is hereby 6 * granted, provided that both the above copyright notice and this 7 * permission notice appear in all copies, that both the above 8 * copyright notice and this permission notice appear in all 9 * supporting documentation, and that the name of M.I.T. not be used 10 * in advertising or publicity pertaining to distribution of the 11 * software without specific, written prior permission. M.I.T. makes 12 * no representations about the suitability of this software for any 13 * purpose. It is provided "as is" without express or implied 14 * warranty. 15 * 16 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS 17 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE, 18 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT 20 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF 23 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 25 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 26 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 /* 31 * The kernel resource manager. This code is responsible for keeping track 32 * of hardware resources which are apportioned out to various drivers. 33 * It does not actually assign those resources, and it is not expected 34 * that end-device drivers will call into this code directly. Rather, 35 * the code which implements the buses that those devices are attached to, 36 * and the code which manages CPU resources, will call this code, and the 37 * end-device drivers will make upcalls to that code to actually perform 38 * the allocation. 39 * 40 * There are two sorts of resources managed by this code. The first is 41 * the more familiar array (RMAN_ARRAY) type; resources in this class 42 * consist of a sequence of individually-allocatable objects which have 43 * been numbered in some well-defined order. Most of the resources 44 * are of this type, as it is the most familiar. The second type is 45 * called a gauge (RMAN_GAUGE), and models fungible resources (i.e., 46 * resources in which each instance is indistinguishable from every 47 * other instance). The principal anticipated application of gauges 48 * is in the context of power consumption, where a bus may have a specific 49 * power budget which all attached devices share. RMAN_GAUGE is not 50 * implemented yet. 51 * 52 * For array resources, we make one simplifying assumption: two clients 53 * sharing the same resource must use the same range of indices. That 54 * is to say, sharing of overlapping-but-not-identical regions is not 55 * permitted. 56 */ 57 58 #include <sys/cdefs.h> 59 __FBSDID("$FreeBSD$"); 60 61 #include <sys/param.h> 62 #include <sys/systm.h> 63 #include <sys/kernel.h> 64 #include <sys/lock.h> 65 #include <sys/malloc.h> 66 #include <sys/mutex.h> 67 #include <sys/bus.h> /* XXX debugging */ 68 #include <machine/bus.h> 69 #include <sys/rman.h> 70 #include <sys/sysctl.h> 71 72 /* 73 * We use a linked list rather than a bitmap because we need to be able to 74 * represent potentially huge objects (like all of a processor's physical 75 * address space). That is also why the indices are defined to have type 76 * `unsigned long' -- that being the largest integral type in ISO C (1990). 77 * The 1999 version of C allows `long long'; we may need to switch to that 78 * at some point in the future, particularly if we want to support 36-bit 79 * addresses on IA32 hardware. 