1 /*- 2 * Copyright 1998 Massachusetts Institute of Technology 3 * 4 * Permission to use, copy, modify, and distribute this software and 5 * its documentation for any purpose and without fee is hereby 6 * granted, provided that both the above copyright notice and this 7 * permission notice appear in all copies, that both the above 8 * copyright notice and this permission notice appear in all 9 * supporting documentation, and that the name of M.I.T. not be used 10 * in advertising or publicity pertaining to distribution of the 11 * software without specific, written prior permission. M.I.T. makes 12 * no representations about the suitability of this software for any 13 * purpose. It is provided "as is" without express or implied 14 * warranty. 15 * 16 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS 17 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE, 18 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT 20 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF 23 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 25 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 26 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 /* 31 * The kernel resource manager. This code is responsible for keeping track 32 * of hardware resources which are apportioned out to various drivers. 33 * It does not actually assign those resources, and it is not expected 34 * that end-device drivers will call into this code directly. Rather, 35 * the code which implements the buses that those devices are attached to, 36 * and the code which manages CPU resources, will call this code, and the 37 * end-device drivers will make upcalls to that code to actually perform 38 * the allocation. 39 * 40 * There are two sorts of resources managed by this code. The first is 41 * the more familiar array (RMAN_ARRAY) type; resources in this class 42 * consist of a sequence of individually-allocatable objects which have 43 * been numbered in some well-defined order. Most of the resources 44 * are of this type, as it is the most familiar. The second type is 45 * called a gauge (RMAN_GAUGE), and models fungible resources (i.e., 46 * resources in which each instance is indistinguishable from every 47 * other instance). The principal anticipated application of gauges 48 * is in the context of power consumption, where a bus may have a specific 49 * power budget which all attached devices share. RMAN_GAUGE is not 50 * implemented yet. 51 * 52 * For array resources, we make one simplifying assumption: two clients 53 * sharing the same resource must use the same range of indices. That 54 * is to say, sharing of overlapping-but-not-identical regions is not 55 * permitted. 56 */ 57 58 #include <sys/cdefs.h> 59 __FBSDID("$FreeBSD$"); 60 61 #include <sys/param.h> 62 #include <sys/systm.h> 63 #include <sys/kernel.h> 64 #include <sys/lock.h> 65 #include <sys/malloc.h> 66 #include <sys/mutex.h> 67 #include <sys/bus.h> /* XXX debugging */ 68 #include <machine/bus.h> 69 #include <sys/rman.h> 70 #include <sys/sysctl.h> 71 72 /* 73 * We use a linked list rather than a bitmap because we need to be able to 74 * represent potentially huge objects (like all of a processor's physical 75 * address space). That is also why the indices are defined to have type 76 * `unsigned long' -- that being the largest integral type in ISO C (1990). 