1 /*- 2 * Copyright 1998 Massachusetts Institute of Technology 3 * 4 * Permission to use, copy, modify, and distribute this software and 5 * its documentation for any purpose and without fee is hereby 6 * granted, provided that both the above copyright notice and this 7 * permission notice appear in all copies, that both the above 8 * copyright notice and this permission notice appear in all 9 * supporting documentation, and that the name of M.I.T. not be used 10 * in advertising or publicity pertaining to distribution of the 11 * software without specific, written prior permission. M.I.T. makes 12 * no representations about the suitability of this software for any 13 * purpose. It is provided "as is" without express or implied 14 * warranty. 15 * 16 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS 17 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE, 18 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT 20 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF 23 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 25 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 26 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 /* 31 * The kernel resource manager. This code is responsible for keeping track 32 * of hardware resources which are apportioned out to various drivers. 33 * It does not actually assign those resources, and it is not expected 34 * that end-device drivers will call into this code directly. Rather, 35 * the code which implements the buses that those devices are attached to, 36 * and the code which manages CPU resources, will call this code, and the 37 * end-device drivers will make upcalls to that code to actually perform 38 * the allocation. 39 * 40 * There are two sorts of resources managed by this code. The first is 41 * the more familiar array (RMAN_ARRAY) type; resources in this class 42 * consist of a sequence of individually-allocatable objects which have 43 * been numbered in some well-defined order. Most of the resources 44 * are of this type, as it is the most familiar. The second type is 45 * called a gauge (RMAN_GAUGE), and models fungible resources (i.e., 46 * resources in which each instance is indistinguishable from every 47 * other instance). The principal anticipated application of gauges 48 * is in the context of power consumption, where a bus may have a specific 49 * power budget which all attached devices share. RMAN_GAUGE is not 50 * implemented yet. 51 * 52 * For array resources, we make one simplifying assumption: two clients 53 * sharing the same resource must use the same range of indices. That 54 * is to say, sharing of overlapping-but-not-identical regions is not 55 * permitted. 56 */ 57 58 #include <sys/cdefs.h> 59 __FBSDID("$FreeBSD$"); 60 61 #include <sys/param.h> 62 #include <sys/systm.h> 63 #include <sys/kernel.h> 64 #include <sys/lock.h> 65 #include <sys/malloc.h> 66 #include <sys/mutex.h> 67 #include <sys/bus.h> /* XXX debugging */ 68 #include <machine/bus.h> 69 #include <sys/rman.h> 70 #include <sys/sysctl.h> 71 72 /* 73 * We use a linked list rather than a bitmap because we need to be able to 74 * represent potentially huge objects (like all of a processor's physical 75 * address space). That is also why the indices are defined to have type 76 * `unsigned long' -- that being the largest integral type in ISO C (1990). 77 * The 1999 version of C allows `long long'; we may need to switch to that 78 * at some point in the future, particularly if we want to support 36-bit 79 * addresses on IA32 hardware. 