80 */ 81 struct resource_i { 82 struct resource r_r; 83 TAILQ_ENTRY(resource_i) r_link; 84 LIST_ENTRY(resource_i) r_sharelink; 85 LIST_HEAD(, resource_i) *r_sharehead; 86 u_long r_start; /* index of the first entry in this resource */ 87 u_long r_end; /* index of the last entry (inclusive) */ 88 u_int r_flags; 89 void *r_virtual; /* virtual address of this resource */ 90 struct device *r_dev; /* device which has allocated this resource */ 91 struct rman *r_rm; /* resource manager from whence this came */ 92 int r_rid; /* optional rid for this resource. */ 93 }; 94 95 int rman_debug = 0; 96 TUNABLE_INT("debug.rman_debug", &rman_debug); 97 SYSCTL_INT(_debug, OID_AUTO, rman_debug, CTLFLAG_RW, 98 &rman_debug, 0, "rman debug"); 99 100 #define DPRINTF(params) if (rman_debug) printf params 101 102 static MALLOC_DEFINE(M_RMAN, "rman", "Resource manager"); 103 104 struct rman_head rman_head; 105 static struct mtx rman_mtx; /* mutex to protect rman_head */ 106 static int int_rman_activate_resource(struct rman *rm, struct resource_i *r, 107 struct resource_i **whohas); 108 static int int_rman_deactivate_resource(struct resource_i *r); 109 static int int_rman_release_resource(struct rman *rm, struct resource_i *r); 110 111 static __inline struct resource_i * 112 int_alloc_resource(int malloc_flag) 113 { 114 struct resource_i *r; 115 116 r = malloc(sizeof *r, M_RMAN, malloc_flag | M_ZERO); 117 if (r != NULL) { 118 r->r_r.__r_i = r; 119 } 120 return (r); 121 } 122 123 int 124 rman_init(struct rman *rm) 125 { 126 static int once = 0; 127 128 if (once == 0) { 129 once = 1; 130 TAILQ_INIT(&rman_head); 131 mtx_init(&rman_mtx, "rman head", NULL, MTX_DEF); 132 } 133 134 if (rm->rm_type == RMAN_UNINIT) 135 panic("rman_init"); 136 if (rm->rm_type == RMAN_GAUGE) 137 panic("implement RMAN_GAUGE"); 138 139 TAILQ_INIT(&rm->rm_list); 140 rm->rm_mtx = malloc(sizeof *rm->rm_mtx, M_RMAN, M_NOWAIT | M_ZERO); 141 if (rm->rm_mtx == NULL) 142 return ENOMEM; 143 mtx_init(rm->rm_mtx, "rman", NULL, MTX_DEF); 144 145 mtx_lock(&rman_mtx); 146 TAILQ_INSERT_TAIL(&rman_head, rm, rm_link); 147 mtx_unlock(&rman_mtx); 148 return 0; 149 } 150 151 /* 152 * NB: this interface is not robust against programming errors which 153 * add multiple copies of the same region. 154 */ 155 int 156 rman_manage_region(struct rman *rm, u_long start, u_long end) 157 { 158 struct resource_i *r, *s; 159 160 DPRINTF(("rman_manage_region: <%s> request: start %#lx, end %#lx\n", 161 rm->rm_descr, start, end)); 162 r = int_alloc_resource(M_NOWAIT); 163 if (r == NULL) 164 return ENOMEM; 165 r->r_start = start; 166 r->r_end = end; 167 r->r_rm = rm; 168 169 mtx_lock(rm->rm_mtx); 170 for (s = TAILQ_FIRST(&rm->rm_list); 171 s && s->r_end < r->r_start; 172 s = TAILQ_NEXT(s, r_link)) 173 ; 174 175 if (s == NULL) { 176 TAILQ_INSERT_TAIL(&rm->rm_list, r, r_link); 177 } else { 178 TAILQ_INSERT_BEFORE(s, r, r_link); 179 } 180 181 mtx_unlock(rm->rm_mtx); 182 return 0; 183 } 184 185 int 186 rman_init_from_resource(struct rman *rm, struct resource *r) 187 { 188 int rv; 189 190 if ((rv = rman_init(rm)) != 0) 191 return (rv); 192 return (rman_manage_region(rm, r->__r_i->r_start, r->__r_i->r_end)); 193 } 194 195 int 196 rman_fini(struct rman *rm) 197 { 198 struct resource_i *r; 199 200 mtx_lock(rm->rm_mtx); 201 TAILQ_FOREACH(r, &rm->rm_list, r_link) { 202 if (r->r_flags & RF_ALLOCATED) { 203 mtx_unlock(rm->rm_mtx); 