xref: /freebsd/sys/kern/subr_rman.c (revision b6de9e91bd2c47efaeec72a08642f8fd99cc7b20)
1 /*-
2  * Copyright 1998 Massachusetts Institute of Technology
3  *
4  * Permission to use, copy, modify, and distribute this software and
5  * its documentation for any purpose and without fee is hereby
6  * granted, provided that both the above copyright notice and this
7  * permission notice appear in all copies, that both the above
8  * copyright notice and this permission notice appear in all
9  * supporting documentation, and that the name of M.I.T. not be used
10  * in advertising or publicity pertaining to distribution of the
11  * software without specific, written prior permission.  M.I.T. makes
12  * no representations about the suitability of this software for any
13  * purpose.  It is provided "as is" without express or implied
14  * warranty.
15  *
16  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
17  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /*
31  * The kernel resource manager.  This code is responsible for keeping track
32  * of hardware resources which are apportioned out to various drivers.
33  * It does not actually assign those resources, and it is not expected
34  * that end-device drivers will call into this code directly.  Rather,
35  * the code which implements the buses that those devices are attached to,
36  * and the code which manages CPU resources, will call this code, and the
37  * end-device drivers will make upcalls to that code to actually perform
38  * the allocation.
39  *
40  * There are two sorts of resources managed by this code.  The first is
41  * the more familiar array (RMAN_ARRAY) type; resources in this class
42  * consist of a sequence of individually-allocatable objects which have
43  * been numbered in some well-defined order.  Most of the resources
44  * are of this type, as it is the most familiar.  The second type is
45  * called a gauge (RMAN_GAUGE), and models fungible resources (i.e.,
46  * resources in which each instance is indistinguishable from every
47  * other instance).  The principal anticipated application of gauges
48  * is in the context of power consumption, where a bus may have a specific
49  * power budget which all attached devices share.  RMAN_GAUGE is not
50  * implemented yet.
51  *
52  * For array resources, we make one simplifying assumption: two clients
53  * sharing the same resource must use the same range of indices.  That
54  * is to say, sharing of overlapping-but-not-identical regions is not
55  * permitted.
56  */
57 
58 #include <sys/cdefs.h>
59 __FBSDID("$FreeBSD$");
60 
61 #define __RMAN_RESOURCE_VISIBLE
62 #include <sys/param.h>
63 #include <sys/systm.h>
64 #include <sys/kernel.h>
65 #include <sys/lock.h>
66 #include <sys/malloc.h>
67 #include <sys/mutex.h>
68 #include <sys/bus.h>		/* XXX debugging */
69 #include <machine/bus.h>
70 #include <sys/rman.h>
71 #include <sys/sysctl.h>
72 
73 int     rman_debug = 0;
74 TUNABLE_INT("debug.rman_debug", &rman_debug);
75 SYSCTL_INT(_debug, OID_AUTO, rman_debug, CTLFLAG_RW,
76     &rman_debug, 0, "rman debug");
77 
78 #define DPRINTF(params) if (rman_debug) printf params
79 
80 static MALLOC_DEFINE(M_RMAN, "rman", "Resource manager");
81 
82 struct	rman_head rman_head;
83 static	struct mtx rman_mtx; /* mutex to protect rman_head */
84 static	int int_rman_activate_resource(struct rman *rm, struct resource_i *r,
85 				       struct resource_i **whohas);
86 static	int int_rman_deactivate_resource(struct resource_i *r);
87 static	int int_rman_release_resource(struct rman *rm, struct resource_i *r);
88 
89 static __inline struct resource_i *
90 int_alloc_resource(int malloc_flag)
91 {
92 	struct resource_i *r;
93 
94 	r = malloc(sizeof *r, M_RMAN, malloc_flag | M_ZERO);
95 	if (r != NULL) {
96 		r->r_r.__r_i = r;
97 	}
98 	return (r);
99 }
100 
101 int
102 rman_init(struct rman *rm)
103 {
104 	static int once;
105 
106 	if (once == 0) {
107 		once = 1;
108 		TAILQ_INIT(&rman_head);
109 		mtx_init(&rman_mtx, "rman head", NULL, MTX_DEF);
110 	}
111 
112 	if (rm->rm_type == RMAN_UNINIT)
113 		panic("rman_init");
114 	if (rm->rm_type == RMAN_GAUGE)
115 		panic("implement RMAN_GAUGE");
116 
117 	TAILQ_INIT(&rm->rm_list);
118 	rm->rm_mtx = malloc(sizeof *rm->rm_mtx, M_RMAN, M_NOWAIT | M_ZERO);
119 	if (rm->rm_mtx == 0)
120 		return ENOMEM;
121 	mtx_init(rm->rm_mtx, "rman", NULL, MTX_DEF);
122 
123 	mtx_lock(&rman_mtx);
124 	TAILQ_INSERT_TAIL(&rman_head, rm, rm_link);
125 	mtx_unlock(&rman_mtx);
126 	return 0;
127 }
128 
129 /*
130  * NB: this interface is not robust against programming errors which
131  * add multiple copies of the same region.