77 * The 1999 version of C allows `long long'; we may need to switch to that 78 * at some point in the future, particularly if we want to support 36-bit 79 * addresses on IA32 hardware. 80 */ 81 struct resource_i { 82 struct resource r_r; 83 TAILQ_ENTRY(resource_i) r_link; 84 LIST_ENTRY(resource_i) r_sharelink; 85 LIST_HEAD(, resource_i) *r_sharehead; 86 u_long r_start; /* index of the first entry in this resource */ 87 u_long r_end; /* index of the last entry (inclusive) */ 88 u_int r_flags; 89 void *r_virtual; /* virtual address of this resource */ 90 struct device *r_dev; /* device which has allocated this resource */ 91 struct rman *r_rm; /* resource manager from whence this came */ 92 int r_rid; /* optional rid for this resource. */ 93 }; 94 95 int rman_debug = 0; 96 TUNABLE_INT("debug.rman_debug", &rman_debug); 97 SYSCTL_INT(_debug, OID_AUTO, rman_debug, CTLFLAG_RW, 98 &rman_debug, 0, "rman debug"); 99 100 #define DPRINTF(params) if (rman_debug) printf params 101 102 static MALLOC_DEFINE(M_RMAN, "rman", "Resource manager"); 103 104 struct rman_head rman_head; 105 static struct mtx rman_mtx; /* mutex to protect rman_head */ 106 static int int_rman_activate_resource(struct rman *rm, struct resource_i *r, 107 struct resource_i **whohas); 108 static int int_rman_deactivate_resource(struct resource_i *r); 109 static int int_rman_release_resource(struct rman *rm, struct resource_i *r); 110 111 static __inline struct resource_i * 112 int_alloc_resource(int malloc_flag) 113 { 114 struct resource_i *r; 115 116 r = malloc(sizeof *r, M_RMAN, malloc_flag | M_ZERO); 117 if (r != NULL) { 118 r->r_r.__r_i = r; 119 } 120 return (r); 121 } 122 123 int 124 rman_init(struct rman *rm) 125 { 126 static int once = 0; 127 128 if (once == 0) { 129 once = 1; 130 TAILQ_INIT(&rman_head); 131 mtx_init(&rman_mtx, "rman head", NULL, MTX_DEF); 132 } 133 134 if (rm->rm_type == RMAN_UNINIT) 135 panic("rman_init"); 136 if (rm->rm_type == RMAN_GAUGE) 137 panic("implement RMAN_GAUGE"); 138 139 TAILQ_INIT(&rm->rm_list); 140 rm->rm_mtx = malloc(sizeof *rm->rm_mtx, M_RMAN, M_NOWAIT | M_ZERO); 141 if (rm->rm_mtx == NULL) 142 return ENOMEM; 143 mtx_init(rm->rm_mtx, "rman", NULL, MTX_DEF); 144 145 mtx_lock(&rman_mtx); 146 TAILQ_INSERT_TAIL(&rman_head, rm, rm_link); 147 mtx_unlock(&rman_mtx); 148 return 0; 149 } 150 151 /* 152 * NB: this interface is not robust against programming errors which 153 * add multiple copies of the same region. 