xref: /freebsd/sys/kern/subr_rman.c (revision 884a2a699669ec61e2366e3e358342dbc94be24a)
1 /*-
2  * Copyright 1998 Massachusetts Institute of Technology
3  *
4  * Permission to use, copy, modify, and distribute this software and
5  * its documentation for any purpose and without fee is hereby
6  * granted, provided that both the above copyright notice and this
7  * permission notice appear in all copies, that both the above
8  * copyright notice and this permission notice appear in all
9  * supporting documentation, and that the name of M.I.T. not be used
10  * in advertising or publicity pertaining to distribution of the
11  * software without specific, written prior permission.  M.I.T. makes
12  * no representations about the suitability of this software for any
13  * purpose.  It is provided "as is" without express or implied
14  * warranty.
15  *
16  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
17  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /*
31  * The kernel resource manager.  This code is responsible for keeping track
32  * of hardware resources which are apportioned out to various drivers.
33  * It does not actually assign those resources, and it is not expected
34  * that end-device drivers will call into this code directly.  Rather,
35  * the code which implements the buses that those devices are attached to,
36  * and the code which manages CPU resources, will call this code, and the
37  * end-device drivers will make upcalls to that code to actually perform
38  * the allocation.
39  *
40  * There are two sorts of resources managed by this code.  The first is
41  * the more familiar array (RMAN_ARRAY) type; resources in this class
42  * consist of a sequence of individually-allocatable objects which have
43  * been numbered in some well-defined order.  Most of the resources
44  * are of this type, as it is the most familiar.  The second type is
45  * called a gauge (RMAN_GAUGE), and models fungible resources (i.e.,
46  * resources in which each instance is indistinguishable from every
47  * other instance).  The principal anticipated application of gauges
48  * is in the context of power consumption, where a bus may have a specific
49  * power budget which all attached devices share.  RMAN_GAUGE is not
50  * implemented yet.
51  *
52  * For array resources, we make one simplifying assumption: two clients
53  * sharing the same resource must use the same range of indices.  That
54  * is to say, sharing of overlapping-but-not-identical regions is not
55  * permitted.
56  */
57 
58 #include "opt_ddb.h"
59 
60 #include <sys/cdefs.h>
61 __FBSDID("$FreeBSD$");
62 
63 #include <sys/param.h>
64 #include <sys/systm.h>
65 #include <sys/kernel.h>
66 #include <sys/limits.h>
67 #include <sys/lock.h>
68 #include <sys/malloc.h>
69 #include <sys/mutex.h>
70 #include <sys/bus.h>		/* XXX debugging */
71 #include <machine/bus.h>
72 #include <sys/rman.h>
73 #include <sys/sysctl.h>
74 
75 #ifdef DDB
76 #include <ddb/ddb.h>
77 #endif
78 
79 /*
80  * We use a linked list rather than a bitmap because we need to be able to
81  * represent potentially huge objects (like all of a processor's physical
82  * address space).  That is also why the indices are defined to have type
83  * `unsigned long' -- that being the largest integral type in ISO C (1990).
84  * The 1999 version of C allows `long long'; we may need to switch to that
85  * at some point in the future, particularly if we want to support 36-bit
86  * addresses on IA32 hardware.
87  */
88 struct resource_i {
89 	struct resource		r_r;
90 	TAILQ_ENTRY(resource_i)	r_link;
91 	LIST_ENTRY(resource_i)	r_sharelink;
92 	LIST_HEAD(, resource_i)	*r_sharehead;
93 	u_long	r_start;	/* index of the first entry in this resource */
94 	u_long	r_end;		/* index of the last entry (inclusive) */
95 	u_int	r_flags;
96 	void	*r_virtual;	/* virtual address of this resource */
97 	struct	device *r_dev;	/* device which has allocated this resource */
98 	struct	rman *r_rm;	/* resource manager from whence this came */
99 	int	r_rid;		/* optional rid for this resource. */
100 };
101 
102 static int     rman_debug = 0;
103 TUNABLE_INT("debug.rman_debug", &rman_debug);
104 SYSCTL_INT(_debug, OID_AUTO, rman_debug, CTLFLAG_RW,
105     &rman_debug, 0, "rman debug");
106 