80 */ 81 struct resource_i { 82 struct resource r_r; 83 TAILQ_ENTRY(resource_i) r_link; 84 LIST_ENTRY(resource_i) r_sharelink; 85 LIST_HEAD(, resource_i) *r_sharehead; 86 u_long r_start; /* index of the first entry in this resource */ 87 u_long r_end; /* index of the last entry (inclusive) */ 88 u_int r_flags; 89 void *r_virtual; /* virtual address of this resource */ 90 struct device *r_dev; /* device which has allocated this resource */ 91 struct rman *r_rm; /* resource manager from whence this came */ 92 void *r_spare1; /* Spare pointer 1 */ 93 void *r_spare2; /* Spare pointer 2 */ 94 int r_rid; /* optional rid for this resource. */ 95 }; 96 97 int rman_debug = 0; 98 TUNABLE_INT("debug.rman_debug", &rman_debug); 99 SYSCTL_INT(_debug, OID_AUTO, rman_debug, CTLFLAG_RW, 100 &rman_debug, 0, "rman debug"); 101 102 #define DPRINTF(params) if (rman_debug) printf params 103 104 static MALLOC_DEFINE(M_RMAN, "rman", "Resource manager"); 105 106 struct rman_head rman_head; 107 static struct mtx rman_mtx; /* mutex to protect rman_head */ 108 static int int_rman_activate_resource(struct rman *rm, struct resource_i *r, 109 struct resource_i **whohas); 110 static int int_rman_deactivate_resource(struct resource_i *r); 111 static int int_rman_release_resource(struct rman *rm, struct resource_i *r); 112 113 static __inline struct resource_i * 114 int_alloc_resource(int malloc_flag) 115 { 116 struct resource_i *r; 117 118 r = malloc(sizeof *r, M_RMAN, malloc_flag | M_ZERO); 119 if (r != NULL) { 120 r->r_r.__r_i = r; 121 } 122 return (r); 123 } 124 125 /* 126 * XXX: puc.c is a big hack. 127 * XXX: it should be rewritten to act like a bridge and offer 128 * XXX: its own resource manager. 129 * XXX: until somebody has time, help it out with these two functions 130 */ 131 132 struct resource * 133 rman_secret_puc_alloc_resource(int malloc_flag) 134 { 135 struct resource_i *r; 136 137 r = int_alloc_resource(malloc_flag); 138 if (r) 139 return (&r->r_r); 140 return (NULL); 141 } 142 143 void 144 rman_secret_puc_free_resource(struct resource *r) 145 { 146 147 free(r->__r_i, M_RMAN); 148 } 149 150 int 151 rman_init(struct rman *rm) 152 { 153 static int once = 0; 154 155 if (once == 0) { 156 once = 1; 157 TAILQ_INIT(&rman_head); 158 mtx_init(&rman_mtx, "rman head", NULL, MTX_DEF); 159 } 160 161 if (rm->rm_type == RMAN_UNINIT) 162 panic("rman_init"); 163 if (rm->rm_type == RMAN_GAUGE) 164 panic("implement RMAN_GAUGE"); 165 166 TAILQ_INIT(&rm->rm_list); 167 rm->rm_mtx = malloc(sizeof *rm->rm_mtx, M_RMAN, M_NOWAIT | M_ZERO); 168 if (rm->rm_mtx == NULL) 169 return ENOMEM; 170 mtx_init(rm->rm_mtx, "rman", NULL, MTX_DEF); 171 172 mtx_lock(&rman_mtx); 173 TAILQ_INSERT_TAIL(&rman_head, rm, rm_link); 174 mtx_unlock(&rman_mtx); 175 return 0; 176 } 177 178 /* 179 * NB: this interface is not robust against programming errors which 180 * add multiple copies of the same region. 