154 */ 155 int 156 rman_manage_region(struct rman *rm, u_long start, u_long end) 157 { 158 struct resource_i *r, *s, *t; 159 160 DPRINTF(("rman_manage_region: <%s> request: start %#lx, end %#lx\n", 161 rm->rm_descr, start, end)); 162 r = int_alloc_resource(M_NOWAIT); 163 if (r == NULL) 164 return ENOMEM; 165 r->r_start = start; 166 r->r_end = end; 167 r->r_rm = rm; 168 169 mtx_lock(rm->rm_mtx); 170 171 /* Skip entries before us. */ 172 for (s = TAILQ_FIRST(&rm->rm_list); 173 s && s->r_end + 1 < r->r_start; 174 s = TAILQ_NEXT(s, r_link)) 175 ; 176 177 /* If we ran off the end of the list, insert at the tail. */ 178 if (s == NULL) { 179 TAILQ_INSERT_TAIL(&rm->rm_list, r, r_link); 180 } else { 181 /* Check for any overlap with the current region. */ 182 if (r->r_start <= s->r_end && r->r_end >= s->r_start) 183 return EBUSY; 184 185 /* Check for any overlap with the next region. */ 186 t = TAILQ_NEXT(s, r_link); 187 if (t && r->r_start <= t->r_end && r->r_end >= t->r_start) 188 return EBUSY; 189 190 /* 191 * See if this region can be merged with the next region. If 192 * not, clear the pointer. 193 */ 194 if (t && (r->r_end + 1 != t->r_start || t->r_flags != 0)) 195 t = NULL; 196 197 /* See if we can merge with the current region. */ 198 if (s->r_end + 1 == r->r_start && s->r_flags == 0) { 199 /* Can we merge all 3 regions? */ 200 if (t != NULL) { 201 s->r_end = t->r_end; 202 TAILQ_REMOVE(&rm->rm_list, t, r_link); 203 free(r, M_RMAN); 204 free(t, M_RMAN); 205 } else { 206 s->r_end = r->r_end; 207 free(r, M_RMAN); 208 } 209 } else { 210 /* Can we merge with just the next region? */ 211 if (t != NULL) { 212 t->r_start = r->r_start; 213 free(r, M_RMAN); 214 } else 215 TAILQ_INSERT_BEFORE(s, r, r_link); 216 } 217 } 218 219 mtx_unlock(rm->rm_mtx); 220 return 0; 221 } 222 223 int 224 rman_init_from_resource(struct rman *rm, struct resource *r) 225 { 226 int rv; 227 228 if ((rv = rman_init(rm)) != 0) 229 return (rv); 230 return (rman_manage_region(rm, r->__r_i->r_start, r->__r_i->r_end)); 231 } 232 233 int 234 rman_fini(struct rman *rm) 235 { 236 struct resource_i *r; 237 238 mtx_lock(rm->rm_mtx); 239 TAILQ_FOREACH(r, &rm->rm_list, r_link) { 240 if (r->r_flags & RF_ALLOCATED) { 241 mtx_unlock(rm->rm_mtx); 242 return EBUSY; 243 } 244 } 245 246 /* 247 * There really should only be one of these if we are in this 248 * state and the code is working properly, but it can't hurt. 249 */ 250 while (!TAILQ_EMPTY(&rm->rm_list)) { 251 r = TAILQ_FIRST(&rm->rm_list); 252 TAILQ_REMOVE(&rm->rm_list, r, r_link); 253 free(r, M_RMAN); 254 } 255 mtx_unlock(rm->rm_mtx); 256 mtx_lock(&rman_mtx); 257 TAILQ_REMOVE(&rman_head, rm, rm_link); 258 mtx_unlock(&rman_mtx); 259 mtx_destroy(rm->rm_mtx); 260 free(rm->rm_mtx, M_RMAN); 261 262 return 0; 263 } 264 265 struct resource * 266 rman_reserve_resource_bound(struct rman *rm, u_long start, u_long end, 267 u_long count, u_long bound, u_int flags, 268 struct device *dev) 269 { 270 u_int want_activate; 271 struct resource_i *r, *s, *rv; 272 u_long rstart, rend, amask, bmask; 273 274 rv = NULL; 275 276 DPRINTF(("rman_reserve_resource_bound: <%s> request: [%#lx, %#lx], " 277 "length %#lx, flags %u, device %s\n", rm->rm_descr, start, end, 278 count, flags, 279 dev == NULL ? "<null>" : device_get_nameunit(dev))); 280 want_activate = (flags & RF_ACTIVE); 281 flags &= ~RF_ACTIVE; 282 283 mtx_lock(rm->rm_mtx); 284 285 for (r = TAILQ_FIRST(&rm->rm_list); 286 r && r->r_end < start; 287 r = TAILQ_NEXT(r, r_link)) 288 ; 289 290 if (r == NULL) { 291 DPRINTF(("could not find a region\n")); 292 goto out; 293 } 294 295 amask = (1ul << RF_ALIGNMENT(flags)) - 1; 296 /* If bound is 0, bmask will also be 0 */ 297 bmask = ~(bound - 1); 298 /* 299 * First try to find an acceptable totally-unshared region. 