107 #define DPRINTF(params) if (rman_debug) printf params
108 
109 static MALLOC_DEFINE(M_RMAN, "rman", "Resource manager");
110 
111 struct	rman_head rman_head;
112 static	struct mtx rman_mtx; /* mutex to protect rman_head */
113 static	int int_rman_activate_resource(struct rman *rm, struct resource_i *r,
114 				       struct resource_i **whohas);
115 static	int int_rman_deactivate_resource(struct resource_i *r);
116 static	int int_rman_release_resource(struct rman *rm, struct resource_i *r);
117 
118 static __inline struct resource_i *
119 int_alloc_resource(int malloc_flag)
120 {
121 	struct resource_i *r;
122 
123 	r = malloc(sizeof *r, M_RMAN, malloc_flag | M_ZERO);
124 	if (r != NULL) {
125 		r->r_r.__r_i = r;
126 	}
127 	return (r);
128 }
129 
130 int
131 rman_init(struct rman *rm)
132 {
133 	static int once = 0;
134 
135 	if (once == 0) {
136 		once = 1;
137 		TAILQ_INIT(&rman_head);
138 		mtx_init(&rman_mtx, "rman head", NULL, MTX_DEF);
139 	}
140 
141 	if (rm->rm_start == 0 && rm->rm_end == 0)
142 		rm->rm_end = ~0ul;
143 	if (rm->rm_type == RMAN_UNINIT)
144 		panic("rman_init");
145 	if (rm->rm_type == RMAN_GAUGE)
146 		panic("implement RMAN_GAUGE");
147 
148 	TAILQ_INIT(&rm->rm_list);
149 	rm->rm_mtx = malloc(sizeof *rm->rm_mtx, M_RMAN, M_NOWAIT | M_ZERO);
150 	if (rm->rm_mtx == NULL)
151 		return ENOMEM;
152 	mtx_init(rm->rm_mtx, "rman", NULL, MTX_DEF);
153 
154 	mtx_lock(&rman_mtx);
155 	TAILQ_INSERT_TAIL(&rman_head, rm, rm_link);
156 	mtx_unlock(&rman_mtx);
157 	return 0;
158 }
159 
160 int
161 rman_manage_region(struct rman *rm, u_long start, u_long end)
162 {
163 	struct resource_i *r, *s, *t;
164 
165 	DPRINTF(("rman_manage_region: <%s> request: start %#lx, end %#lx\n",
166 	    rm->rm_descr, start, end));
167 	if (start < rm->rm_start || end > rm->rm_end)
168 		return EINVAL;
169 	r = int_alloc_resource(M_NOWAIT);
170 	if (r == NULL)
171 		return ENOMEM;
172 	r->r_start = start;
173 	r->r_end = end;
174 	r->r_rm = rm;
175 
176 	mtx_lock(rm->rm_mtx);
177 
178 	/* Skip entries before us. */
179 	TAILQ_FOREACH(s, &rm->rm_list, r_link) {
180 		if (s->r_end == ULONG_MAX)
181 			break;
182 		if (s->r_end + 1 >= r->r_start)
183 			break;
184 	}
185 
186 	/* If we ran off the end of the list, insert at the tail. */
187 	if (s == NULL) {
188 		TAILQ_INSERT_TAIL(&rm->rm_list, r, r_link);
189 	} else {
190 		/* Check for any overlap with the current region. */
191 		if (r->r_start <= s->r_end && r->r_end >= s->r_start)
192 			return EBUSY;
193 
194 		/* Check for any overlap with the next region. */
195 		t = TAILQ_NEXT(s, r_link);
196 		if (t && r->r_start <= t->r_end && r->r_end >= t->r_start)
197 			return EBUSY;
198 
199 		/*
200 		 * See if this region can be merged with the next region.  If
201 		 * not, clear the pointer.
202 		 */
203 		if (t && (r->r_end + 1 != t->r_start || t->r_flags != 0))
204 			t = NULL;
205 
206 		/* See if we can merge with the current region. */
207 		if (s->r_end + 1 == r->r_start && s->r_flags == 0) {
208 			/* Can we merge all 3 regions? */
209 			if (t != NULL) {
210 				s->r_end = t->r_end;
211 				TAILQ_REMOVE(&rm->rm_list, t, r_link);
212 				free(r, M_RMAN);
213 				free(t, M_RMAN);
214 			} else {
215 				s->r_end = r->r_end;
216 				free(r, M_RMAN);
217 			}
218 		} else if (t != NULL) {
219 			/* Can we merge with just the next region? */
220 			t->r_start = r->r_start;
221 			free(r, M_RMAN);
222 		} else if (s->r_end < r->r_start) {
223 			TAILQ_INSERT_AFTER(&rm->rm_list, s, r, r_link);
224 		} else {
225 			TAILQ_INSERT_BEFORE(s, r, r_link);
226 		}
227 	}
228 
229 	mtx_unlock(rm->rm_mtx);
230 	return 0;
231 }
232 
233 int
234 rman_init_from_resource(struct rman *rm, struct resource *r)
235 {
236 	int rv;
237 
238 	if ((rv = rman_init(rm)) != 0)
239 		return (rv);
240 	return (rman_manage_region(rm, r->__r_i->r_start, r->__r_i->r_end));
241 }
242 
243 int
244 rman_fini(struct rman *rm)
245 {
246 	struct resource_i *r;
247 
248 	mtx_lock(rm->rm_mtx);
249 	TAILQ_FOREACH(r, &rm->rm_list, r_link) {
250 		if (r->r_flags & RF_ALLOCATED) {
251 			mtx_unlock(rm->rm_mtx);
252 			return EBUSY;
253 		}
254 	}
255 
256 	/*
257 	 * There really should only be one of these if we are in this
258 	 * state and the code is working properly, but it can't hurt.