181 */ 182 int 183 rman_manage_region(struct rman *rm, u_long start, u_long end) 184 { 185 struct resource_i *r, *s; 186 187 DPRINTF(("rman_manage_region: <%s> request: start %#lx, end %#lx\n", 188 rm->rm_descr, start, end)); 189 r = int_alloc_resource(M_NOWAIT); 190 if (r == NULL) 191 return ENOMEM; 192 r->r_start = start; 193 r->r_end = end; 194 r->r_rm = rm; 195 196 mtx_lock(rm->rm_mtx); 197 for (s = TAILQ_FIRST(&rm->rm_list); 198 s && s->r_end < r->r_start; 199 s = TAILQ_NEXT(s, r_link)) 200 ; 201 202 if (s == NULL) { 203 TAILQ_INSERT_TAIL(&rm->rm_list, r, r_link); 204 } else { 205 TAILQ_INSERT_BEFORE(s, r, r_link); 206 } 207 208 mtx_unlock(rm->rm_mtx); 209 return 0; 210 } 211 212 int 213 rman_fini(struct rman *rm) 214 { 215 struct resource_i *r; 216 217 mtx_lock(rm->rm_mtx); 218 TAILQ_FOREACH(r, &rm->rm_list, r_link) { 219 if (r->r_flags & RF_ALLOCATED) { 220 mtx_unlock(rm->rm_mtx); 221 return EBUSY; 222 } 223 } 224 225 /* 226 * There really should only be one of these if we are in this 227 * state and the code is working properly, but it can't hurt. 228 */ 229 while (!TAILQ_EMPTY(&rm->rm_list)) { 230 r = TAILQ_FIRST(&rm->rm_list); 231 TAILQ_REMOVE(&rm->rm_list, r, r_link); 232 free(r, M_RMAN); 233 } 234 mtx_unlock(rm->rm_mtx); 235 mtx_lock(&rman_mtx); 236 TAILQ_REMOVE(&rman_head, rm, rm_link); 237 mtx_unlock(&rman_mtx); 238 mtx_destroy(rm->rm_mtx); 239 free(rm->rm_mtx, M_RMAN); 240 241 return 0; 242 } 243 244 struct resource * 245 rman_reserve_resource_bound(struct rman *rm, u_long start, u_long end, 246 u_long count, u_long bound, u_int flags, 247 struct device *dev) 248 { 249 u_int want_activate; 250 struct resource_i *r, *s, *rv; 251 u_long rstart, rend, amask, bmask; 252 253 rv = NULL; 254 255 DPRINTF(("rman_reserve_resource: <%s> request: [%#lx, %#lx], length " 256 "%#lx, flags %u, device %s\n", rm->rm_descr, start, end, count, 257 flags, dev == NULL ? "<null>" : device_get_nameunit(dev))); 258 want_activate = (flags & RF_ACTIVE); 259 flags &= ~RF_ACTIVE; 260 261 mtx_lock(rm->rm_mtx); 262 263 for (r = TAILQ_FIRST(&rm->rm_list); 264 r && r->r_end < start; 265 r = TAILQ_NEXT(r, r_link)) 266 ; 267 268 if (r == NULL) { 269 DPRINTF(("could not find a region\n")); 270 goto out; 271 } 272 273 amask = (1ul << RF_ALIGNMENT(flags)) - 1; 274 /* If bound is 0, bmask will also be 0 */ 275 bmask = ~(bound - 1); 276 /* 277 * First try to find an acceptable totally-unshared region. 278 */ 279 for (s = r; s; s = TAILQ_NEXT(s, r_link)) { 280 DPRINTF(("considering [%#lx, %#lx]\n", s->r_start, s->r_end)); 281 if (s->r_start + count - 1 > end) { 282 DPRINTF(("s->r_start (%#lx) + count - 1> end (%#lx)\n", 283 s->r_start, end)); 284 break; 285 } 286 if (s->r_flags & RF_ALLOCATED) { 287 DPRINTF(("region is allocated\n")); 288 continue; 289 } 290 rstart = ulmax(s->r_start, start); 291 /* 292 * Try to find a region by adjusting to boundary and alignment 293 * until both conditions are satisfied. This is not an optimal 294 * algorithm, but in most cases it isn't really bad, either. 295 */ 296 do { 297 rstart = (rstart + amask) & ~amask; 298 if (((rstart ^ (rstart + count - 1)) & bmask) != 0) 299 rstart += bound - (rstart & ~bmask); 300 } while ((rstart & amask) != 0 && rstart < end && 301 rstart < s->r_end); 302 rend = ulmin(s->r_end, ulmax(rstart + count - 1, end)); 303 if (rstart > rend) { 304 DPRINTF(("adjusted start exceeds end\n")); 305 continue; 306 } 307 DPRINTF(("truncated region: [%#lx, %#lx]; size %#lx (requested %#lx)\n", 308 rstart, rend, (rend - rstart + 1), count)); 309 310 if ((rend - rstart + 1) >= count) { 311 DPRINTF(("candidate region: [%#lx, %#lx], size %#lx\n", 312 rstart, rend, (rend - rstart + 1))); 313 if ((s->r_end - s->r_start + 1) == count) { 314 DPRINTF(("candidate region is entire chunk\n")); 315 rv = s; 316 rv->r_flags |= RF_ALLOCATED | flags; 317 rv->r_dev = dev; 318 goto out; 319 } 320 321 /* 322 * If s->r_start < rstart and 323 * s->r_end > rstart + count - 1, then 324 * we need to split the region into three pieces 325 * (the middle one will get returned to the user). 