300 */ 301 for (s = r; s; s = TAILQ_NEXT(s, r_link)) { 302 DPRINTF(("considering [%#lx, %#lx]\n", s->r_start, s->r_end)); 303 if (s->r_start + count - 1 > end) { 304 DPRINTF(("s->r_start (%#lx) + count - 1> end (%#lx)\n", 305 s->r_start, end)); 306 break; 307 } 308 if (s->r_flags & RF_ALLOCATED) { 309 DPRINTF(("region is allocated\n")); 310 continue; 311 } 312 rstart = ulmax(s->r_start, start); 313 /* 314 * Try to find a region by adjusting to boundary and alignment 315 * until both conditions are satisfied. This is not an optimal 316 * algorithm, but in most cases it isn't really bad, either. 317 */ 318 do { 319 rstart = (rstart + amask) & ~amask; 320 if (((rstart ^ (rstart + count - 1)) & bmask) != 0) 321 rstart += bound - (rstart & ~bmask); 322 } while ((rstart & amask) != 0 && rstart < end && 323 rstart < s->r_end); 324 rend = ulmin(s->r_end, ulmax(rstart + count - 1, end)); 325 if (rstart > rend) { 326 DPRINTF(("adjusted start exceeds end\n")); 327 continue; 328 } 329 DPRINTF(("truncated region: [%#lx, %#lx]; size %#lx (requested %#lx)\n", 330 rstart, rend, (rend - rstart + 1), count)); 331 332 if ((rend - rstart + 1) >= count) { 333 DPRINTF(("candidate region: [%#lx, %#lx], size %#lx\n", 334 rstart, rend, (rend - rstart + 1))); 335 if ((s->r_end - s->r_start + 1) == count) { 336 DPRINTF(("candidate region is entire chunk\n")); 337 rv = s; 338 rv->r_flags |= RF_ALLOCATED | flags; 339 rv->r_dev = dev; 340 goto out; 341 } 342 343 /* 344 * If s->r_start < rstart and 345 * s->r_end > rstart + count - 1, then 346 * we need to split the region into three pieces 347 * (the middle one will get returned to the user). 348 * Otherwise, we are allocating at either the 349 * beginning or the end of s, so we only need to 350 * split it in two. The first case requires 351 * two new allocations; the second requires but one. 352 */ 353 rv = int_alloc_resource(M_NOWAIT); 354 if (rv == NULL) 355 goto out; 356 rv->r_start = rstart; 357 rv->r_end = rstart + count - 1; 358 rv->r_flags = flags | RF_ALLOCATED; 359 rv->r_dev = dev; 360 rv->r_rm = rm; 361 362 if (s->r_start < rv->r_start && s->r_end > rv->r_end) { 363 DPRINTF(("splitting region in three parts: " 364 "[%#lx, %#lx]; [%#lx, %#lx]; [%#lx, %#lx]\n", 365 s->r_start, rv->r_start - 1, 366 rv->r_start, rv->r_end, 367 rv->r_end + 1, s->r_end)); 368 /* 369 * We are allocating in the middle. 370 */ 371 r = int_alloc_resource(M_NOWAIT); 372 if (r == NULL) { 373 free(rv, M_RMAN); 374 rv = NULL; 375 goto out; 376 } 377 r->r_start = rv->r_end + 1; 378 r->r_end = s->r_end; 379 r->r_flags = s->r_flags; 380 r->r_rm = rm; 381 s->r_end = rv->r_start - 1; 382 TAILQ_INSERT_AFTER(&rm->rm_list, s, rv, 383 r_link); 384 TAILQ_INSERT_AFTER(&rm->rm_list, rv, r, 385 r_link); 386 } else if (s->r_start == rv->r_start) { 387 DPRINTF(("allocating from the beginning\n")); 388 /* 389 * We are allocating at the beginning. 