259 	 */
260 	while (!TAILQ_EMPTY(&rm->rm_list)) {
261 		r = TAILQ_FIRST(&rm->rm_list);
262 		TAILQ_REMOVE(&rm->rm_list, r, r_link);
263 		free(r, M_RMAN);
264 	}
265 	mtx_unlock(rm->rm_mtx);
266 	mtx_lock(&rman_mtx);
267 	TAILQ_REMOVE(&rman_head, rm, rm_link);
268 	mtx_unlock(&rman_mtx);
269 	mtx_destroy(rm->rm_mtx);
270 	free(rm->rm_mtx, M_RMAN);
271 
272 	return 0;
273 }
274 
275 int
276 rman_first_free_region(struct rman *rm, u_long *start, u_long *end)
277 {
278 	struct resource_i *r;
279 
280 	mtx_lock(rm->rm_mtx);
281 	TAILQ_FOREACH(r, &rm->rm_list, r_link) {
282 		if (!(r->r_flags & RF_ALLOCATED)) {
283 			*start = r->r_start;
284 			*end = r->r_end;
285 			mtx_unlock(rm->rm_mtx);
286 			return (0);
287 		}
288 	}
289 	mtx_unlock(rm->rm_mtx);
290 	return (ENOENT);
291 }
292 
293 int
294 rman_last_free_region(struct rman *rm, u_long *start, u_long *end)
295 {
296 	struct resource_i *r;
297 
298 	mtx_lock(rm->rm_mtx);
299 	TAILQ_FOREACH_REVERSE(r, &rm->rm_list, resource_head, r_link) {
300 		if (!(r->r_flags & RF_ALLOCATED)) {
301 			*start = r->r_start;
302 			*end = r->r_end;
303 			mtx_unlock(rm->rm_mtx);
304 			return (0);
305 		}
306 	}
307 	mtx_unlock(rm->rm_mtx);
308 	return (ENOENT);
309 }
310 
311 /* Shrink or extend one or both ends of an allocated resource. */
312 int
313 rman_adjust_resource(struct resource *rr, u_long start, u_long end)
314 {
315 	struct	resource_i *r, *s, *t, *new;
316 	struct	rman *rm;
317 
318 	/* Not supported for shared resources. */
319 	r = rr->__r_i;
320 	if (r->r_flags & (RF_TIMESHARE | RF_SHAREABLE))
321 		return (EINVAL);
322 
323 	/*
324 	 * This does not support wholesale moving of a resource.  At
325 	 * least part of the desired new range must overlap with the
326 	 * existing resource.
327 	 */
328 	if (end < r->r_start || r->r_end < start)
329 		return (EINVAL);
330 
331 	/*
332 	 * Find the two resource regions immediately adjacent to the
333 	 * allocated resource.
334 	 */
335 	rm = r->r_rm;
336 	mtx_lock(rm->rm_mtx);
337 #ifdef INVARIANTS
338 	TAILQ_FOREACH(s, &rm->rm_list, r_link) {
339 		if (s == r)
340 			break;
341 	}
342 	if (s == NULL)
343 		panic("resource not in list");
344 #endif
345 	s = TAILQ_PREV(r, resource_head, r_link);
346 	t = TAILQ_NEXT(r, r_link);
347 	KASSERT(s == NULL || s->r_end + 1 == r->r_start,
348 	    ("prev resource mismatch"));
349 	KASSERT(t == NULL || r->r_end + 1 == t->r_start,
350 	    ("next resource mismatch"));
351 
352 	/*
353 	 * See if the changes are permitted.  Shrinking is always allowed,
354 	 * but growing requires sufficient room in the adjacent region.
355 	 */
356 	if (start < r->r_start && (s == NULL || (s->r_flags & RF_ALLOCATED) ||
357 	    s->r_start > start)) {
358 		mtx_unlock(rm->rm_mtx);
359 		return (EBUSY);
360 	}
361 	if (end > r->r_end && (t == NULL || (t->r_flags & RF_ALLOCATED) ||
362 	    t->r_end < end)) {
363 		mtx_unlock(rm->rm_mtx);
364 		return (EBUSY);
365 	}
366 
367 	/*
368 	 * While holding the lock, grow either end of the resource as
369 	 * needed and shrink either end if the shrinking does not require
370 	 * allocating a new resource.  We can safely drop the lock and then
371 	 * insert a new range to handle the shrinking case afterwards.
372 	 */
373 	if (start < r->r_start ||
374 	    (start > r->r_start && s != NULL && !(s->r_flags & RF_ALLOCATED))) {
375 		KASSERT(s->r_flags == 0, ("prev is busy"));
376 		r->r_start = start;
377 		if (s->r_start == start) {
378 			TAILQ_REMOVE(&rm->rm_list, s, r_link);
379 			free(s, M_RMAN);
380 		} else
381 			s->r_end = start - 1;
382 	}
383 	if (end > r->r_end ||
384 	    (end < r->r_end && t != NULL && !(t->r_flags & RF_ALLOCATED))) {
385 		KASSERT(t->r_flags == 0, ("next is busy"));
386 		r->r_end = end;
387 		if (t->r_end == end) {
388 			TAILQ_REMOVE(&rm->rm_list, t, r_link);
389 			free(t, M_RMAN);
390 		} else
391 			t->r_start = end + 1;
392 	}
393 	mtx_unlock(rm->rm_mtx);
394 
395 	/*
396 	 * Handle the shrinking cases that require allocating a new
397 	 * resource to hold the newly-free region.  We have to recheck
398 	 * if we still need this new region after acquiring the lock.
