1 /*- 2 * Copyright 1998 Massachusetts Institute of Technology 3 * 4 * Permission to use, copy, modify, and distribute this software and 5 * its documentation for any purpose and without fee is hereby 6 * granted, provided that both the above copyright notice and this 7 * permission notice appear in all copies, that both the above 8 * copyright notice and this permission notice appear in all 9 * supporting documentation, and that the name of M.I.T. not be used 10 * in advertising or publicity pertaining to distribution of the 11 * software without specific, written prior permission. M.I.T. makes 12 * no representations about the suitability of this software for any 13 * purpose. It is provided "as is" without express or implied 14 * warranty. 15 * 16 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS 17 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE, 18 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT 20 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF 23 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 25 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 26 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 /* 31 * The kernel resource manager. This code is responsible for keeping track 32 * of hardware resources which are apportioned out to various drivers. 33 * It does not actually assign those resources, and it is not expected 34 * that end-device drivers will call into this code directly. Rather, 35 * the code which implements the buses that those devices are attached to, 36 * and the code which manages CPU resources, will call this code, and the 37 * end-device drivers will make upcalls to that code to actually perform 38 * the allocation. 39 * 40 * There are two sorts of resources managed by this code. The first is 41 * the more familiar array (RMAN_ARRAY) type; resources in this class 42 * consist of a sequence of individually-allocatable objects which have 43 * been numbered in some well-defined order. Most of the resources 44 * are of this type, as it is the most familiar. The second type is 45 * called a gauge (RMAN_GAUGE), and models fungible resources (i.e., 46 * resources in which each instance is indistinguishable from every 47 * other instance). The principal anticipated application of gauges 48 * is in the context of power consumption, where a bus may have a specific 49 * power budget which all attached devices share. RMAN_GAUGE is not 50 * implemented yet. 51 * 52 * For array resources, we make one simplifying assumption: two clients 53 * sharing the same resource must use the same range of indices. That 54 * is to say, sharing of overlapping-but-not-identical regions is not 55 * permitted. 56 */ 57 58 #include "opt_ddb.h" 59 60 #include <sys/cdefs.h> 61 __FBSDID("$FreeBSD$"); 62 63 #include <sys/param.h> 64 #include <sys/systm.h> 65 #include <sys/kernel.h> 66 #include <sys/limits.h> 67 #include <sys/lock.h> 68 #include <sys/malloc.h> 69 #include <sys/mutex.h> 70 #include <sys/bus.h> /* XXX debugging */ 71 #include <machine/bus.h> 72 #include <sys/rman.h> 73 #include <sys/sysctl.h> 74 75 #ifdef DDB 76 #include <ddb/ddb.h> 77 #endif 78 79 /* 80 * We use a linked list rather than a bitmap because we need to be able to 81 * represent potentially huge objects (like all of a processor's physical 82 * address space). That is also why the indices are defined to have type 83 * `unsigned long' -- that being the largest integral type in ISO C (1990). 