390 */ 391 s->r_start = rv->r_end + 1; 392 TAILQ_INSERT_BEFORE(s, rv, r_link); 393 } else { 394 DPRINTF(("allocating at the end\n")); 395 /* 396 * We are allocating at the end. 397 */ 398 s->r_end = rv->r_start - 1; 399 TAILQ_INSERT_AFTER(&rm->rm_list, s, rv, 400 r_link); 401 } 402 goto out; 403 } 404 } 405 406 /* 407 * Now find an acceptable shared region, if the client's requirements 408 * allow sharing. By our implementation restriction, a candidate 409 * region must match exactly by both size and sharing type in order 410 * to be considered compatible with the client's request. (The 411 * former restriction could probably be lifted without too much 412 * additional work, but this does not seem warranted.) 413 */ 414 DPRINTF(("no unshared regions found\n")); 415 if ((flags & (RF_SHAREABLE | RF_TIMESHARE)) == 0) 416 goto out; 417 418 for (s = r; s; s = TAILQ_NEXT(s, r_link)) { 419 if (s->r_start > end) 420 break; 421 if ((s->r_flags & flags) != flags) 422 continue; 423 rstart = ulmax(s->r_start, start); 424 rend = ulmin(s->r_end, ulmax(start + count - 1, end)); 425 if (s->r_start >= start && s->r_end <= end 426 && (s->r_end - s->r_start + 1) == count && 427 (s->r_start & amask) == 0 && 428 ((s->r_start ^ s->r_end) & bmask) == 0) { 429 rv = int_alloc_resource(M_NOWAIT); 430 if (rv == NULL) 431 goto out; 432 rv->r_start = s->r_start; 433 rv->r_end = s->r_end; 434 rv->r_flags = s->r_flags & 435 (RF_ALLOCATED | RF_SHAREABLE | RF_TIMESHARE); 436 rv->r_dev = dev; 437 rv->r_rm = rm; 438 if (s->r_sharehead == NULL) { 439 s->r_sharehead = malloc(sizeof *s->r_sharehead, 440 M_RMAN, M_NOWAIT | M_ZERO); 441 if (s->r_sharehead == NULL) { 442 free(rv, M_RMAN); 443 rv = NULL; 444 goto out; 445 } 446 LIST_INIT(s->r_sharehead); 447 LIST_INSERT_HEAD(s->r_sharehead, s, 448 r_sharelink); 449 s->r_flags |= RF_FIRSTSHARE; 450 } 451 rv->r_sharehead = s->r_sharehead; 452 LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink); 453 goto out; 454 } 455 } 456 457 /* 458 * We couldn't find anything. 459 */ 460 out: 461 /* 462 * If the user specified RF_ACTIVE in the initial flags, 463 * which is reflected in `want_activate', we attempt to atomically 464 * activate the resource. If this fails, we release the resource 465 * and indicate overall failure. (This behavior probably doesn't 466 * make sense for RF_TIMESHARE-type resources.) 467 */ 468 if (rv && want_activate) { 469 struct resource_i *whohas; 470 if (int_rman_activate_resource(rm, rv, &whohas)) { 471 int_rman_release_resource(rm, rv); 472 rv = NULL; 473 } 474 } 475 476 mtx_unlock(rm->rm_mtx); 477 return (rv == NULL ? NULL : &rv->r_r); 478 } 479 480 struct resource * 481 rman_reserve_resource(struct rman *rm, u_long start, u_long end, u_long count, 482 u_int flags, struct device *dev) 483 { 484 485 return (rman_reserve_resource_bound(rm, start, end, count, 0, flags, 486 dev)); 487 } 488 489 static int 490 int_rman_activate_resource(struct rman *rm, struct resource_i *r, 491 struct resource_i **whohas) 492 { 493 struct resource_i *s; 494 int ok; 495 496 /* 497 * If we are not timesharing, then there is nothing