326 * Otherwise, we are allocating at either the 327 * beginning or the end of s, so we only need to 328 * split it in two. The first case requires 329 * two new allocations; the second requires but one. 330 */ 331 rv = int_alloc_resource(M_NOWAIT); 332 if (rv == NULL) 333 goto out; 334 rv->r_start = rstart; 335 rv->r_end = rstart + count - 1; 336 rv->r_flags = flags | RF_ALLOCATED; 337 rv->r_dev = dev; 338 rv->r_rm = rm; 339 340 if (s->r_start < rv->r_start && s->r_end > rv->r_end) { 341 DPRINTF(("splitting region in three parts: " 342 "[%#lx, %#lx]; [%#lx, %#lx]; [%#lx, %#lx]\n", 343 s->r_start, rv->r_start - 1, 344 rv->r_start, rv->r_end, 345 rv->r_end + 1, s->r_end)); 346 /* 347 * We are allocating in the middle. 348 */ 349 r = int_alloc_resource(M_NOWAIT); 350 if (r == NULL) { 351 free(rv, M_RMAN); 352 rv = NULL; 353 goto out; 354 } 355 r->r_start = rv->r_end + 1; 356 r->r_end = s->r_end; 357 r->r_flags = s->r_flags; 358 r->r_rm = rm; 359 s->r_end = rv->r_start - 1; 360 TAILQ_INSERT_AFTER(&rm->rm_list, s, rv, 361 r_link); 362 TAILQ_INSERT_AFTER(&rm->rm_list, rv, r, 363 r_link); 364 } else if (s->r_start == rv->r_start) { 365 DPRINTF(("allocating from the beginning\n")); 366 /* 367 * We are allocating at the beginning. 368 */ 369 s->r_start = rv->r_end + 1; 370 TAILQ_INSERT_BEFORE(s, rv, r_link); 371 } else { 372 DPRINTF(("allocating at the end\n")); 373 /* 374 * We are allocating at the end. 375 */ 376 s->r_end = rv->r_start - 1; 377 TAILQ_INSERT_AFTER(&rm->rm_list, s, rv, 378 r_link); 379 } 380 goto out; 381 } 382 } 383 384 /* 385 * Now find an acceptable shared region, if the client's requirements 386 * allow sharing. By our implementation restriction, a candidate 387 * region must match exactly by both size and sharing type in order 388 * to be considered compatible with the client's request. (The 389 * former restriction could probably be lifted without too much 390 * additional work, but this does not seem warranted.) 391 */ 392 DPRINTF(("no unshared regions found\n")); 393 if ((flags & (RF_SHAREABLE | RF_TIMESHARE)) == 0) 394 goto out; 395 396 for (s = r; s; s = TAILQ_NEXT(s, r_link)) { 397 if (s->r_start > end) 398 break; 399 if ((s->r_flags & flags) != flags) 400 continue; 401 rstart = ulmax(s->r_start, start); 402 rend = ulmin(s->r_end, ulmax(start + count - 1, end)); 403 if (s->r_start >= start && s->r_end <= end 404 && (s->r_end - s->r_start + 1) == count && 405 (s->r_start & amask) == 0 && 406 ((s->r_start ^ s->r_end) & bmask) == 0) { 407 rv = int_alloc_resource(M_NOWAIT); 408 if (rv == NULL) 409 goto out; 410 rv->r_start = s->r_start; 411 rv->r_end = s->r_end; 412 rv->r_flags = s->r_flags & 413 (RF_ALLOCATED | RF_SHAREABLE | RF_TIMESHARE); 414 rv->r_dev = dev; 415 rv->r_rm = rm; 416 if (s->r_sharehead == NULL) { 417 s->r_sharehead = malloc(sizeof *s->r_sharehead, 418 M_RMAN, M_NOWAIT | M_ZERO); 419 if (s->r_sharehead == NULL) { 420 free(rv, M_RMAN); 421 rv = NULL; 422 goto out; 423 } 424 LIST_INIT(s->r_sharehead); 425 LIST_INSERT_HEAD(s->r_sharehead, s, 426 r_sharelink); 427 s->r_flags |= RF_FIRSTSHARE; 428 } 429 rv->r_sharehead = s->r_sharehead; 430 LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink); 431 goto out; 432 } 433 } 434 435 /* 436 * We couldn't find anything. 