132  */
133 int
134 rman_manage_region(struct rman *rm, u_long start, u_long end)
135 {
136 	struct resource_i *r, *s;
137 
138 	DPRINTF(("rman_manage_region: <%s> request: start %#lx, end %#lx\n",
139 	    rm->rm_descr, start, end));
140 	r = int_alloc_resource(M_NOWAIT);
141 	if (r == 0)
142 		return ENOMEM;
143 	r->r_start = start;
144 	r->r_end = end;
145 	r->r_rm = rm;
146 
147 	mtx_lock(rm->rm_mtx);
148 	for (s = TAILQ_FIRST(&rm->rm_list);
149 	     s && s->r_end < r->r_start;
150 	     s = TAILQ_NEXT(s, r_link))
151 		;
152 
153 	if (s == NULL) {
154 		TAILQ_INSERT_TAIL(&rm->rm_list, r, r_link);
155 	} else {
156 		TAILQ_INSERT_BEFORE(s, r, r_link);
157 	}
158 
159 	mtx_unlock(rm->rm_mtx);
160 	return 0;
161 }
162 
163 int
164 rman_fini(struct rman *rm)
165 {
166 	struct resource_i *r;
167 
168 	mtx_lock(rm->rm_mtx);
169 	TAILQ_FOREACH(r, &rm->rm_list, r_link) {
170 		if (r->r_flags & RF_ALLOCATED) {
171 			mtx_unlock(rm->rm_mtx);
172 			return EBUSY;
173 		}
174 	}
175 
176 	/*
177 	 * There really should only be one of these if we are in this
178 	 * state and the code is working properly, but it can't hurt.
179 	 */
180 	while (!TAILQ_EMPTY(&rm->rm_list)) {
181 		r = TAILQ_FIRST(&rm->rm_list);
182 		TAILQ_REMOVE(&rm->rm_list, r, r_link);
183 		free(r, M_RMAN);
184 	}
185 	mtx_unlock(rm->rm_mtx);
186 	mtx_lock(&rman_mtx);
187 	TAILQ_REMOVE(&rman_head, rm, rm_link);
188 	mtx_unlock(&rman_mtx);
189 	mtx_destroy(rm->rm_mtx);
190 	free(rm->rm_mtx, M_RMAN);
191 
192 	return 0;
193 }
194 
195 struct resource *
196 rman_reserve_resource_bound(struct rman *rm, u_long start, u_long end,
197 		      u_long count, u_long bound,  u_int flags,
198 		      struct device *dev)
199 {
200 	u_int	want_activate;
201 	struct	resource_i *r, *s, *rv;
202 	u_long	rstart, rend, amask, bmask;
203 
204 	rv = 0;
205 
206 	DPRINTF(("rman_reserve_resource: <%s> request: [%#lx, %#lx], length "
207 	       "%#lx, flags %u, device %s\n", rm->rm_descr, start, end, count,
208 	       flags, dev == NULL ? "<null>" : device_get_nameunit(dev)));
209 	want_activate = (flags & RF_ACTIVE);
210 	flags &= ~RF_ACTIVE;
211 
212 	mtx_lock(rm->rm_mtx);
213 
214 	for (r = TAILQ_FIRST(&rm->rm_list);
215 	     r && r->r_end < start;
216 	     r = TAILQ_NEXT(r, r_link))
217 		;
218 
219 	if (r == NULL) {
220 		DPRINTF(("could not find a region\n"));
221 		goto out;
222 	}
223 
224 	amask = (1ul << RF_ALIGNMENT(flags)) - 1;
225 	/* If bound is 0, bmask will also be 0 */
226 	bmask = ~(bound - 1);
227 	/*
228 	 * First try to find an acceptable totally-unshared region.