399 	 */
400 	if (start > r->r_start) {
401 		new = int_alloc_resource(M_WAITOK);
402 		new->r_start = r->r_start;
403 		new->r_end = start - 1;
404 		new->r_rm = rm;
405 		mtx_lock(rm->rm_mtx);
406 		r->r_start = start;
407 		s = TAILQ_PREV(r, resource_head, r_link);
408 		if (s != NULL && !(s->r_flags & RF_ALLOCATED)) {
409 			s->r_end = start - 1;
410 			free(new, M_RMAN);
411 		} else
412 			TAILQ_INSERT_BEFORE(r, new, r_link);
413 		mtx_unlock(rm->rm_mtx);
414 	}
415 	if (end < r->r_end) {
416 		new = int_alloc_resource(M_WAITOK);
417 		new->r_start = end + 1;
418 		new->r_end = r->r_end;
419 		new->r_rm = rm;
420 		mtx_lock(rm->rm_mtx);
421 		r->r_end = end;
422 		t = TAILQ_NEXT(r, r_link);
423 		if (t != NULL && !(t->r_flags & RF_ALLOCATED)) {
424 			t->r_start = end + 1;
425 			free(new, M_RMAN);
426 		} else
427 			TAILQ_INSERT_AFTER(&rm->rm_list, r, new, r_link);
428 		mtx_unlock(rm->rm_mtx);
429 	}
430 	return (0);
431 }
432 
433 struct resource *
434 rman_reserve_resource_bound(struct rman *rm, u_long start, u_long end,
435 		      u_long count, u_long bound,  u_int flags,
436 		      struct device *dev)
437 {
438 	u_int	want_activate;
439 	struct	resource_i *r, *s, *rv;
440 	u_long	rstart, rend, amask, bmask;
441 
442 	rv = NULL;
443 
444 	DPRINTF(("rman_reserve_resource_bound: <%s> request: [%#lx, %#lx], "
445 	       "length %#lx, flags %u, device %s\n", rm->rm_descr, start, end,
446 	       count, flags,
447 	       dev == NULL ? "<null>" : device_get_nameunit(dev)));
448 	want_activate = (flags & RF_ACTIVE);
449 	flags &= ~RF_ACTIVE;
450 
451 	mtx_lock(rm->rm_mtx);
452 
453 	for (r = TAILQ_FIRST(&rm->rm_list);
454 	     r && r->r_end < start;
455 	     r = TAILQ_NEXT(r, r_link))
456 		;
457 
458 	if (r == NULL) {
459 		DPRINTF(("could not find a region\n"));
460 		goto out;
461 	}
462 
463 	amask = (1ul << RF_ALIGNMENT(flags)) - 1;
464 	/* If bound is 0, bmask will also be 0 */
465 	bmask = ~(bound - 1);
466 	/*
467 	 * First try to find an acceptable totally-unshared region.
468 	 */
469 	for (s = r; s; s = TAILQ_NEXT(s, r_link)) {
470 		DPRINTF(("considering [%#lx, %#lx]\n", s->r_start, s->r_end));
471 		if (s->r_start + count - 1 > end) {
472 			DPRINTF(("s->r_start (%#lx) + count - 1> end (%#lx)\n",
473 			    s->r_start, end));
474 			break;
475 		}
476 		if (s->r_flags & RF_ALLOCATED) {
477 			DPRINTF(("region is allocated\n"));
478 			continue;
479 		}
480 		rstart = ulmax(s->r_start, start);
481 		/*
482 		 * Try to find a region by adjusting to boundary and alignment
483 		 * until both conditions are satisfied. This is not an optimal
484 		 * algorithm, but in most cases it isn't really bad, either.
485 		 */
486 		do {
487 			rstart = (rstart + amask) & ~amask;
488 			if (((rstart ^ (rstart + count - 1)) & bmask) != 0)
489 				rstart += bound - (rstart & ~bmask);
490 		} while ((rstart & amask) != 0 && rstart < end &&
491 		    rstart < s->r_end);
492 		rend = ulmin(s->r_end, ulmax(rstart + count - 1, end));
493 		if (rstart > rend) {
494 			DPRINTF(("adjusted start exceeds end\n"));
495 			continue;
496 		}
497 		DPRINTF(("truncated region: [%#lx, %#lx]; size %#lx (requested %#lx)\n",
498 		       rstart, rend, (rend - rstart + 1), count));
499 
500 		if ((rend - rstart + 1) >= count) {
501 			DPRINTF(("candidate region: [%#lx, %#lx], size %#lx\n",
502 			       rstart, rend, (rend - rstart + 1)));
503 			if ((s->r_end - s->r_start + 1) == count) {
504 				DPRINTF(("candidate region is entire chunk\n"));
505 				rv = s;
506 				rv->r_flags |= RF_ALLOCATED | flags;
507 				rv->r_dev = dev;
508 				goto out;
509 			}
510 
511 			/*
512 			 * If s->r_start < rstart and
513 			 *    s->r_end > rstart + count - 1, then
514 			 * we need to split the region into three pieces
515 			 * (the middle one will get returned to the user).
516 			 * Otherwise, we are allocating at either the
517 			 * beginning or the end of s, so we only need to
518 			 * split it in two.  The first case requires
519 			 * two new allocations; the second requires but one.
520 			 */
521 			rv = int_alloc_resource(M_NOWAIT);
522 			if (rv == NULL)
523 				goto out;
524 			rv->r_start = rstart;
525 			rv->r_end = rstart + count - 1;
526 			rv->r_flags = flags | RF_ALLOCATED;
527 			rv->r_dev = dev;
528 			rv->r_rm = rm;
529 
530 			if (s->r_start < rv->r_start && s->r_end > rv->r_end) {
531 				DPRINTF(("splitting region in three parts: "
532 				       "[%#lx, %#lx]; [%#lx, %#lx]; [%#lx, %#lx]\n",
533 				       s->r_start, rv->r_start - 1,
534 				       rv->r_start, rv->r_end,
535 				       rv->r_end + 1, s->r_end));
536 				/*
537 				 * We are allocating in the middle.