204 return EBUSY; 205 } 206 } 207 208 /* 209 * There really should only be one of these if we are in this 210 * state and the code is working properly, but it can't hurt. 211 */ 212 while (!TAILQ_EMPTY(&rm->rm_list)) { 213 r = TAILQ_FIRST(&rm->rm_list); 214 TAILQ_REMOVE(&rm->rm_list, r, r_link); 215 free(r, M_RMAN); 216 } 217 mtx_unlock(rm->rm_mtx); 218 mtx_lock(&rman_mtx); 219 TAILQ_REMOVE(&rman_head, rm, rm_link); 220 mtx_unlock(&rman_mtx); 221 mtx_destroy(rm->rm_mtx); 222 free(rm->rm_mtx, M_RMAN); 223 224 return 0; 225 } 226 227 struct resource * 228 rman_reserve_resource_bound(struct rman *rm, u_long start, u_long end, 229 u_long count, u_long bound, u_int flags, 230 struct device *dev) 231 { 232 u_int want_activate; 233 struct resource_i *r, *s, *rv; 234 u_long rstart, rend, amask, bmask; 235 236 rv = NULL; 237 238 DPRINTF(("rman_reserve_resource: <%s> request: [%#lx, %#lx], length " 239 "%#lx, flags %u, device %s\n", rm->rm_descr, start, end, count, 240 flags, dev == NULL ? "<null>" : device_get_nameunit(dev))); 241 want_activate = (flags & RF_ACTIVE); 242 flags &= ~RF_ACTIVE; 243 244 mtx_lock(rm->rm_mtx); 245 246 for (r = TAILQ_FIRST(&rm->rm_list); 247 r && r->r_end < start; 248 r = TAILQ_NEXT(r, r_link)) 249 ; 250 251 if (r == NULL) { 252 DPRINTF(("could not find a region\n")); 253 goto out; 254 } 255 256 amask = (1ul << RF_ALIGNMENT(flags)) - 1; 257 /* If bound is 0, bmask will also be 0 */ 258 bmask = ~(bound - 1); 259 /* 260 * First try to find an acceptable totally-unshared region. 261 */ 262 for (s = r; s; s = TAILQ_NEXT(s, r_link)) { 263 DPRINTF(("considering [%#lx, %#lx]\n", s->r_start, s->r_end)); 264 if (s->r_start + count - 1 > end) { 265 DPRINTF(("s->r_start (%#lx) + count - 1> end (%#lx)\n", 266 s->r_start, end)); 267 break; 268 } 269 if (s->r_flags & RF_ALLOCATED) { 270 DPRINTF(("region is allocated\n")); 271 continue; 272 } 273 rstart = ulmax(s->r_start, start); 274 /* 275 * Try to find a region by adjusting to boundary and alignment 276 * until both conditions are satisfied. This is not an optimal 277 * algorithm, but in most cases it isn't really bad, either. 278 */ 279 do { 280 rstart = (rstart + amask) & ~amask; 281 if (((rstart ^ (rstart + count - 1)) & bmask) != 0) 282 rstart += bound - (rstart & ~bmask); 283 } while ((rstart & amask) != 0 && rstart < end && 284 rstart < s->r_end); 285 rend = ulmin(s->r_end, ulmax(rstart + count - 1, end)); 286 if (rstart > rend) { 287 DPRINTF(("adjusted start exceeds end\n")); 288 continue; 289 } 290 DPRINTF(("truncated region: [%#lx, %#lx]; size %#lx (requested %#lx)\n", 291 rstart, rend, (rend - rstart + 1), count)); 292 293 if ((rend - rstart + 1) >= count) { 294 DPRINTF(("candidate region: [%#lx, %#lx], size %#lx\n", 295 rstart, rend, (rend - rstart + 1))); 296 if ((s->r_end - s->r_start + 1) == count) { 297 DPRINTF(("candidate region is entire chunk\n")); 298 rv = s; 299 rv->r_flags |= RF_ALLOCATED | flags; 300 rv->r_dev = dev; 301 goto out; 302 } 303 304 /* 305 * If s->r_start < rstart and 306 * s->r_end > rstart + count - 1, then 307 * we need to split the region into three pieces 308 * (the middle one will get returned to the user). 