229 	 */
230 	for (s = r; s; s = TAILQ_NEXT(s, r_link)) {
231 		DPRINTF(("considering [%#lx, %#lx]\n", s->r_start, s->r_end));
232 		if (s->r_start + count - 1 > end) {
233 			DPRINTF(("s->r_start (%#lx) + count - 1> end (%#lx)\n",
234 			    s->r_start, end));
235 			break;
236 		}
237 		if (s->r_flags & RF_ALLOCATED) {
238 			DPRINTF(("region is allocated\n"));
239 			continue;
240 		}
241 		rstart = ulmax(s->r_start, start);
242 		/*
243 		 * Try to find a region by adjusting to boundary and alignment
244 		 * until both conditions are satisfied. This is not an optimal
245 		 * algorithm, but in most cases it isn't really bad, either.
246 		 */
247 		do {
248 			rstart = (rstart + amask) & ~amask;
249 			if (((rstart ^ (rstart + count - 1)) & bmask) != 0)
250 				rstart += bound - (rstart & ~bmask);
251 		} while ((rstart & amask) != 0 && rstart < end &&
252 		    rstart < s->r_end);
253 		rend = ulmin(s->r_end, ulmax(rstart + count - 1, end));
254 		if (rstart > rend) {
255 			DPRINTF(("adjusted start exceeds end\n"));
256 			continue;
257 		}
258 		DPRINTF(("truncated region: [%#lx, %#lx]; size %#lx (requested %#lx)\n",
259 		       rstart, rend, (rend - rstart + 1), count));
260 
261 		if ((rend - rstart + 1) >= count) {
262 			DPRINTF(("candidate region: [%#lx, %#lx], size %#lx\n",
263 			       rstart, rend, (rend - rstart + 1)));
264 			if ((s->r_end - s->r_start + 1) == count) {
265 				DPRINTF(("candidate region is entire chunk\n"));
266 				rv = s;
267 				rv->r_flags |= RF_ALLOCATED | flags;
268 				rv->r_dev = dev;
269 				goto out;
270 			}
271 
272 			/*
273 			 * If s->r_start < rstart and
274 			 *    s->r_end > rstart + count - 1, then
275 			 * we need to split the region into three pieces
276 			 * (the middle one will get returned to the user).
277 			 * Otherwise, we are allocating at either the
278 			 * beginning or the end of s, so we only need to
279 			 * split it in two.  The first case requires
280 			 * two new allocations; the second requires but one.
281 			 */
282 			rv = int_alloc_resource(M_NOWAIT);
283 			if (rv == 0)
284 				goto out;
285 			rv->r_start = rstart;
286 			rv->r_end = rstart + count - 1;
287 			rv->r_flags = flags | RF_ALLOCATED;
288 			rv->r_dev = dev;
289 			rv->r_rm = rm;
290 
291 			if (s->r_start < rv->r_start && s->r_end > rv->r_end) {
292 				DPRINTF(("splitting region in three parts: "
293 				       "[%#lx, %#lx]; [%#lx, %#lx]; [%#lx, %#lx]\n",
294 				       s->r_start, rv->r_start - 1,
295 				       rv->r_start, rv->r_end,
296 				       rv->r_end + 1, s->r_end));
297 				/*
298 				 * We are allocating in the middle.
299 				 */
300 				r = int_alloc_resource(M_NOWAIT);
301 				if (r == 0) {
302 					free(rv, M_RMAN);
303 					rv = 0;
304 					goto out;
305 				}
306 				r->r_start = rv->r_end + 1;
307 				r->r_end = s->r_end;
308 				r->r_flags = s->r_flags;
309 				r->r_rm = rm;
310 				s->r_end = rv->r_start - 1;
311 				TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
312 						     r_link);
313 				TAILQ_INSERT_AFTER(&rm->rm_list, rv, r,
314 						     r_link);
315 			} else if (s->r_start == rv->r_start) {
316 				DPRINTF(("allocating from the beginning\n"));
317 				/*
318 				 * We are allocating at the beginning.