437 */ 438 out: 439 /* 440 * If the user specified RF_ACTIVE in the initial flags, 441 * which is reflected in `want_activate', we attempt to atomically 442 * activate the resource. If this fails, we release the resource 443 * and indicate overall failure. (This behavior probably doesn't 444 * make sense for RF_TIMESHARE-type resources.) 445 */ 446 if (rv && want_activate) { 447 struct resource_i *whohas; 448 if (int_rman_activate_resource(rm, rv, &whohas)) { 449 int_rman_release_resource(rm, rv); 450 rv = NULL; 451 } 452 } 453 454 mtx_unlock(rm->rm_mtx); 455 return (rv == NULL ? NULL : &rv->r_r); 456 } 457 458 struct resource * 459 rman_reserve_resource(struct rman *rm, u_long start, u_long end, u_long count, 460 u_int flags, struct device *dev) 461 { 462 463 return (rman_reserve_resource_bound(rm, start, end, count, 0, flags, 464 dev)); 465 } 466 467 static int 468 int_rman_activate_resource(struct rman *rm, struct resource_i *r, 469 struct resource_i **whohas) 470 { 471 struct resource_i *s; 472 int ok; 473 474 /* 475 * If we are not timesharing, then there is nothing much to do. 476 * If we already have the resource, then there is nothing at all to do. 477 * If we are not on a sharing list with anybody else, then there is 478 * little to do. 479 */ 480 if ((r->r_flags & RF_TIMESHARE) == 0 481 || (r->r_flags & RF_ACTIVE) != 0 482 || r->r_sharehead == NULL) { 483 r->r_flags |= RF_ACTIVE; 484 return 0; 485 } 486 487 ok = 1; 488 for (s = LIST_FIRST(r->r_sharehead); s && ok; 489 s = LIST_NEXT(s, r_sharelink)) { 490 if ((s->r_flags & RF_ACTIVE) != 0) { 491 ok = 0; 492 *whohas = s; 493 } 494 } 495 if (ok) { 496 r->r_flags |= RF_ACTIVE; 497 return 0; 498 } 499 return EBUSY; 500 } 501 502 int 503 rman_activate_resource(struct resource *re) 504 { 505 int rv; 506 struct resource_i *r, *whohas; 507 struct rman *rm; 508 509 r = re->__r_i; 510 rm = r->r_rm; 511 mtx_lock(rm->rm_mtx); 512 rv = int_rman_activate_resource(rm, r, &whohas); 513 mtx_unlock(rm->rm_mtx); 514 return rv; 515 } 516 517 int 518 rman_await_resource(struct resource *re, int pri, int timo) 519 { 520 int rv; 521 struct resource_i *r, *whohas; 522 struct rman *rm; 523 524 r = re->__r_i; 525 rm = r->r_rm; 526 mtx_lock(rm->rm_mtx); 527 for (;;) { 528 rv = int_rman_activate_resource(rm, r, &whohas); 529 if (rv != EBUSY) 530 return (rv); /* returns with mutex held */ 531 532 if (r->r_sharehead == NULL) 533 panic("rman_await_resource"); 534 whohas->r_flags |= RF_WANTED; 535 rv = msleep(r->r_sharehead, rm->rm_mtx, pri, "rmwait", timo); 536 if (rv) { 537 mtx_unlock(rm->rm_mtx); 538 return (rv); 539 } 540 } 541 } 542 543 static int 544 int_rman_deactivate_resource(struct resource_i *r) 545 { 546 547 r->r_flags &= ~RF_ACTIVE; 548 if (r->r_flags & RF_WANTED) { 549 r->r_flags &= ~RF_WANTED; 550 wakeup(r->r_sharehead); 551 } 552 return 0; 553 } 554 555 int 556 rman_deactivate_resource(struct resource *r) 557 { 558 struct rman *rm; 559 560 rm = r->__r_i->r_rm; 561 mtx_lock(rm->rm_mtx); 562 int_rman_deactivate_resource(r->__r_i); 563 mtx_unlock(rm->rm_mtx); 564 return 0; 565 } 566 567 static int 568 int_rman_release_resource(struct rman *rm, struct resource_i *r) 569 { 570 struct resource_i *s, *t; 571 572 if (r->r_flags & RF_ACTIVE) 573 int_rman_deactivate_resource(r); 574 575 /* 576 * Check for a sharing list first. If there is one, then we don't 577 * have to think as hard. 578 */ 579 if (r->r_sharehead) { 580 /* 581 * If a sharing list exists, then we know there are at 582 * least two sharers. 