84 * The 1999 version of C allows `long long'; we may need to switch to that 85 * at some point in the future, particularly if we want to support 36-bit 86 * addresses on IA32 hardware. 87 */ 88 struct resource_i { 89 struct resource r_r; 90 TAILQ_ENTRY(resource_i) r_link; 91 LIST_ENTRY(resource_i) r_sharelink; 92 LIST_HEAD(, resource_i) *r_sharehead; 93 u_long r_start; /* index of the first entry in this resource */ 94 u_long r_end; /* index of the last entry (inclusive) */ 95 u_int r_flags; 96 void *r_virtual; /* virtual address of this resource */ 97 struct device *r_dev; /* device which has allocated this resource */ 98 struct rman *r_rm; /* resource manager from whence this came */ 99 int r_rid; /* optional rid for this resource. */ 100 }; 101 102 static int rman_debug = 0; 103 TUNABLE_INT("debug.rman_debug", &rman_debug); 104 SYSCTL_INT(_debug, OID_AUTO, rman_debug, CTLFLAG_RW, 105 &rman_debug, 0, "rman debug"); 106 107 #define DPRINTF(params) if (rman_debug) printf params 108 109 static MALLOC_DEFINE(M_RMAN, "rman", "Resource manager"); 110 111 struct rman_head rman_head; 112 static struct mtx rman_mtx; /* mutex to protect rman_head */ 113 static int int_rman_activate_resource(struct rman *rm, struct resource_i *r, 114 struct resource_i **whohas); 115 static int int_rman_deactivate_resource(struct resource_i *r); 116 static int int_rman_release_resource(struct rman *rm, struct resource_i *r); 117 118 static __inline struct resource_i * 119 int_alloc_resource(int malloc_flag) 120 { 121 struct resource_i *r; 122 123 r = malloc(sizeof *r, M_RMAN, malloc_flag | M_ZERO); 124 if (r != NULL) { 125 r->r_r.__r_i = r; 126 } 127 return (r); 128 } 129 130 int 131 rman_init(struct rman *rm) 132 { 133 static int once = 0; 134 135 if (once == 0) { 136 once = 1; 137 TAILQ_INIT(&rman_head); 138 mtx_init(&rman_mtx, "rman head", NULL, MTX_DEF); 139 } 140 141 if (rm->rm_start == 0 && rm->rm_end == 0) 142 rm->rm_end = ~0ul; 143 if (rm->rm_type == RMAN_UNINIT) 144 panic("rman_init"); 145 if (rm->rm_type == RMAN_GAUGE) 146 panic("implement RMAN_GAUGE"); 147 148 TAILQ_INIT(&rm->rm_list); 149 rm->rm_mtx = malloc(sizeof *rm->rm_mtx, M_RMAN, M_NOWAIT | M_ZERO); 150 if (rm->rm_mtx == NULL) 151 return ENOMEM; 152 mtx_init(rm->rm_mtx, "rman", NULL, MTX_DEF); 153 154 mtx_lock(&rman_mtx); 155 TAILQ_INSERT_TAIL(&rman_head, rm, rm_link); 156 mtx_unlock(&rman_mtx); 157 return 0; 158 } 159 160 int 161 rman_manage_region(struct rman *rm, u_long start, u_long end) 162 { 163 struct resource_i *r, *s, *t; 164 int rv = 0; 165 166 DPRINTF(("rman_manage_region: <%s> request: start %#lx, end %#lx\n", 167 rm->rm_descr, start, end)); 168 if (start < rm->rm_start || end > rm->rm_end) 169 return EINVAL; 170 r = int_alloc_resource(M_NOWAIT); 171 if (r == NULL) 172 return ENOMEM; 173 r->r_start = start; 174 r->r_end = end; 175 r->r_rm = rm; 176 177 mtx_lock(rm->rm_mtx); 178 179 /* Skip entries before us. */ 180 TAILQ_FOREACH(s, &rm->rm_list, r_link) { 181 if (s->r_end == ULONG_MAX) 182 break; 183 if (s->r_end + 1 >= r->r_start) 184 break; 185 } 186 187 /* If we ran off the end of the list, insert at the tail. */ 188 if (s == NULL) { 189 TAILQ_INSERT_TAIL(&rm->rm_list, r, r_link); 190 } else { 191 /* Check for any overlap with the current region. */ 192 if (r->r_start <= s->r_end && r->r_end >= s->r_start) { 193 rv = EBUSY; 194 goto out; 195 } 196 197 /* Check for any overlap with the next region. */ 198 t = TAILQ_NEXT(s, r_link); 199 if (t && r->r_start <= t->r_end && r->r_end >= t->r_start) { 200 rv = EBUSY; 201 goto out; 202 } 203 204 /* 205 * See if this region can be merged with the next region. If 206 * not, clear the pointer. 