319 				 */
320 				s->r_start = rv->r_end + 1;
321 				TAILQ_INSERT_BEFORE(s, rv, r_link);
322 			} else {
323 				DPRINTF(("allocating at the end\n"));
324 				/*
325 				 * We are allocating at the end.
326 				 */
327 				s->r_end = rv->r_start - 1;
328 				TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
329 						     r_link);
330 			}
331 			goto out;
332 		}
333 	}
334 
335 	/*
336 	 * Now find an acceptable shared region, if the client's requirements
337 	 * allow sharing.  By our implementation restriction, a candidate
338 	 * region must match exactly by both size and sharing type in order
339 	 * to be considered compatible with the client's request.  (The
340 	 * former restriction could probably be lifted without too much
341 	 * additional work, but this does not seem warranted.)
342 	 */
343 	DPRINTF(("no unshared regions found\n"));
344 	if ((flags & (RF_SHAREABLE | RF_TIMESHARE)) == 0)
345 		goto out;
346 
347 	for (s = r; s; s = TAILQ_NEXT(s, r_link)) {
348 		if (s->r_start > end)
349 			break;
350 		if ((s->r_flags & flags) != flags)
351 			continue;
352 		rstart = ulmax(s->r_start, start);
353 		rend = ulmin(s->r_end, ulmax(start + count - 1, end));
354 		if (s->r_start >= start && s->r_end <= end
355 		    && (s->r_end - s->r_start + 1) == count &&
356 		    (s->r_start & amask) == 0 &&
357 		    ((s->r_start ^ s->r_end) & bmask) == 0) {
358 			rv = int_alloc_resource(M_NOWAIT);
359 			if (rv == 0)
360 				goto out;
361 			rv->r_start = s->r_start;
362 			rv->r_end = s->r_end;
363 			rv->r_flags = s->r_flags &
364 				(RF_ALLOCATED | RF_SHAREABLE | RF_TIMESHARE);
365 			rv->r_dev = dev;
366 			rv->r_rm = rm;
367 			if (s->r_sharehead == 0) {
368 				s->r_sharehead = malloc(sizeof *s->r_sharehead,
369 						M_RMAN, M_NOWAIT | M_ZERO);
370 				if (s->r_sharehead == 0) {
371 					free(rv, M_RMAN);
372 					rv = 0;
373 					goto out;
374 				}
375 				LIST_INIT(s->r_sharehead);
376 				LIST_INSERT_HEAD(s->r_sharehead, s,
377 						 r_sharelink);
378 				s->r_flags |= RF_FIRSTSHARE;
379 			}
380 			rv->r_sharehead = s->r_sharehead;
381 			LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink);
382 			goto out;
383 		}
384 	}
385 
386 	/*
387 	 * We couldn't find anything.
388 	 */
389 out:
390 	/*
391 	 * If the user specified RF_ACTIVE in the initial flags,
392 	 * which is reflected in `want_activate', we attempt to atomically
393 	 * activate the resource.  If this fails, we release the resource
394 	 * and indicate overall failure.  (This behavior probably doesn't
395 	 * make sense for RF_TIMESHARE-type resources.)
396 	 */
397 	if (rv && want_activate) {
398 		struct resource_i *whohas;
399 		if (int_rman_activate_resource(rm, rv, &whohas)) {
400 			int_rman_release_resource(rm, rv);
401 			rv = 0;
402 		}
403 	}
404 
405 	mtx_unlock(rm->rm_mtx);
406 	return (&rv->r_r);
407 }
408 
409 struct resource *
410 rman_reserve_resource(struct rman *rm, u_long start, u_long end, u_long count,
411 		      u_int flags, struct device *dev)
412 {
413 
414 	return (rman_reserve_resource_bound(rm, start, end, count, 0, flags,
415 	    dev));
416 }
417 
418 static int
419 int_rman_activate_resource(struct rman *rm, struct resource_i *r,
420 			   struct resource_i **whohas)
421 {
422 	struct resource_i *s;
423 	int ok;
424 
425 	/*
426 	 * If we are not timesharing, then there is nothing much to do.
427 	 * If we already have the resource, then there is nothing at all to do.
428 	 * If we are not on a sharing list with anybody else, then there is
429 	 * little to do.