309 * Otherwise, we are allocating at either the 310 * beginning or the end of s, so we only need to 311 * split it in two. The first case requires 312 * two new allocations; the second requires but one. 313 */ 314 rv = int_alloc_resource(M_NOWAIT); 315 if (rv == NULL) 316 goto out; 317 rv->r_start = rstart; 318 rv->r_end = rstart + count - 1; 319 rv->r_flags = flags | RF_ALLOCATED; 320 rv->r_dev = dev; 321 rv->r_rm = rm; 322 323 if (s->r_start < rv->r_start && s->r_end > rv->r_end) { 324 DPRINTF(("splitting region in three parts: " 325 "[%#lx, %#lx]; [%#lx, %#lx]; [%#lx, %#lx]\n", 326 s->r_start, rv->r_start - 1, 327 rv->r_start, rv->r_end, 328 rv->r_end + 1, s->r_end)); 329 /* 330 * We are allocating in the middle. 331 */ 332 r = int_alloc_resource(M_NOWAIT); 333 if (r == NULL) { 334 free(rv, M_RMAN); 335 rv = NULL; 336 goto out; 337 } 338 r->r_start = rv->r_end + 1; 339 r->r_end = s->r_end; 340 r->r_flags = s->r_flags; 341 r->r_rm = rm; 342 s->r_end = rv->r_start - 1; 343 TAILQ_INSERT_AFTER(&rm->rm_list, s, rv, 344 r_link); 345 TAILQ_INSERT_AFTER(&rm->rm_list, rv, r, 346 r_link); 347 } else if (s->r_start == rv->r_start) { 348 DPRINTF(("allocating from the beginning\n")); 349 /* 350 * We are allocating at the beginning. 351 */ 352 s->r_start = rv->r_end + 1; 353 TAILQ_INSERT_BEFORE(s, rv, r_link); 354 } else { 355 DPRINTF(("allocating at the end\n")); 356 /* 357 * We are allocating at the end. 358 */ 359 s->r_end = rv->r_start - 1; 360 TAILQ_INSERT_AFTER(&rm->rm_list, s, rv, 361 r_link); 362 } 363 goto out; 364 } 365 } 366 367 /* 368 * Now find an acceptable shared region, if the client's requirements 369 * allow sharing. By our implementation restriction, a candidate 370 * region must match exactly by both size and sharing type in order 371 * to be considered compatible with the client's request. (The 372 * former restriction could probably be lifted without too much 373 * additional work, but this does not seem warranted.) 374 */ 375 DPRINTF(("no unshared regions found\n")); 376 if ((flags & (RF_SHAREABLE | RF_TIMESHARE)) == 0) 377 goto out; 378 379 for (s = r; s; s = TAILQ_NEXT(s, r_link)) { 380 if (s->r_start > end) 381 break; 382 if ((s->r_flags & flags) != flags) 383 continue; 384 rstart = ulmax(s->r_start, start); 385 rend = ulmin(s->r_end, ulmax(start + count - 1, end)); 386 if (s->r_start >= start && s->r_end <= end 387 && (s->r_end - s->r_start + 1) == count && 388 (s->r_start & amask) == 0 && 389 ((s->r_start ^ s->r_end) & bmask) == 0) { 390 rv = int_alloc_resource(M_NOWAIT); 391 if (rv == NULL) 392 goto out; 393 rv->r_start = s->r_start; 394 rv->r_end = s->r_end; 395 rv->r_flags = s->r_flags & 396 (RF_ALLOCATED | RF_SHAREABLE | RF_TIMESHARE); 397 rv->r_dev = dev; 398 rv->r_rm = rm; 399 if (s->r_sharehead == NULL) { 400 s->r_sharehead = malloc(sizeof *s->r_sharehead, 401 M_RMAN, M_NOWAIT | M_ZERO); 402 if (s->r_sharehead == NULL) { 403 free(rv, M_RMAN); 404 rv = NULL; 405 goto out; 406 } 407 LIST_INIT(s->r_sharehead); 408 LIST_INSERT_HEAD(s->r_sharehead, s, 409 r_sharelink); 410 s->r_flags |= RF_FIRSTSHARE; 411 } 412 rv->r_sharehead = s->r_sharehead; 413 LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink); 414 goto out; 415 } 416 } 417 418 /* 419 * We couldn't find anything. 420 */ 421 out: 422 /* 423 * If the user specified RF_ACTIVE in the initial flags, 424 * which is reflected in `want_activate', we attempt to atomically 425 * activate the resource. If this fails, we release the resource 426 * and indicate overall failure. (This behavior probably doesn't 427 * make sense for RF_TIMESHARE-type resources.) 