538 				 */
539 				r = int_alloc_resource(M_NOWAIT);
540 				if (r == NULL) {
541 					free(rv, M_RMAN);
542 					rv = NULL;
543 					goto out;
544 				}
545 				r->r_start = rv->r_end + 1;
546 				r->r_end = s->r_end;
547 				r->r_flags = s->r_flags;
548 				r->r_rm = rm;
549 				s->r_end = rv->r_start - 1;
550 				TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
551 						     r_link);
552 				TAILQ_INSERT_AFTER(&rm->rm_list, rv, r,
553 						     r_link);
554 			} else if (s->r_start == rv->r_start) {
555 				DPRINTF(("allocating from the beginning\n"));
556 				/*
557 				 * We are allocating at the beginning.
558 				 */
559 				s->r_start = rv->r_end + 1;
560 				TAILQ_INSERT_BEFORE(s, rv, r_link);
561 			} else {
562 				DPRINTF(("allocating at the end\n"));
563 				/*
564 				 * We are allocating at the end.
565 				 */
566 				s->r_end = rv->r_start - 1;
567 				TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
568 						     r_link);
569 			}
570 			goto out;
571 		}
572 	}
573 
574 	/*
575 	 * Now find an acceptable shared region, if the client's requirements
576 	 * allow sharing.  By our implementation restriction, a candidate
577 	 * region must match exactly by both size and sharing type in order
578 	 * to be considered compatible with the client's request.  (The
579 	 * former restriction could probably be lifted without too much
580 	 * additional work, but this does not seem warranted.)
581 	 */
582 	DPRINTF(("no unshared regions found\n"));
583 	if ((flags & (RF_SHAREABLE | RF_TIMESHARE)) == 0)
584 		goto out;
585 
586 	for (s = r; s; s = TAILQ_NEXT(s, r_link)) {
587 		if (s->r_start > end)
588 			break;
589 		if ((s->r_flags & flags) != flags)
590 			continue;
591 		rstart = ulmax(s->r_start, start);
592 		rend = ulmin(s->r_end, ulmax(start + count - 1, end));
593 		if (s->r_start >= start && s->r_end <= end
594 		    && (s->r_end - s->r_start + 1) == count &&
595 		    (s->r_start & amask) == 0 &&
596 		    ((s->r_start ^ s->r_end) & bmask) == 0) {
597 			rv = int_alloc_resource(M_NOWAIT);
598 			if (rv == NULL)
599 				goto out;
600 			rv->r_start = s->r_start;
601 			rv->r_end = s->r_end;
602 			rv->r_flags = s->r_flags &
603 				(RF_ALLOCATED | RF_SHAREABLE | RF_TIMESHARE);
604 			rv->r_dev = dev;
605 			rv->r_rm = rm;
606 			if (s->r_sharehead == NULL) {
607 				s->r_sharehead = malloc(sizeof *s->r_sharehead,
608 						M_RMAN, M_NOWAIT | M_ZERO);
609 				if (s->r_sharehead == NULL) {
610 					free(rv, M_RMAN);
611 					rv = NULL;
612 					goto out;
613 				}
614 				LIST_INIT(s->r_sharehead);
615 				LIST_INSERT_HEAD(s->r_sharehead, s,
616 						 r_sharelink);
617 				s->r_flags |= RF_FIRSTSHARE;
618 			}
619 			rv->r_sharehead = s->r_sharehead;
620 			LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink);
621 			goto out;
622 		}
623 	}
624 
625 	/*
626 	 * We couldn't find anything.
627 	 */
628 out:
629 	/*
630 	 * If the user specified RF_ACTIVE in the initial flags,
631 	 * which is reflected in `want_activate', we attempt to atomically
632 	 * activate the resource.  If this fails, we release the resource
633 	 * and indicate overall failure.  (This behavior probably doesn't
634 	 * make sense for RF_TIMESHARE-type resources.)
635 	 */
636 	if (rv && want_activate) {
637 		struct resource_i *whohas;
638 		if (int_rman_activate_resource(rm, rv, &whohas)) {
639 			int_rman_release_resource(rm, rv);
640 			rv = NULL;
641 		}
642 	}
643 
644 	mtx_unlock(rm->rm_mtx);
645 	return (rv == NULL ? NULL : &rv->r_r);
646 }
647 
648 struct resource *
649 rman_reserve_resource(struct rman *rm, u_long start, u_long end, u_long count,
650 		      u_int flags, struct device *dev)
651 {
652 
653 	return (rman_reserve_resource_bound(rm, start, end, count, 0, flags,
654 	    dev));
655 }
656 
657 static int
658 int_rman_activate_resource(struct rman *rm, struct resource_i *r,
659 			   struct resource_i **whohas)
660 {
661 	struct resource_i *s;
662 	int ok;
663 
664 	/*
665 	 * If we are not timesharing, then there is nothing much to do.
666 	 * If we already have the resource, then there is nothing at all to do.
667 	 * If we are not on a sharing list with anybody else, then there is
668 	 * little to do.