430 	 */
431 	if ((r->r_flags & RF_TIMESHARE) == 0
432 	    || (r->r_flags & RF_ACTIVE) != 0
433 	    || r->r_sharehead == 0) {
434 		r->r_flags |= RF_ACTIVE;
435 		return 0;
436 	}
437 
438 	ok = 1;
439 	for (s = LIST_FIRST(r->r_sharehead); s && ok;
440 	     s = LIST_NEXT(s, r_sharelink)) {
441 		if ((s->r_flags & RF_ACTIVE) != 0) {
442 			ok = 0;
443 			*whohas = s;
444 		}
445 	}
446 	if (ok) {
447 		r->r_flags |= RF_ACTIVE;
448 		return 0;
449 	}
450 	return EBUSY;
451 }
452 
453 int
454 rman_activate_resource(struct resource *re)
455 {
456 	int rv;
457 	struct resource_i *r, *whohas;
458 	struct rman *rm;
459 
460 	r = re->__r_i;
461 	rm = r->r_rm;
462 	mtx_lock(rm->rm_mtx);
463 	rv = int_rman_activate_resource(rm, r, &whohas);
464 	mtx_unlock(rm->rm_mtx);
465 	return rv;
466 }
467 
468 int
469 rman_await_resource(struct resource *re, int pri, int timo)
470 {
471 	int	rv;
472 	struct	resource_i *r, *whohas;
473 	struct	rman *rm;
474 
475 	r = re->__r_i;
476 	rm = r->r_rm;
477 	mtx_lock(rm->rm_mtx);
478 	for (;;) {
479 		rv = int_rman_activate_resource(rm, r, &whohas);
480 		if (rv != EBUSY)
481 			return (rv);	/* returns with mutex held */
482 
483 		if (r->r_sharehead == 0)
484 			panic("rman_await_resource");
485 		whohas->r_flags |= RF_WANTED;
486 		rv = msleep(r->r_sharehead, rm->rm_mtx, pri, "rmwait", timo);
487 		if (rv) {
488 			mtx_unlock(rm->rm_mtx);
489 			return (rv);
490 		}
491 	}
492 }
493 
494 static int
495 int_rman_deactivate_resource(struct resource_i *r)
496 {
497 
498 	r->r_flags &= ~RF_ACTIVE;
499 	if (r->r_flags & RF_WANTED) {
500 		r->r_flags &= ~RF_WANTED;
501 		wakeup(r->r_sharehead);
502 	}
503 	return 0;
504 }
505 
506 int
507 rman_deactivate_resource(struct resource *r)
508 {
509 	struct	rman *rm;
510 
511 	rm = r->__r_i->r_rm;
512 	mtx_lock(rm->rm_mtx);
513 	int_rman_deactivate_resource(r->__r_i);
514 	mtx_unlock(rm->rm_mtx);
515 	return 0;
516 }
517 
518 static int
519 int_rman_release_resource(struct rman *rm, struct resource_i *r)
520 {
521 	struct	resource_i *s, *t;
522 
523 	if (r->r_flags & RF_ACTIVE)
524 		int_rman_deactivate_resource(r);
525 
526 	/*
527 	 * Check for a sharing list first.  If there is one, then we don't
528 	 * have to think as hard.
529 	 */
530 	if (r->r_sharehead) {
531 		/*
532 		 * If a sharing list exists, then we know there are at
533 		 * least two sharers.
534 		 *
535 		 * If we are in the main circleq, appoint someone else.
536 		 */
537 		LIST_REMOVE(r, r_sharelink);
538 		s = LIST_FIRST(r->r_sharehead);
539 		if (r->r_flags & RF_FIRSTSHARE) {
540 			s->r_flags |= RF_FIRSTSHARE;
541 			TAILQ_INSERT_BEFORE(r, s, r_link);
542 			TAILQ_REMOVE(&rm->rm_list, r, r_link);
543 		}
544 
545 		/*
546 		 * Make sure that the sharing list goes away completely
547 		 * if the resource is no longer being shared at all.
548 		 */
549 		if (LIST_NEXT(s, r_sharelink) == 0) {
550 			free(s->r_sharehead, M_RMAN);
551 			s->r_sharehead = 0;
552 			s->r_flags &= ~RF_FIRSTSHARE;
553 		}
554 		goto out;
555 	}
556 
557 	/*
558 	 * Look at the adjacent resources in the list and see if our
559 	 * segment can be merged with any of them.  If either of the
560 	 * resources is allocated or is not exactly adjacent then they
561 	 * cannot be merged with our segment.