much to do. 498 * If we already have the resource, then there is nothing at all to do. 499 * If we are not on a sharing list with anybody else, then there is 500 * little to do. 501 */ 502 if ((r->r_flags & RF_TIMESHARE) == 0 503 || (r->r_flags & RF_ACTIVE) != 0 504 || r->r_sharehead == NULL) { 505 r->r_flags |= RF_ACTIVE; 506 return 0; 507 } 508 509 ok = 1; 510 for (s = LIST_FIRST(r->r_sharehead); s && ok; 511 s = LIST_NEXT(s, r_sharelink)) { 512 if ((s->r_flags & RF_ACTIVE) != 0) { 513 ok = 0; 514 *whohas = s; 515 } 516 } 517 if (ok) { 518 r->r_flags |= RF_ACTIVE; 519 return 0; 520 } 521 return EBUSY; 522 } 523 524 int 525 rman_activate_resource(struct resource *re) 526 { 527 int rv; 528 struct resource_i *r, *whohas; 529 struct rman *rm; 530 531 r = re->__r_i; 532 rm = r->r_rm; 533 mtx_lock(rm->rm_mtx); 534 rv = int_rman_activate_resource(rm, r, &whohas); 535 mtx_unlock(rm->rm_mtx); 536 return rv; 537 } 538 539 int 540 rman_await_resource(struct resource *re, int pri, int timo) 541 { 542 int rv; 543 struct resource_i *r, *whohas; 544 struct rman *rm; 545 546 r = re->__r_i; 547 rm = r->r_rm; 548 mtx_lock(rm->rm_mtx); 549 for (;;) { 550 rv = int_rman_activate_resource(rm, r, &whohas); 551 if (rv != EBUSY) 552 return (rv); /* returns with mutex held */ 553 554 if (r->r_sharehead == NULL) 555 panic("rman_await_resource"); 556 whohas->r_flags |= RF_WANTED; 557 rv = msleep(r->r_sharehead, rm->rm_mtx, pri, "rmwait", timo); 558 if (rv) { 559 mtx_unlock(rm->rm_mtx); 560 return (rv); 561 } 562 } 563 } 564 565 static int 566 int_rman_deactivate_resource(struct resource_i *r) 567 { 568 569 r->r_flags &= ~RF_ACTIVE; 570 if (r->r_flags & RF_WANTED) { 571 r->r_flags &= ~RF_WANTED; 572 wakeup(r->r_sharehead); 573 } 574 return 0; 575 } 576 577 int 578 rman_deactivate_resource(struct resource *r) 579 { 580 struct rman *rm; 581 582 rm = r->__r_i->r_rm; 583 mtx_lock(rm->rm_mtx); 584 int_rman_deactivate_resource(r->__r_i); 585 mtx_unlock(rm->rm_mtx); 586 return 0; 587 } 588 589 static int 590 int_rman_release_resource(struct rman *rm, struct resource_i *r) 591 { 592 struct resource_i *s, *t; 593 594 if (r->r_flags & RF_ACTIVE) 595 int_rman_deactivate_resource(r); 596 597 /* 598 * Check for a sharing list first. If there is one, then we don't 599 * have to think as hard. 600 */ 601 if (r->r_sharehead) { 602 /* 603 * If a sharing list exists, then we know there are at 604 * least two sharers. 605 * 606 * If we are in the main circleq, appoint someone else. 607 */ 608 LIST_REMOVE(r, r_sharelink); 609 s = LIST_FIRST(r->r_sharehead); 610 if (r->r_flags & RF_FIRSTSHARE) { 611 s->r_flags |= RF_FIRSTSHARE; 612 TAILQ_INSERT_BEFORE(r, s, r_link); 613 TAILQ_REMOVE(&rm->rm_list, r, r_link); 614 } 615 616 /* 617 * Make sure that the sharing list goes away completely 618 * if the resource is no longer being shared at all. 619 */ 620 if (LIST_NEXT(s, r_sharelink) == NULL) { 621 free(s->r_sharehead, M_RMAN); 622 s->r_sharehead = NULL; 623 s->r_flags &= ~RF_FIRSTSHARE; 624 } 625 goto out; 626 } 627 628 /* 629 * Look at the adjacent resources in the list and see if our 630 * segment can be merged with any of them. If either of the 631 * resources is allocated or is not exactly adjacent then they 632 * cannot be merged with our segment. 