428 */ 429 if (rv && want_activate) { 430 struct resource_i *whohas; 431 if (int_rman_activate_resource(rm, rv, &whohas)) { 432 int_rman_release_resource(rm, rv); 433 rv = NULL; 434 } 435 } 436 437 mtx_unlock(rm->rm_mtx); 438 return (rv == NULL ? NULL : &rv->r_r); 439 } 440 441 struct resource * 442 rman_reserve_resource(struct rman *rm, u_long start, u_long end, u_long count, 443 u_int flags, struct device *dev) 444 { 445 446 return (rman_reserve_resource_bound(rm, start, end, count, 0, flags, 447 dev)); 448 } 449 450 static int 451 int_rman_activate_resource(struct rman *rm, struct resource_i *r, 452 struct resource_i **whohas) 453 { 454 struct resource_i *s; 455 int ok; 456 457 /* 458 * If we are not timesharing, then there is nothing much to do. 459 * If we already have the resource, then there is nothing at all to do. 460 * If we are not on a sharing list with anybody else, then there is 461 * little to do. 462 */ 463 if ((r->r_flags & RF_TIMESHARE) == 0 464 || (r->r_flags & RF_ACTIVE) != 0 465 || r->r_sharehead == NULL) { 466 r->r_flags |= RF_ACTIVE; 467 return 0; 468 } 469 470 ok = 1; 471 for (s = LIST_FIRST(r->r_sharehead); s && ok; 472 s = LIST_NEXT(s, r_sharelink)) { 473 if ((s->r_flags & RF_ACTIVE) != 0) { 474 ok = 0; 475 *whohas = s; 476 } 477 } 478 if (ok) { 479 r->r_flags |= RF_ACTIVE; 480 return 0; 481 } 482 return EBUSY; 483 } 484 485 int 486 rman_activate_resource(struct resource *re) 487 { 488 int rv; 489 struct resource_i *r, *whohas; 490 struct rman *rm; 491 492 r = re->__r_i; 493 rm = r->r_rm; 494 mtx_lock(rm->rm_mtx); 495 rv = int_rman_activate_resource(rm, r, &whohas); 496 mtx_unlock(rm->rm_mtx); 497 return rv; 498 } 499 500 int 501 rman_await_resource(struct resource *re, int pri, int timo) 502 { 503 int rv; 504 struct resource_i *r, *whohas; 505 struct rman *rm; 506 507 r = re->__r_i; 508 rm = r->r_rm; 509 mtx_lock(rm->rm_mtx); 510 for (;;) { 511 rv = int_rman_activate_resource(rm, r, &whohas); 512 if (rv != EBUSY) 513 return (rv); /* returns with mutex held */ 514 515 if (r->r_sharehead == NULL) 516 panic("rman_await_resource"); 517 whohas->r_flags |= RF_WANTED; 518 rv = msleep(r->r_sharehead, rm->rm_mtx, pri, "rmwait", timo); 519 if (rv) { 520 mtx_unlock(rm->rm_mtx); 521 return (rv); 522 } 523 } 524 } 525 526 static int 527 int_rman_deactivate_resource(struct resource_i *r) 528 { 529 530 r->r_flags &= ~RF_ACTIVE; 531 if (r->r_flags & RF_WANTED) { 532 r->r_flags &= ~RF_WANTED; 533 wakeup(r->r_sharehead); 534 } 535 return 0; 536 } 537 538 int 539 rman_deactivate_resource(struct resource *r) 540 { 541 struct rman *rm; 542 543 rm = r->__r_i->r_rm; 544 mtx_lock(rm->rm_mtx); 545 int_rman_deactivate_resource(r->__r_i); 546 mtx_unlock(rm->rm_mtx); 547 return 0; 548 } 549 550 static int 551 int_rman_release_resource(struct rman *rm, struct resource_i *r) 552 { 553 struct resource_i *s, *t; 554 555 if (r->r_flags & RF_ACTIVE) 556 int_rman_deactivate_resource(r); 557 558 /* 559 * Check for a sharing list first. If there is one, then we don't 560 * have to think as hard. 561 */ 562 if (r->r_sharehead) { 563 /* 564 * If a sharing list exists, then we know there are at 565 * least two sharers. 