562 	 */
563 	s = TAILQ_PREV(r, resource_head, r_link);
564 	if (s != NULL && ((s->r_flags & RF_ALLOCATED) != 0 ||
565 	    s->r_end + 1 != r->r_start))
566 		s = NULL;
567 	t = TAILQ_NEXT(r, r_link);
568 	if (t != NULL && ((t->r_flags & RF_ALLOCATED) != 0 ||
569 	    r->r_end + 1 != t->r_start))
570 		t = NULL;
571 
572 	if (s != NULL && t != NULL) {
573 		/*
574 		 * Merge all three segments.
575 		 */
576 		s->r_end = t->r_end;
577 		TAILQ_REMOVE(&rm->rm_list, r, r_link);
578 		TAILQ_REMOVE(&rm->rm_list, t, r_link);
579 		free(t, M_RMAN);
580 	} else if (s != NULL) {
581 		/*
582 		 * Merge previous segment with ours.
583 		 */
584 		s->r_end = r->r_end;
585 		TAILQ_REMOVE(&rm->rm_list, r, r_link);
586 	} else if (t != NULL) {
587 		/*
588 		 * Merge next segment with ours.
589 		 */
590 		t->r_start = r->r_start;
591 		TAILQ_REMOVE(&rm->rm_list, r, r_link);
592 	} else {
593 		/*
594 		 * At this point, we know there is nothing we
595 		 * can potentially merge with, because on each
596 		 * side, there is either nothing there or what is
597 		 * there is still allocated.  In that case, we don't
598 		 * want to remove r from the list; we simply want to
599 		 * change it to an unallocated region and return
600 		 * without freeing anything.
601 		 */
602 		r->r_flags &= ~RF_ALLOCATED;
603 		return 0;
604 	}
605 
606 out:
607 	free(r, M_RMAN);
608 	return 0;
609 }
610 
611 int
612 rman_release_resource(struct resource *re)
613 {
614 	int	rv;
615 	struct	resource_i *r;
616 	struct	rman *rm;
617 
618 	r = re->__r_i;
619 	rm = r->r_rm;
620 	mtx_lock(rm->rm_mtx);
621 	rv = int_rman_release_resource(rm, r);
622 	mtx_unlock(rm->rm_mtx);
623 	return (rv);
624 }
625 
626 uint32_t
627 rman_make_alignment_flags(uint32_t size)
628 {
629 	int	i;
630 
631 	/*
632 	 * Find the hightest bit set, and add one if more than one bit
633 	 * set.  We're effectively computing the ceil(log2(size)) here.
634 	 */
635 	for (i = 31; i > 0; i--)
636 		if ((1 << i) & size)
637 			break;
638 	if (~(1 << i) & size)
639 		i++;
640 
641 	return(RF_ALIGNMENT_LOG2(i));
642 }
643 
644 u_long
645 rman_get_start(struct resource *r)
646 {
647 	return (r->__r_i->r_start);
648 }
649 
650 u_long
651 rman_get_end(struct resource *r)
652 {
653 	return (r->__r_i->r_end);
654 }
655 
656 u_long
657 rman_get_size(struct resource *r)
658 {
659 	return (r->__r_i->r_end - r->__r_i->r_start + 1);
660 }
661 
662 u_int
663 rman_get_flags(struct resource *r)
664 {
665 	return (r->__r_i->r_flags);
666 }
667 
668 void
669 rman_set_virtual(struct resource *r, void *v)
670 {
671 	r->__r_i->r_virtual = v;
672 }
673 
674 void *
675 rman_get_virtual(struct resource *r)
676 {
677 	return (r->__r_i->r_virtual);
678 }
679 
680 void
681 rman_set_bustag(struct resource *r, bus_space_tag_t t)
682 {
683 	r->r_bustag = t;
684 }
685 
686 bus_space_tag_t
687 rman_get_bustag(struct resource *r)
688 {
689 	return (r->r_bustag);
690 }
691 
692 void
693 rman_set_bushandle(struct resource *r, bus_space_handle_t h)
694 {
695 	r->r_bushandle = h;
696 }
697 
698 bus_space_handle_t
699 rman_get_bushandle(struct resource *r)
700 {
701 	return (r->r_bushandle);
702 }
703 
704 void
705 rman_set_rid(struct resource *r, int rid)
706 {
707 	r->__r_i->r_rid = rid;
708 }
709 
710 void
711 rman_set_start(struct resource *r, u_long start)
712 {
713 	r->__r_i->r_start = start;
714 }
715 
716 void
717 rman_set_end(struct resource *r, u_long end)
718 {
719 	r->__r_i->r_end = end;
720 }
721 
722 int
723 rman_get_rid(struct resource *r)
724 {
725 	return (r->__r_i->r_rid);
726 }
727 
728 struct device *
729 rman_get_device(struct resource *r)
730 {
731 	return (r->__r_i->r_dev);
732 }
733 
734 void
735 rman_set_device(struct resource *r, struct device *dev)
736 {
737 	r->__r_i->r_dev = dev;
738 }
739 
740 int
741 rman_is_region_manager(struct resource *r, struct rman *rm)
742 {
743 
744 	return (r->__r_i->r_rm == rm);
745 }
746 
747 /*
748  * Sysctl interface for scanning the resource lists.