207 */ 208 if (t && (r->r_end + 1 != t->r_start || t->r_flags != 0)) 209 t = NULL; 210 211 /* See if we can merge with the current region. */ 212 if (s->r_end + 1 == r->r_start && s->r_flags == 0) { 213 /* Can we merge all 3 regions? */ 214 if (t != NULL) { 215 s->r_end = t->r_end; 216 TAILQ_REMOVE(&rm->rm_list, t, r_link); 217 free(r, M_RMAN); 218 free(t, M_RMAN); 219 } else { 220 s->r_end = r->r_end; 221 free(r, M_RMAN); 222 } 223 } else if (t != NULL) { 224 /* Can we merge with just the next region? */ 225 t->r_start = r->r_start; 226 free(r, M_RMAN); 227 } else if (s->r_end < r->r_start) { 228 TAILQ_INSERT_AFTER(&rm->rm_list, s, r, r_link); 229 } else { 230 TAILQ_INSERT_BEFORE(s, r, r_link); 231 } 232 } 233 out: 234 mtx_unlock(rm->rm_mtx); 235 return rv; 236 } 237 238 int 239 rman_init_from_resource(struct rman *rm, struct resource *r) 240 { 241 int rv; 242 243 if ((rv = rman_init(rm)) != 0) 244 return (rv); 245 return (rman_manage_region(rm, r->__r_i->r_start, r->__r_i->r_end)); 246 } 247 248 int 249 rman_fini(struct rman *rm) 250 { 251 struct resource_i *r; 252 253 mtx_lock(rm->rm_mtx); 254 TAILQ_FOREACH(r, &rm->rm_list, r_link) { 255 if (r->r_flags & RF_ALLOCATED) { 256 mtx_unlock(rm->rm_mtx); 257 return EBUSY; 258 } 259 } 260 261 /* 262 * There really should only be one of these if we are in this 263 * state and the code is working properly, but it can't hurt. 264 */ 265 while (!TAILQ_EMPTY(&rm->rm_list)) { 266 r = TAILQ_FIRST(&rm->rm_list); 267 TAILQ_REMOVE(&rm->rm_list, r, r_link); 268 free(r, M_RMAN); 269 } 270 mtx_unlock(rm->rm_mtx); 271 mtx_lock(&rman_mtx); 272 TAILQ_REMOVE(&rman_head, rm, rm_link); 273 mtx_unlock(&rman_mtx); 274 mtx_destroy(rm->rm_mtx); 275 free(rm->rm_mtx, M_RMAN); 276 277 return 0; 278 } 279 280 int 281 rman_first_free_region(struct rman *rm, u_long *start, u_long *end) 282 { 283 struct resource_i *r; 284 285 mtx_lock(rm->rm_mtx); 286 TAILQ_FOREACH(r, &rm->rm_list, r_link) { 287 if (!(r->r_flags & RF_ALLOCATED)) { 288 *start = r->r_start; 289 *end = r->r_end; 290 mtx_unlock(rm->rm_mtx); 291 return (0); 292 } 293 } 294 mtx_unlock(rm->rm_mtx); 295 return (ENOENT); 296 } 297 298 int 299 rman_last_free_region(struct rman *rm, u_long *start, u_long *end) 300 { 301 struct resource_i *r; 302 303 mtx_lock(rm->rm_mtx); 304 TAILQ_FOREACH_REVERSE(r, &rm->rm_list, resource_head, r_link) { 305 if (!(r->r_flags & RF_ALLOCATED)) { 306 *start = r->r_start; 307 *end = r->r_end; 308 mtx_unlock(rm->rm_mtx); 309 return (0); 310 } 311 } 312 mtx_unlock(rm->rm_mtx); 313 return (ENOENT); 314 } 315 316 /* Shrink or extend one or both ends of an allocated resource. */ 317 int 318 rman_adjust_resource(struct resource *rr, u_long start, u_long end) 319 { 320 struct resource_i *r, *s, *t, *new; 321 struct rman *rm; 322 323 /* Not supported for shared resources. */ 324 r = rr->__r_i; 325 if (r->r_flags & (RF_TIMESHARE | RF_SHAREABLE)) 326 return (EINVAL); 327 328 /* 329 * This does not support wholesale moving of a resource. At 330 * least part of the desired new range must overlap with the 331 * existing resource. 