566 * 567 * If we are in the main circleq, appoint someone else. 568 */ 569 LIST_REMOVE(r, r_sharelink); 570 s = LIST_FIRST(r->r_sharehead); 571 if (r->r_flags & RF_FIRSTSHARE) { 572 s->r_flags |= RF_FIRSTSHARE; 573 TAILQ_INSERT_BEFORE(r, s, r_link); 574 TAILQ_REMOVE(&rm->rm_list, r, r_link); 575 } 576 577 /* 578 * Make sure that the sharing list goes away completely 579 * if the resource is no longer being shared at all. 580 */ 581 if (LIST_NEXT(s, r_sharelink) == NULL) { 582 free(s->r_sharehead, M_RMAN); 583 s->r_sharehead = NULL; 584 s->r_flags &= ~RF_FIRSTSHARE; 585 } 586 goto out; 587 } 588 589 /* 590 * Look at the adjacent resources in the list and see if our 591 * segment can be merged with any of them. If either of the 592 * resources is allocated or is not exactly adjacent then they 593 * cannot be merged with our segment. 594 */ 595 s = TAILQ_PREV(r, resource_head, r_link); 596 if (s != NULL && ((s->r_flags & RF_ALLOCATED) != 0 || 597 s->r_end + 1 != r->r_start)) 598 s = NULL; 599 t = TAILQ_NEXT(r, r_link); 600 if (t != NULL && ((t->r_flags & RF_ALLOCATED) != 0 || 601 r->r_end + 1 != t->r_start)) 602 t = NULL; 603 604 if (s != NULL && t != NULL) { 605 /* 606 * Merge all three segments. 607 */ 608 s->r_end = t->r_end; 609 TAILQ_REMOVE(&rm->rm_list, r, r_link); 610 TAILQ_REMOVE(&rm->rm_list, t, r_link); 611 free(t, M_RMAN); 612 } else if (s != NULL) { 613 /* 614 * Merge previous segment with ours. 615 */ 616 s->r_end = r->r_end; 617 TAILQ_REMOVE(&rm->rm_list, r, r_link); 618 } else if (t != NULL) { 619 /* 620 * Merge next segment with ours. 621 */ 622 t->r_start = r->r_start; 623 TAILQ_REMOVE(&rm->rm_list, r, r_link); 624 } else { 625 /* 626 * At this point, we know there is nothing we 627 * can potentially merge with, because on each 628 * side, there is either nothing there or what is 629 * there is still allocated. In that case, we don't 630 * want to remove r from the list; we simply want to 631 * change it to an unallocated region and return 632 * without freeing anything. 633 */ 634 r->r_flags &= ~RF_ALLOCATED; 635 return 0; 636 } 637 638 out: 639 free(r, M_RMAN); 640 return 0; 641 } 642 643 int 644 rman_release_resource(struct resource *re) 645 { 646 int rv; 647 struct resource_i *r; 648 struct rman *rm; 649 650 r = re->__r_i; 651 rm = r->r_rm; 652 mtx_lock(rm->rm_mtx); 653 rv = int_rman_release_resource(rm, r); 654 mtx_unlock(rm->rm_mtx); 655 return (rv); 656 } 657 658 uint32_t 659 rman_make_alignment_flags(uint32_t size) 660 { 661 int i; 662 663 /* 664 * Find the hightest bit set, and add one if more than one bit 665 * set. We're effectively computing the ceil(log2(size)) here. 666 */ 667 for (i = 31; i > 0; i--) 668 if ((1 << i) & size) 669 break; 670 if (~(1 << i) & size) 671 i++; 672 673 return(RF_ALIGNMENT_LOG2(i)); 674 } 675 676 u_long 677 rman_get_start(struct resource *r) 678 { 679 return (r->__r_i->r_start); 680 } 681 682 u_long 683 rman_get_end(struct resource *r) 684 { 685 return (r->__r_i->r_end); 686 } 687 688 u_long 689 rman_get_size(struct resource *r) 690 { 691 return (r->__r_i->r_end - r->__r_i->r_start + 1); 692 } 693 694 u_int 695 rman_get_flags(struct resource *r) 696 { 697 return (r->__r_i->r_flags); 698 } 699 700 void 701 rman_set_virtual(struct resource *r, void *v) 702 { 703 r->__r_i->r_virtual = v; 704 } 705 706 void * 707 rman_get_virtual(struct resource *r) 708 { 709 return (r->__r_i->r_virtual); 710 } 711 712 void 713 rman_set_bustag(struct resource *r, bus_space_tag_t t) 714 { 715 r->r_bustag = t; 716 } 717 718 bus_space_tag_t 719 