669 	 */
670 	if ((r->r_flags & RF_TIMESHARE) == 0
671 	    || (r->r_flags & RF_ACTIVE) != 0
672 	    || r->r_sharehead == NULL) {
673 		r->r_flags |= RF_ACTIVE;
674 		return 0;
675 	}
676 
677 	ok = 1;
678 	for (s = LIST_FIRST(r->r_sharehead); s && ok;
679 	     s = LIST_NEXT(s, r_sharelink)) {
680 		if ((s->r_flags & RF_ACTIVE) != 0) {
681 			ok = 0;
682 			*whohas = s;
683 		}
684 	}
685 	if (ok) {
686 		r->r_flags |= RF_ACTIVE;
687 		return 0;
688 	}
689 	return EBUSY;
690 }
691 
692 int
693 rman_activate_resource(struct resource *re)
694 {
695 	int rv;
696 	struct resource_i *r, *whohas;
697 	struct rman *rm;
698 
699 	r = re->__r_i;
700 	rm = r->r_rm;
701 	mtx_lock(rm->rm_mtx);
702 	rv = int_rman_activate_resource(rm, r, &whohas);
703 	mtx_unlock(rm->rm_mtx);
704 	return rv;
705 }
706 
707 int
708 rman_await_resource(struct resource *re, int pri, int timo)
709 {
710 	int	rv;
711 	struct	resource_i *r, *whohas;
712 	struct	rman *rm;
713 
714 	r = re->__r_i;
715 	rm = r->r_rm;
716 	mtx_lock(rm->rm_mtx);
717 	for (;;) {
718 		rv = int_rman_activate_resource(rm, r, &whohas);
719 		if (rv != EBUSY)
720 			return (rv);	/* returns with mutex held */
721 
722 		if (r->r_sharehead == NULL)
723 			panic("rman_await_resource");
724 		whohas->r_flags |= RF_WANTED;
725 		rv = msleep(r->r_sharehead, rm->rm_mtx, pri, "rmwait", timo);
726 		if (rv) {
727 			mtx_unlock(rm->rm_mtx);
728 			return (rv);
729 		}
730 	}
731 }
732 
733 static int
734 int_rman_deactivate_resource(struct resource_i *r)
735 {
736 
737 	r->r_flags &= ~RF_ACTIVE;
738 	if (r->r_flags & RF_WANTED) {
739 		r->r_flags &= ~RF_WANTED;
740 		wakeup(r->r_sharehead);
741 	}
742 	return 0;
743 }
744 
745 int
746 rman_deactivate_resource(struct resource *r)
747 {
748 	struct	rman *rm;
749 
750 	rm = r->__r_i->r_rm;
751 	mtx_lock(rm->rm_mtx);
752 	int_rman_deactivate_resource(r->__r_i);
753 	mtx_unlock(rm->rm_mtx);
754 	return 0;
755 }
756 
757 static int
758 int_rman_release_resource(struct rman *rm, struct resource_i *r)
759 {
760 	struct	resource_i *s, *t;
761 
762 	if (r->r_flags & RF_ACTIVE)
763 		int_rman_deactivate_resource(r);
764 
765 	/*
766 	 * Check for a sharing list first.  If there is one, then we don't
767 	 * have to think as hard.
768 	 */
769 	if (r->r_sharehead) {
770 		/*
771 		 * If a sharing list exists, then we know there are at
772 		 * least two sharers.
773 		 *
774 		 * If we are in the main circleq, appoint someone else.
775 		 */
776 		LIST_REMOVE(r, r_sharelink);
777 		s = LIST_FIRST(r->r_sharehead);
778 		if (r->r_flags & RF_FIRSTSHARE) {
779 			s->r_flags |= RF_FIRSTSHARE;
780 			TAILQ_INSERT_BEFORE(r, s, r_link);
781 			TAILQ_REMOVE(&rm->rm_list, r, r_link);
782 		}
783 
784 		/*
785 		 * Make sure that the sharing list goes away completely
786 		 * if the resource is no longer being shared at all.
787 		 */
788 		if (LIST_NEXT(s, r_sharelink) == NULL) {
789 			free(s->r_sharehead, M_RMAN);
790 			s->r_sharehead = NULL;
791 			s->r_flags &= ~RF_FIRSTSHARE;
792 		}
793 		goto out;
794 	}
795 
796 	/*
797 	 * Look at the adjacent resources in the list and see if our
798 	 * segment can be merged with any of them.  If either of the
799 	 * resources is allocated or is not exactly adjacent then they
800 	 * cannot be merged with our segment.
801 	 */
802 	s = TAILQ_PREV(r, resource_head, r_link);
803 	if (s != NULL && ((s->r_flags & RF_ALLOCATED) != 0 ||
804 	    s->r_end + 1 != r->r_start))
805 		s = NULL;
806 	t = TAILQ_NEXT(r, r_link);
807 	if (t != NULL && ((t->r_flags & RF_ALLOCATED) != 0 ||
808 	    r->r_end + 1 != t->r_start))
809 		t = NULL;
810 
811 	if (s != NULL && t != NULL) {
812 		/*
813 		 * Merge all three segments.