332 */ 333 if (end < r->r_start || r->r_end < start) 334 return (EINVAL); 335 336 /* 337 * Find the two resource regions immediately adjacent to the 338 * allocated resource. 339 */ 340 rm = r->r_rm; 341 mtx_lock(rm->rm_mtx); 342 #ifdef INVARIANTS 343 TAILQ_FOREACH(s, &rm->rm_list, r_link) { 344 if (s == r) 345 break; 346 } 347 if (s == NULL) 348 panic("resource not in list"); 349 #endif 350 s = TAILQ_PREV(r, resource_head, r_link); 351 t = TAILQ_NEXT(r, r_link); 352 KASSERT(s == NULL || s->r_end + 1 == r->r_start, 353 ("prev resource mismatch")); 354 KASSERT(t == NULL || r->r_end + 1 == t->r_start, 355 ("next resource mismatch")); 356 357 /* 358 * See if the changes are permitted. Shrinking is always allowed, 359 * but growing requires sufficient room in the adjacent region. 360 */ 361 if (start < r->r_start && (s == NULL || (s->r_flags & RF_ALLOCATED) || 362 s->r_start > start)) { 363 mtx_unlock(rm->rm_mtx); 364 return (EBUSY); 365 } 366 if (end > r->r_end && (t == NULL || (t->r_flags & RF_ALLOCATED) || 367 t->r_end < end)) { 368 mtx_unlock(rm->rm_mtx); 369 return (EBUSY); 370 } 371 372 /* 373 * While holding the lock, grow either end of the resource as 374 * needed and shrink either end if the shrinking does not require 375 * allocating a new resource. We can safely drop the lock and then 376 * insert a new range to handle the shrinking case afterwards. 377 */ 378 if (start < r->r_start || 379 (start > r->r_start && s != NULL && !(s->r_flags & RF_ALLOCATED))) { 380 KASSERT(s->r_flags == 0, ("prev is busy")); 381 r->r_start = start; 382 if (s->r_start == start) { 383 TAILQ_REMOVE(&rm->rm_list, s, r_link); 384 free(s, M_RMAN); 385 } else 386 s->r_end = start - 1; 387 } 388 if (end > r->r_end || 389 (end < r->r_end && t != NULL && !(t->r_flags & RF_ALLOCATED))) { 390 KASSERT(t->r_flags == 0, ("next is busy")); 391 r->r_end = end; 392 if (t->r_end == end) { 393 TAILQ_REMOVE(&rm->rm_list, t, r_link); 394 free(t, M_RMAN); 395 } else 396 t->r_start = end + 1; 397 } 398 mtx_unlock(rm->rm_mtx); 399 400 /* 401 * Handle the shrinking cases that require allocating a new 402 * resource to hold the newly-free region. We have to recheck 403 * if we still need this new region after acquiring the lock. 404 */ 405 if (start > r->r_start) { 406 new = int_alloc_resource(M_WAITOK); 407 new->r_start = r->r_start; 408 new->r_end = start - 1; 409 new->r_rm = rm; 410 mtx_lock(rm->rm_mtx); 411 r->r_start = start; 412 s = TAILQ_PREV(r, resource_head, r_link); 413 if (s != NULL && !(s->r_flags & RF_ALLOCATED)) { 414 s->r_end = start - 1; 415 free(new, M_RMAN); 416 } else 417 TAILQ_INSERT_BEFORE(r, new, r_link); 418 mtx_unlock(rm->rm_mtx); 419 } 420 if (end < r->r_end) { 421 new = int_alloc_resource(M_WAITOK); 422 new->r_start = end + 1; 423 new->r_end = r->r_end; 424 new->r_rm = rm; 425 mtx_lock(rm->rm_mtx); 426 r->r_end = end; 427 t = TAILQ_NEXT(r, r_link); 428 if (t != NULL && !