633 */ 634 s = TAILQ_PREV(r, resource_head, r_link); 635 if (s != NULL && ((s->r_flags & RF_ALLOCATED) != 0 || 636 s->r_end + 1 != r->r_start)) 637 s = NULL; 638 t = TAILQ_NEXT(r, r_link); 639 if (t != NULL && ((t->r_flags & RF_ALLOCATED) != 0 || 640 r->r_end + 1 != t->r_start)) 641 t = NULL; 642 643 if (s != NULL && t != NULL) { 644 /* 645 * Merge all three segments. 646 */ 647 s->r_end = t->r_end; 648 TAILQ_REMOVE(&rm->rm_list, r, r_link); 649 TAILQ_REMOVE(&rm->rm_list, t, r_link); 650 free(t, M_RMAN); 651 } else if (s != NULL) { 652 /* 653 * Merge previous segment with ours. 654 */ 655 s->r_end = r->r_end; 656 TAILQ_REMOVE(&rm->rm_list, r, r_link); 657 } else if (t != NULL) { 658 /* 659 * Merge next segment with ours. 660 */ 661 t->r_start = r->r_start; 662 TAILQ_REMOVE(&rm->rm_list, r, r_link); 663 } else { 664 /* 665 * At this point, we know there is nothing we 666 * can potentially merge with, because on each 667 * side, there is either nothing there or what is 668 * there is still allocated. In that case, we don't 669 * want to remove r from the list; we simply want to 670 * change it to an unallocated region and return 671 * without freeing anything. 672 */ 673 r->r_flags &= ~RF_ALLOCATED; 674 return 0; 675 } 676 677 out: 678 free(r, M_RMAN); 679 return 0; 680 } 681 682 int 683 rman_release_resource(struct resource *re) 684 { 685 int rv; 686 struct resource_i *r; 687 struct rman *rm; 688 689 r = re->__r_i; 690 rm = r->r_rm; 691 mtx_lock(rm->rm_mtx); 692 rv = int_rman_release_resource(rm, r); 693 mtx_unlock(rm->rm_mtx); 694 return (rv); 695 } 696 697 uint32_t 698 rman_make_alignment_flags(uint32_t size) 699 { 700 int i; 701 702 /* 703 * Find the hightest bit set, and add one if more than one bit 704 * set. We're effectively computing the ceil(log2(size)) here. 705 */ 706 for (i = 31; i > 0; i--) 707 if ((1 << i) & size) 708 break; 709 if (~(1 << i) & size) 710 i++; 711 712 return(RF_ALIGNMENT_LOG2(i)); 713 } 714 715 u_long 716 rman_get_start(struct resource *r) 717 { 718 return (r->__r_i->r_start); 719 } 720 721 u_long 722 rman_get_end(struct resource *r) 723 { 724 return (r->__r_i->r_end); 725 } 726 727 u_long 728 rman_get_size(struct resource *r) 729 { 730 return (r->__r_i->r_end - r->__r_i->r_start + 1); 731 } 732 733 u_int 734 rman_get_flags(struct resource *r) 735 { 736 return (r->__r_i->r_flags); 737 } 738 739 void 740 rman_set_virtual(struct resource *r, void *v) 741 { 742 r->__r_i->r_virtual = v; 743 } 744 745 void * 746 rman_get_virtual(struct resource *r) 747 { 748 return (r->__r_i->r_virtual); 749 } 750 751 void 752 rman_set_bustag(struct resource *r, bus_space_tag_t t) 753 { 754 r->r_bustag = t; 755 } 756 757 bus_space_tag_t 758 rman_get_bustag(struct resource *r) 759 { 760 return (r->r_bustag); 761 } 762 763 void 764 rman_set_bushandle(struct resource *r, bus_space_handle_t h) 765 { 766 r->r_bushandle = h; 767 } 768 769 bus_space_handle_t 770 rman_get_bushandle(struct resource *r) 