814 		 */
815 		s->r_end = t->r_end;
816 		TAILQ_REMOVE(&rm->rm_list, r, r_link);
817 		TAILQ_REMOVE(&rm->rm_list, t, r_link);
818 		free(t, M_RMAN);
819 	} else if (s != NULL) {
820 		/*
821 		 * Merge previous segment with ours.
822 		 */
823 		s->r_end = r->r_end;
824 		TAILQ_REMOVE(&rm->rm_list, r, r_link);
825 	} else if (t != NULL) {
826 		/*
827 		 * Merge next segment with ours.
828 		 */
829 		t->r_start = r->r_start;
830 		TAILQ_REMOVE(&rm->rm_list, r, r_link);
831 	} else {
832 		/*
833 		 * At this point, we know there is nothing we
834 		 * can potentially merge with, because on each
835 		 * side, there is either nothing there or what is
836 		 * there is still allocated.  In that case, we don't
837 		 * want to remove r from the list; we simply want to
838 		 * change it to an unallocated region and return
839 		 * without freeing anything.
840 		 */
841 		r->r_flags &= ~RF_ALLOCATED;
842 		return 0;
843 	}
844 
845 out:
846 	free(r, M_RMAN);
847 	return 0;
848 }
849 
850 int
851 rman_release_resource(struct resource *re)
852 {
853 	int	rv;
854 	struct	resource_i *r;
855 	struct	rman *rm;
856 
857 	r = re->__r_i;
858 	rm = r->r_rm;
859 	mtx_lock(rm->rm_mtx);
860 	rv = int_rman_release_resource(rm, r);
861 	mtx_unlock(rm->rm_mtx);
862 	return (rv);
863 }
864 
865 uint32_t
866 rman_make_alignment_flags(uint32_t size)
867 {
868 	int	i;
869 
870 	/*
871 	 * Find the hightest bit set, and add one if more than one bit
872 	 * set.  We're effectively computing the ceil(log2(size)) here.
873 	 */
874 	for (i = 31; i > 0; i--)
875 		if ((1 << i) & size)
876 			break;
877 	if (~(1 << i) & size)
878 		i++;
879 
880 	return(RF_ALIGNMENT_LOG2(i));
881 }
882 
883 void
884 rman_set_start(struct resource *r, u_long start)
885 {
886 	r->__r_i->r_start = start;
887 }
888 
889 u_long
890 rman_get_start(struct resource *r)
891 {
892 	return (r->__r_i->r_start);
893 }
894 
895 void
896 rman_set_end(struct resource *r, u_long end)
897 {
898 	r->__r_i->r_end = end;
899 }
900 
901 u_long
902 rman_get_end(struct resource *r)
903 {
904 	return (r->__r_i->r_end);
905 }
906 
907 u_long
908 rman_get_size(struct resource *r)
909 {
910 	return (r->__r_i->r_end - r->__r_i->r_start + 1);
911 }
912 
913 u_int
914 rman_get_flags(struct resource *r)
915 {
916 	return (r->__r_i->r_flags);
917 }
918 
919 void
920 rman_set_virtual(struct resource *r, void *v)
921 {
922 	r->__r_i->r_virtual = v;
923 }
924 
925 void *
926 rman_get_virtual(struct resource *r)
927 {
928 	return (r->__r_i->r_virtual);
929 }
930 
931 void
932 rman_set_bustag(struct resource *r, bus_space_tag_t t)
933 {
934 	r->r_bustag = t;
935 }
936 
937 bus_space_tag_t
938 rman_get_bustag(struct resource *r)
939 {
940 	return (r->r_bustag);
941 }
942 
943 void
944 rman_set_bushandle(struct resource *r, bus_space_handle_t h)
945 {
946 	r->r_bushandle = h;
947 }
948 
949 bus_space_handle_t
950 rman_get_bushandle(struct resource *r)
951 {
952 	return (r->r_bushandle);
953 }
954 
955 void
956 rman_set_rid(struct resource *r, int rid)
957 {
958 	r->__r_i->r_rid = rid;
959 }
960 
961 int
962 rman_get_rid(struct resource *r)
963 {
964 	return (r->__r_i->r_rid);
965 }
966 
967 void
968 rman_set_device(struct resource *r, struct device *dev)
969 {
970 	r->__r_i->r_dev = dev;
971 }
972 
973 struct device *
974 rman_get_device(struct resource *r)
975 {
976 	return (r->__r_i->r_dev);
977 }
978 
979 int
980 rman_is_region_manager(struct resource *r, struct rman *rm)
981 {
982 
983 	return (r->__r_i->r_rm == rm);
984 }
985 
986 /*
987  * Sysctl interface for scanning the resource lists.
988  *
989  * We take two input parameters; the index into the list of resource
990  * managers, and the resource offset into the list.
991  */
992 static int
993 sysctl_rman(SYSCTL_HANDLER_ARGS)
994 {
995 	int			*name = (int *)arg1;
996 	u_int			namelen = arg2;
997 	int			rman_idx, res_idx;
998 	struct rman		*rm;
999 	struct resource_i	*res;
1000 	struct resource_i	*sres;
1001 	struct u_rman		urm;
1002 	struct u_resource	ures;
1003 	int			error;
1004 
1005 	if (namelen != 3)
1006 		return (EINVAL);
1007 
1008 	if (bus_data_generation_check(name[0]))
1009 		return (EINVAL);
1010 	rman_idx = name[1];
1011 	res_idx = name[2];
1012 
1013 	/*
1014 	 * Find the indexed resource manager
1015 	 */
1016 	mtx_lock(&rman_mtx);
1017 	TAILQ_FOREACH(rm, &rman_head, rm_link) {
1018 		if (rman_idx-- == 0)
1019 			break;
1020 	}
1021 	mtx_unlock(&rman_mtx);
1022 	if (rm == NULL)
1023 		return (ENOENT);
1024 
1025 	/*
1026 	 * If the resource index is -1, we want details on the
1027 	 * resource manager.