(t->r_flags & RF_ALLOCATED)) { 429 t->r_start = end + 1; 430 free(new, M_RMAN); 431 } else 432 TAILQ_INSERT_AFTER(&rm->rm_list, r, new, r_link); 433 mtx_unlock(rm->rm_mtx); 434 } 435 return (0); 436 } 437 438 #define SHARE_TYPE(f) (f & (RF_SHAREABLE | RF_TIMESHARE | RF_PREFETCHABLE)) 439 440 struct resource * 441 rman_reserve_resource_bound(struct rman *rm, u_long start, u_long end, 442 u_long count, u_long bound, u_int flags, 443 struct device *dev) 444 { 445 u_int new_rflags; 446 struct resource_i *r, *s, *rv; 447 u_long rstart, rend, amask, bmask; 448 449 rv = NULL; 450 451 DPRINTF(("rman_reserve_resource_bound: <%s> request: [%#lx, %#lx], " 452 "length %#lx, flags %u, device %s\n", rm->rm_descr, start, end, 453 count, flags, 454 dev == NULL ? "<null>" : device_get_nameunit(dev))); 455 KASSERT((flags & (RF_WANTED | RF_FIRSTSHARE)) == 0, 456 ("invalid flags %#x", flags)); 457 new_rflags = (flags & ~(RF_ACTIVE | RF_WANTED | RF_FIRSTSHARE)) | 458 RF_ALLOCATED; 459 460 mtx_lock(rm->rm_mtx); 461 462 for (r = TAILQ_FIRST(&rm->rm_list); 463 r && r->r_end < start + count - 1; 464 r = TAILQ_NEXT(r, r_link)) 465 ; 466 467 if (r == NULL) { 468 DPRINTF(("could not find a region\n")); 469 goto out; 470 } 471 472 amask = (1ul << RF_ALIGNMENT(flags)) - 1; 473 KASSERT(start <= ULONG_MAX - amask, 474 ("start (%#lx) + amask (%#lx) would wrap around", start, amask)); 475 476 /* If bound is 0, bmask will also be 0 */ 477 bmask = ~(bound - 1); 478 /* 479 * First try to find an acceptable totally-unshared region. 480 */ 481 for (s = r; s; s = TAILQ_NEXT(s, r_link)) { 482 DPRINTF(("considering [%#lx, %#lx]\n", s->r_start, s->r_end)); 483 /* 484 * The resource list is sorted, so there is no point in 485 * searching further once r_start is too large. 486 */ 487 if (s->r_start > end - (count - 1)) { 488 DPRINTF(("s->r_start (%#lx) + count - 1> end (%#lx)\n", 489 s->r_start, end)); 490 break; 491 } 492 if (s->r_start > ULONG_MAX - amask) { 493 DPRINTF(("s->r_start (%#lx) + amask (%#lx) too large\n", 494 s->r_start, amask)); 495 break; 496 } 497 if (s->r_flags & RF_ALLOCATED) { 498 DPRINTF(("region is allocated\n")); 499 continue; 500 } 501 rstart = ulmax(s->r_start, start); 502 /* 503 * Try to find a region by adjusting to boundary and alignment 504 * until both conditions are satisfied. This is not an optimal 505 * algorithm, but in most cases it isn't really bad, either. 506 */ 507 do { 508 rstart = (rstart + amask) & ~amask; 509 if (((rstart ^ (rstart + count - 1)) & bmask) != 0) 510 rstart += bound - (rstart & ~bmask); 511 } while ((rstart & amask) != 0 && rstart < end && 512 rstart < s->r_end); 513 rend = ulmin(s->r_end, ulmax(rstart + count - 1, end)); 514 if (rstart > rend) { 515 DPRINTF(("adjusted start exceeds end\n")); 516 continue; 517 } 518 DPRINTF(("truncated region: [%#lx, %#lx]; size %#lx (requested %#lx)\n", 519 rstart, rend, (rend - rstart + 1), count)); 520 521 if ((rend - rstart + 1) >= count) { 522 DPRINTF(("candidate region: [%#lx, %#lx], size %#lx\n", 523 rstart, rend, (rend - rstart + 1))); 524 if ((s->r_end - s->r_start + 1) == count) { 525 DPRINTF(("candidate region is entire chunk\n")); 526 rv = s; 527 rv->r_flags = new_rflags; 528 rv->r_dev = dev; 529 goto out; 530 } 531 532 /* 533 * If s->r_start < rstart and 534 * s->r_end > rstart + count - 1, then 535 * we need to split the region into three pieces 536 * (the middle one will get returned to the user). 