rman_get_bustag(struct resource *r) 720 { 721 return (r->r_bustag); 722 } 723 724 void 725 rman_set_bushandle(struct resource *r, bus_space_handle_t h) 726 { 727 r->r_bushandle = h; 728 } 729 730 bus_space_handle_t 731 rman_get_bushandle(struct resource *r) 732 { 733 return (r->r_bushandle); 734 } 735 736 void 737 rman_set_rid(struct resource *r, int rid) 738 { 739 r->__r_i->r_rid = rid; 740 } 741 742 void 743 rman_set_start(struct resource *r, u_long start) 744 { 745 r->__r_i->r_start = start; 746 } 747 748 void 749 rman_set_end(struct resource *r, u_long end) 750 { 751 r->__r_i->r_end = end; 752 } 753 754 int 755 rman_get_rid(struct resource *r) 756 { 757 return (r->__r_i->r_rid); 758 } 759 760 struct device * 761 rman_get_device(struct resource *r) 762 { 763 return (r->__r_i->r_dev); 764 } 765 766 void 767 rman_set_device(struct resource *r, struct device *dev) 768 { 769 r->__r_i->r_dev = dev; 770 } 771 772 int 773 rman_is_region_manager(struct resource *r, struct rman *rm) 774 { 775 776 return (r->__r_i->r_rm == rm); 777 } 778 779 /* 780 * Sysctl interface for scanning the resource lists. 781 * 782 * We take two input parameters; the index into the list of resource 783 * managers, and the resource offset into the list. 784 */ 785 static int 786 sysctl_rman(SYSCTL_HANDLER_ARGS) 787 { 788 int *name = (int *)arg1; 789 u_int namelen = arg2; 790 int rman_idx, res_idx; 791 struct rman *rm; 792 struct resource_i *res; 793 struct u_rman urm; 794 struct u_resource ures; 795 int error; 796 797 if (namelen != 3) 798 return (EINVAL); 799 800 if (bus_data_generation_check(name[0])) 801 return (EINVAL); 802 rman_idx = name[1]; 803 res_idx = name[2]; 804 805 /* 806 * Find the indexed resource manager 807 */ 808 mtx_lock(&rman_mtx); 809 TAILQ_FOREACH(rm, &rman_head, rm_link) { 810 if (rman_idx-- == 0) 811 break; 812 } 813 mtx_unlock(&rman_mtx); 814 if (rm == NULL) 815 return (ENOENT); 816 817 /* 818 * If the resource index is -1, we want details on the 819 * resource manager. 820 */ 821 if (res_idx == -1) { 822 bzero(&urm, sizeof(urm)); 823 urm.rm_handle = (uintptr_t)rm; 824 strlcpy(urm.rm_descr, rm->rm_descr, RM_TEXTLEN); 825 urm.rm_start = rm->rm_start; 826 urm.rm_size = rm->rm_end - rm->rm_start + 1; 827 urm.rm_type = rm->rm_type; 828 829 error = SYSCTL_OUT(req, &urm, sizeof(urm)); 830 return (error); 831 } 832 833 /* 834 * Find the indexed resource and return it. 835 */ 836 mtx_lock(rm->rm_mtx); 837 TAILQ_FOREACH(res, &rm->rm_list, r_link) { 838 if (res_idx-- == 0) { 839 bzero(&ures, sizeof(ures)); 840 ures.r_handle = (uintptr_t)res; 841 ures.r_parent = (uintptr_t)res->r_rm; 842 ures.r_device = (uintptr_t)res->r_dev; 843 if (res->r_dev != NULL) { 844 if (device_get_name(res->r_dev) != NULL) { 845 snprintf(ures.r_devname, RM_TEXTLEN, 846 "%s%d", 847 device_get_name(res->r_dev), 848 device_get_unit(res->r_dev)); 849 } else { 850 strlcpy(ures.r_devname, "nomatch", 851 RM_TEXTLEN); 852 } 853 } else { 854 ures.r_devname[0] = '\0'; 855 } 856 ures.r_start = res->r_start; 857 ures.r_size = res->r_end - res->r_start + 1; 858 ures.r_flags = res->r_flags; 859 860 mtx_unlock(rm->rm_mtx); 861 error = SYSCTL_OUT(req, &ures, sizeof(ures)); 862 return (error); 863 } 864 } 865 mtx_unlock(rm->rm_mtx); 866 return (ENOENT); 867 } 868 869 SYSCTL_NODE(_hw_bus, OID_AUTO, rman, CTLFLAG_RD, sysctl_rman, 870 "kernel resource manager"); 871