583 * 584 * If we are in the main circleq, appoint someone else. 585 */ 586 LIST_REMOVE(r, r_sharelink); 587 s = LIST_FIRST(r->r_sharehead); 588 if (r->r_flags & RF_FIRSTSHARE) { 589 s->r_flags |= RF_FIRSTSHARE; 590 TAILQ_INSERT_BEFORE(r, s, r_link); 591 TAILQ_REMOVE(&rm->rm_list, r, r_link); 592 } 593 594 /* 595 * Make sure that the sharing list goes away completely 596 * if the resource is no longer being shared at all. 597 */ 598 if (LIST_NEXT(s, r_sharelink) == NULL) { 599 free(s->r_sharehead, M_RMAN); 600 s->r_sharehead = NULL; 601 s->r_flags &= ~RF_FIRSTSHARE; 602 } 603 goto out; 604 } 605 606 /* 607 * Look at the adjacent resources in the list and see if our 608 * segment can be merged with any of them. If either of the 609 * resources is allocated or is not exactly adjacent then they 610 * cannot be merged with our segment. 611 */ 612 s = TAILQ_PREV(r, resource_head, r_link); 613 if (s != NULL && ((s->r_flags & RF_ALLOCATED) != 0 || 614 s->r_end + 1 != r->r_start)) 615 s = NULL; 616 t = TAILQ_NEXT(r, r_link); 617 if (t != NULL && ((t->r_flags & RF_ALLOCATED) != 0 || 618 r->r_end + 1 != t->r_start)) 619 t = NULL; 620 621 if (s != NULL && t != NULL) { 622 /* 623 * Merge all three segments. 624 */ 625 s->r_end = t->r_end; 626 TAILQ_REMOVE(&rm->rm_list, r, r_link); 627 TAILQ_REMOVE(&rm->rm_list, t, r_link); 628 free(t, M_RMAN); 629 } else if (s != NULL) { 630 /* 631 * Merge previous segment with ours. 632 */ 633 s->r_end = r->r_end; 634 TAILQ_REMOVE(&rm->rm_list, r, r_link); 635 } else if (t != NULL) { 636 /* 637 * Merge next segment with ours. 638 */ 639 t->r_start = r->r_start; 640 TAILQ_REMOVE(&rm->rm_list, r, r_link); 641 } else { 642 /* 643 * At this point, we know there is nothing we 644 * can potentially merge with, because on each 645 * side, there is either nothing there or what is 646 * there is still allocated. In that case, we don't 647 * want to remove r from the list; we simply want to 648 * change it to an unallocated region and return 649 * without freeing anything. 650 */ 651 r->r_flags &= ~RF_ALLOCATED; 652 return 0; 653 } 654 655 out: 656 free(r, M_RMAN); 657 return 0; 658 } 659 660 int 661 rman_release_resource(struct resource *re) 662 { 663 int rv; 664 struct resource_i *r; 665 struct rman *rm; 666 667 r = re->__r_i; 668 rm = r->r_rm; 669 mtx_lock(rm->rm_mtx); 670 rv = int_rman_release_resource(rm, r); 671 mtx_unlock(rm->rm_mtx); 672 return (rv); 673 } 674 675 uint32_t 676 rman_make_alignment_flags(uint32_t size) 677 { 678 int i; 679 680 /* 681 * Find the hightest bit set, and add one if more than one bit 682 * set. We're effectively computing the ceil(log2(size)) here. 683 */ 684 for (i = 31; i > 0; i--) 685 if ((1 << i) & size) 686 break; 687 if (~(1 << i) & size) 688 i++; 689 690 return(RF_ALIGNMENT_LOG2(i)); 691 } 692 693 u_long 694 rman_get_start(struct resource *r) 695 { 696 return (r->__r_i->r_start); 697 } 698 699 u_long 700 rman_get_end(struct resource *r) 701 { 702 return (r->__r_i->r_end); 703 } 704 705 u_long 706 rman_get_size(struct resource *r) 707 { 708 return (r->__r_i->r_end - r->__r_i->r_start + 1); 709 } 710 711 u_int 712 rman_get_flags(struct resource *r) 713 { 714 return (r->__r_i->r_flags); 715 } 716 717 void 718 rman_set_virtual(struct resource *r, void *v) 719 { 720 r->__r_i->r_virtual = v; 721 } 722 723 void * 724 rman_get_virtual(struct resource *r) 725 { 726 return (r->__r_i->r_virtual); 727 } 728 729 void 730 rman_set_bustag(struct resource *r, bus_space_tag_t t) 731 { 732 r->r_bustag = t; 733 } 734 735 bus_space_tag_t 736 rman_get_bustag(struct resource *r) 737 { 738 return (r->r_bustag); 739 } 740 741 void 742 rman_set_bushandle(struct resource *r, bus_space_handle_t h) 743 { 744 r->r_bushandle = h; 745 } 746 747 bus_space_handle_t 748 rman_get_bushandle(struct resource *r) 749 { 750 return (r->r_bushandle); 751 } 752 753 void 754 rman_set_rid(struct resource *r, int rid) 755 { 756 r->__r_i->r_rid = rid; 757 } 758 759 void 760 rman_set_start(struct resource *r, u_long start) 761 { 762 r->__r_i->r_start = start; 763 } 764 765 void 766 rman_set_end(struct resource *r, u_long end) 767 { 768 r->__r_i->r_end = end; 769 } 770 771 int 772 rman_get_rid(struct resource *r) 773 { 774 return (r->__r_i->r_rid); 775 } 776 777 struct device * 778 rman_get_device(struct resource *r) 779 { 780 return (r->__r_i->r_dev); 781 } 782 783 void 784 rman_set_device(struct resource *r, struct device *dev) 785 { 786 r->__r_i->r_dev = dev; 787 } 788 789 int 790 rman_is_region_manager(struct resource *r, struct rman *rm) 791 { 792 793 return (r->__r_i->r_rm == rm); 794 } 795 796 /* 797 * Sysctl interface for scanning the resource lists. 798 * 799 * We take two input parameters; the index into the list of resource 800 * managers, and the resource offset into the list. 801 */ 802 static int 803 sysctl_rman(SYSCTL_HANDLER_ARGS) 804 { 805 int *name = (int *)arg1; 806 u_int namelen = arg2; 807 int rman_idx, res_idx; 808 struct rman *rm; 809 struct resource_i *res; 810 struct u_rman urm; 811 struct u_resource ures; 812 int error; 813 814 if (namelen != 3) 815 return (EINVAL); 816 817 if (bus_data_generation_check(name[0])) 818 return (EINVAL); 819 rman_idx = name[1]; 820 res_idx = name[2]; 821 822 /* 823 * Find the indexed resource manager 824 */ 825 mtx_lock(&rman_mtx); 826 TAILQ_FOREACH(rm, &rman_head, rm_link) { 827 if (rman_idx-- == 0) 828 break; 829 } 830 mtx_unlock(&rman_mtx); 831 if (rm == NULL) 832 return (ENOENT); 833 834 /* 835 * If the resource index is -1, we want details on the 836 * resource manager. 837 */ 838 if (res_idx == -1) { 839 bzero(&urm, sizeof(urm)); 840 urm.rm_handle = (uintptr_t)rm; 841 strlcpy(urm.rm_descr, rm->rm_descr, RM_TEXTLEN); 842 urm.rm_start = rm->rm_start; 843 urm.rm_size = rm->rm_end - rm->rm_start + 1; 844 urm.rm_type = rm->rm_type; 845 846 error = SYSCTL_OUT(req, &urm, sizeof(urm)); 847 return (error); 848 } 849 850 /* 851 * Find the indexed resource and return it. 852 */ 853 mtx_lock(rm->rm_mtx); 854 TAILQ_FOREACH(res, &rm->rm_list, r_link) { 855 if (res_idx-- == 0) { 856 bzero(&ures, sizeof(ures)); 857 ures.r_handle = (uintptr_t)res; 858 ures.r_parent = (uintptr_t)res->r_rm; 859 ures.r_device = (uintptr_t)res->r_dev; 860 if (res->r_dev != NULL) { 861 if (device_get_name(res->r_dev) != NULL) { 862 snprintf(ures.r_devname, RM_TEXTLEN, 863 "%s%d", 864 device_get_name(res->r_dev), 865 device_get_unit(res->r_dev)); 866 } else { 867 strlcpy(ures.r_devname, "nomatch", 868 RM_TEXTLEN); 869 } 870 } else { 871 ures.r_devname[0] = '\0'; 872 } 873 ures.r_start = res->r_start; 874 ures.r_size = res->r_end - res->r_start + 1; 875 ures.r_flags = res->r_flags; 876 877 mtx_unlock(rm->rm_mtx); 878 error = SYSCTL_OUT(req, &ures, sizeof(ures)); 879 return (error); 880 } 881 } 882 mtx_unlock(rm->rm_mtx); 883 return (ENOENT); 884 } 885 886 SYSCTL_NODE(_hw_bus, OID_AUTO, rman, CTLFLAG_RD, sysctl_rman, 887 "kernel resource manager"); 888