1028 	 */
1029 	if (res_idx == -1) {
1030 		bzero(&urm, sizeof(urm));
1031 		urm.rm_handle = (uintptr_t)rm;
1032 		if (rm->rm_descr != NULL)
1033 			strlcpy(urm.rm_descr, rm->rm_descr, RM_TEXTLEN);
1034 		urm.rm_start = rm->rm_start;
1035 		urm.rm_size = rm->rm_end - rm->rm_start + 1;
1036 		urm.rm_type = rm->rm_type;
1037 
1038 		error = SYSCTL_OUT(req, &urm, sizeof(urm));
1039 		return (error);
1040 	}
1041 
1042 	/*
1043 	 * Find the indexed resource and return it.
1044 	 */
1045 	mtx_lock(rm->rm_mtx);
1046 	TAILQ_FOREACH(res, &rm->rm_list, r_link) {
1047 		if (res->r_sharehead != NULL) {
1048 			LIST_FOREACH(sres, res->r_sharehead, r_sharelink)
1049 				if (res_idx-- == 0) {
1050 					res = sres;
1051 					goto found;
1052 				}
1053 		}
1054 		else if (res_idx-- == 0)
1055 				goto found;
1056 	}
1057 	mtx_unlock(rm->rm_mtx);
1058 	return (ENOENT);
1059 
1060 found:
1061 	bzero(&ures, sizeof(ures));
1062 	ures.r_handle = (uintptr_t)res;
1063 	ures.r_parent = (uintptr_t)res->r_rm;
1064 	ures.r_device = (uintptr_t)res->r_dev;
1065 	if (res->r_dev != NULL) {
1066 		if (device_get_name(res->r_dev) != NULL) {
1067 			snprintf(ures.r_devname, RM_TEXTLEN,
1068 			    "%s%d",
1069 			    device_get_name(res->r_dev),
1070 			    device_get_unit(res->r_dev));
1071 		} else {
1072 			strlcpy(ures.r_devname, "nomatch",
1073 			    RM_TEXTLEN);
1074 		}
1075 	} else {
1076 		ures.r_devname[0] = '\0';
1077 	}
1078 	ures.r_start = res->r_start;
1079 	ures.r_size = res->r_end - res->r_start + 1;
1080 	ures.r_flags = res->r_flags;
1081 
1082 	mtx_unlock(rm->rm_mtx);
1083 	error = SYSCTL_OUT(req, &ures, sizeof(ures));
1084 	return (error);
1085 }
1086 
1087 SYSCTL_NODE(_hw_bus, OID_AUTO, rman, CTLFLAG_RD, sysctl_rman,
1088     "kernel resource manager");
1089 
1090 #ifdef DDB
1091 static void
1092 dump_rman_header(struct rman *rm)
1093 {
1094 
1095 	if (db_pager_quit)
1096 		return;
1097 	db_printf("rman %p: %s (0x%lx-0x%lx full range)\n",
1098 	    rm, rm->rm_descr, rm->rm_start, rm->rm_end);
1099 }
1100 
1101 static void
1102 dump_rman(struct rman *rm)
1103 {
1104 	struct resource_i *r;
1105 	const char *devname;
1106 
1107 	if (db_pager_quit)
1108 		return;
1109 	TAILQ_FOREACH(r, &rm->rm_list, r_link) {
1110 		if (r->r_dev != NULL) {
1111 			devname = device_get_nameunit(r->r_dev);
1112 			if (devname == NULL)
1113 				devname = "nomatch";
1114 		} else
1115 			devname = NULL;
1116 		db_printf("    0x%lx-0x%lx ", r->r_start, r->r_end);
1117 		if (devname != NULL)
1118 			db_printf("(%s)\n", devname);
1119 		else
1120 			db_printf("----\n");
1121 		if (db_pager_quit)
1122 			return;
1123 	}
1124 }
1125 
1126 DB_SHOW_COMMAND(rman, db_show_rman)
1127 {
1128 
1129 	if (have_addr) {
1130 		dump_rman_header((struct rman *)addr);
1131 		dump_rman((struct rman *)addr);
1132 	}
1133 }
1134 
1135 DB_SHOW_COMMAND(rmans, db_show_rmans)
1136 {
1137 	struct rman *rm;
1138 
1139 	TAILQ_FOREACH(rm, &rman_head, rm_link) {
1140 		dump_rman_header(rm);
1141 	}
1142 }
1143 
1144 DB_SHOW_ALL_COMMAND(rman, db_show_all_rman)
1145 {
1146 	struct rman *rm;
1147 
1148 	TAILQ_FOREACH(rm, &rman_head, rm_link) {
1149 		dump_rman_header(rm);
1150 		dump_rman(rm);
1151 	}
1152 }
1153 DB_SHOW_ALIAS(allrman, db_show_all_rman);
1154 #endif
1155