771 { 772 return (r->r_bushandle); 773 } 774 775 void 776 rman_set_rid(struct resource *r, int rid) 777 { 778 r->__r_i->r_rid = rid; 779 } 780 781 void 782 rman_set_start(struct resource *r, u_long start) 783 { 784 r->__r_i->r_start = start; 785 } 786 787 void 788 rman_set_end(struct resource *r, u_long end) 789 { 790 r->__r_i->r_end = end; 791 } 792 793 int 794 rman_get_rid(struct resource *r) 795 { 796 return (r->__r_i->r_rid); 797 } 798 799 struct device * 800 rman_get_device(struct resource *r) 801 { 802 return (r->__r_i->r_dev); 803 } 804 805 void 806 rman_set_device(struct resource *r, struct device *dev) 807 { 808 r->__r_i->r_dev = dev; 809 } 810 811 int 812 rman_is_region_manager(struct resource *r, struct rman *rm) 813 { 814 815 return (r->__r_i->r_rm == rm); 816 } 817 818 /* 819 * Sysctl interface for scanning the resource lists. 820 * 821 * We take two input parameters; the index into the list of resource 822 * managers, and the resource offset into the list. 823 */ 824 static int 825 sysctl_rman(SYSCTL_HANDLER_ARGS) 826 { 827 int *name = (int *)arg1; 828 u_int namelen = arg2; 829 int rman_idx, res_idx; 830 struct rman *rm; 831 struct resource_i *res; 832 struct u_rman urm; 833 struct u_resource ures; 834 int error; 835 836 if (namelen != 3) 837 return (EINVAL); 838 839 if (bus_data_generation_check(name[0])) 840 return (EINVAL); 841 rman_idx = name[1]; 842 res_idx = name[2]; 843 844 /* 845 * Find the indexed resource manager 846 */ 847 mtx_lock(&rman_mtx); 848 TAILQ_FOREACH(rm, &rman_head, rm_link) { 849 if (rman_idx-- == 0) 850 break; 851 } 852 mtx_unlock(&rman_mtx); 853 if (rm == NULL) 854 return (ENOENT); 855 856 /* 857 * If the resource index is -1, we want details on the 858 * resource manager. 859 */ 860 if (res_idx == -1) { 861 bzero(&urm, sizeof(urm)); 862 urm.rm_handle = (uintptr_t)rm; 863 strlcpy(urm.rm_descr, rm->rm_descr, RM_TEXTLEN); 864 urm.rm_start = rm->rm_start; 865 urm.rm_size = rm->rm_end - rm->rm_start + 1; 866 urm.rm_type = rm->rm_type; 867 868 error = SYSCTL_OUT(req, &urm, sizeof(urm)); 869 return (error); 870 } 871 872 /* 873 * Find the indexed resource and return it. 874 */ 875 mtx_lock(rm->rm_mtx); 876 TAILQ_FOREACH(res, &rm->rm_list, r_link) { 877 if (res_idx-- == 0) { 878 bzero(&ures, sizeof(ures)); 879 ures.r_handle = (uintptr_t)res; 880 ures.r_parent = (uintptr_t)res->r_rm; 881 ures.r_device = (uintptr_t)res->r_dev; 882 if (res->r_dev != NULL) { 883 if (device_get_name(res->r_dev) != NULL) { 884 snprintf(ures.r_devname, RM_TEXTLEN, 885 "%s%d", 886 device_get_name(res->r_dev), 887 device_get_unit(res->r_dev)); 888 } else { 889 strlcpy(ures.r_devname, "nomatch", 890 RM_TEXTLEN); 891 } 892 } else { 893 ures.r_devname[0] = '\0'; 894 } 895 ures.r_start = res->r_start; 896 ures.r_size = res->r_end - res->r_start + 1; 897 ures.r_flags = res->r_flags; 898 899 mtx_unlock(rm->rm_mtx); 900 error = SYSCTL_OUT(req, &ures, sizeof(ures)); 901 return (error); 902 } 903 } 904 mtx_unlock(rm->rm_mtx); 905 return (ENOENT); 906 } 907 908 SYSCTL_NODE(_hw_bus, OID_AUTO, rman, CTLFLAG_RD, sysctl_rman, 909 "kernel resource manager"); 910