749  *
750  * We take two input parameters; the index into the list of resource
751  * managers, and the resource offset into the list.
752  */
753 static int
754 sysctl_rman(SYSCTL_HANDLER_ARGS)
755 {
756 	int			*name = (int *)arg1;
757 	u_int			namelen = arg2;
758 	int			rman_idx, res_idx;
759 	struct rman		*rm;
760 	struct resource_i	*res;
761 	struct u_rman		urm;
762 	struct u_resource	ures;
763 	int			error;
764 
765 	if (namelen != 3)
766 		return (EINVAL);
767 
768 	if (bus_data_generation_check(name[0]))
769 		return (EINVAL);
770 	rman_idx = name[1];
771 	res_idx = name[2];
772 
773 	/*
774 	 * Find the indexed resource manager
775 	 */
776 	TAILQ_FOREACH(rm, &rman_head, rm_link) {
777 		if (rman_idx-- == 0)
778 			break;
779 	}
780 	if (rm == NULL)
781 		return (ENOENT);
782 
783 	/*
784 	 * If the resource index is -1, we want details on the
785 	 * resource manager.
786 	 */
787 	if (res_idx == -1) {
788 		bzero(&urm, sizeof(urm));
789 		urm.rm_handle = (uintptr_t)rm;
790 		strlcpy(urm.rm_descr, rm->rm_descr, RM_TEXTLEN);
791 		urm.rm_start = rm->rm_start;
792 		urm.rm_size = rm->rm_end - rm->rm_start + 1;
793 		urm.rm_type = rm->rm_type;
794 
795 		error = SYSCTL_OUT(req, &urm, sizeof(urm));
796 		return (error);
797 	}
798 
799 	/*
800 	 * Find the indexed resource and return it.
801 	 */
802 	TAILQ_FOREACH(res, &rm->rm_list, r_link) {
803 		if (res_idx-- == 0) {
804 			bzero(&ures, sizeof(ures));
805 			ures.r_handle = (uintptr_t)res;
806 			ures.r_parent = (uintptr_t)res->r_rm;
807 			ures.r_device = (uintptr_t)res->r_dev;
808 			if (res->r_dev != NULL) {
809 				if (device_get_name(res->r_dev) != NULL) {
810 					snprintf(ures.r_devname, RM_TEXTLEN,
811 					    "%s%d",
812 					    device_get_name(res->r_dev),
813 					    device_get_unit(res->r_dev));
814 				} else {
815 					strlcpy(ures.r_devname, "nomatch",
816 					    RM_TEXTLEN);
817 				}
818 			} else {
819 				ures.r_devname[0] = '\0';
820 			}
821 			ures.r_start = res->r_start;
822 			ures.r_size = res->r_end - res->r_start + 1;
823 			ures.r_flags = res->r_flags;
824 
825 			error = SYSCTL_OUT(req, &ures, sizeof(ures));
826 			return (error);
827 		}
828 	}
829 	return (ENOENT);
830 }
831 
832 SYSCTL_NODE(_hw_bus, OID_AUTO, rman, CTLFLAG_RD, sysctl_rman,
833     "kernel resource manager");
834 
835