537 * Otherwise, we are allocating at either the 538 * beginning or the end of s, so we only need to 539 * split it in two. The first case requires 540 * two new allocations; the second requires but one. 541 */ 542 rv = int_alloc_resource(M_NOWAIT); 543 if (rv == NULL) 544 goto out; 545 rv->r_start = rstart; 546 rv->r_end = rstart + count - 1; 547 rv->r_flags = new_rflags; 548 rv->r_dev = dev; 549 rv->r_rm = rm; 550 551 if (s->r_start < rv->r_start && s->r_end > rv->r_end) { 552 DPRINTF(("splitting region in three parts: " 553 "[%#lx, %#lx]; [%#lx, %#lx]; [%#lx, %#lx]\n", 554 s->r_start, rv->r_start - 1, 555 rv->r_start, rv->r_end, 556 rv->r_end + 1, s->r_end)); 557 /* 558 * We are allocating in the middle. 559 */ 560 r = int_alloc_resource(M_NOWAIT); 561 if (r == NULL) { 562 free(rv, M_RMAN); 563 rv = NULL; 564 goto out; 565 } 566 r->r_start = rv->r_end + 1; 567 r->r_end = s->r_end; 568 r->r_flags = s->r_flags; 569 r->r_rm = rm; 570 s->r_end = rv->r_start - 1; 571 TAILQ_INSERT_AFTER(&rm->rm_list, s, rv, 572 r_link); 573 TAILQ_INSERT_AFTER(&rm->rm_list, rv, r, 574 r_link); 575 } else if (s->r_start == rv->r_start) { 576 DPRINTF(("allocating from the beginning\n")); 577 /* 578 * We are allocating at the beginning. 579 */ 580 s->r_start = rv->r_end + 1; 581 TAILQ_INSERT_BEFORE(s, rv, r_link); 582 } else { 583 DPRINTF(("allocating at the end\n")); 584 /* 585 * We are allocating at the end. 586 */ 587 s->r_end = rv->r_start - 1; 588 TAILQ_INSERT_AFTER(&rm->rm_list, s, rv, 589 r_link); 590 } 591 goto out; 592 } 593 } 594 595 /* 596 * Now find an acceptable shared region, if the client's requirements 597 * allow sharing. By our implementation restriction, a candidate 598 * region must match exactly by both size and sharing type in order 599 * to be considered compatible with the client's request. (The 600 * former restriction could probably be lifted without too much 601 * additional work, but this does not seem warranted.) 602 */ 603 DPRINTF(("no unshared regions found\n")); 604 if ((flags & (RF_SHAREABLE | RF_TIMESHARE)) == 0) 605 goto out; 606 607 for (s = r; s && s->r_end <= end; s = TAILQ_NEXT(s, r_link)) { 608 if (SHARE_TYPE(s->r_flags) == SHARE_TYPE(flags) && 609 s->r_start >= start && 610 (s->r_end - s->r_start + 1) == count && 611 (s->r_start & amask) == 0 && 612 ((s->r_start ^ s->r_end) & bmask) == 0) { 613 rv = int_alloc_resource(M_NOWAIT); 614 if (rv == NULL) 615 goto out; 616 rv->r_start = s->r_start; 617 rv->r_end = s->r_end; 618 rv->r_flags = new_rflags; 619 rv->r_dev = dev; 620 rv->r_rm = rm; 621 if (s->r_sharehead == NULL) { 622 s->r_sharehead = malloc(sizeof *s->r_sharehead, 623 M_RMAN, M_NOWAIT | M_ZERO); 624 if (s->r_sharehead == NULL) { 625 free(rv, M_RMAN); 626 rv = NULL; 627 goto out; 628 } 629 LIST_INIT(s->r_sharehead); 630 LIST_INSERT_HEAD(s->r_sharehead, s, 631 r_sharelink); 632 s->r_flags |= RF_FIRSTSHARE; 633 } 634 rv->r_sharehead = s->r_sharehead; 635 LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink); 636 goto out; 637 } 638 } 639 640 /* 641 * We couldn't find anything. 642 */ 643 out: 644 /* 645 * If the user specified RF_ACTIVE in flags, we attempt to atomically 646 * activate the resource. If this fails, we release the resource 647 * and indicate overall failure. (This behavior probably doesn't 648 * make sense for RF_TIMESHARE-type resources.) 649 */ 650 if (rv && (flags & RF_ACTIVE) != 0) { 651 struct resource_i *whohas; 652 if (int_rman_activate_resource(rm, rv, &whohas)) { 653 int_rman_release_resource(rm, rv); 654 rv = NULL; 655 } 656 } 657 658 mtx_unlock(rm->rm_mtx); 659 return (rv == NULL ? NULL : &rv->r_r); 660 } 661 662 struct resource * 663 rman_reserve_resource(struct rman *rm, u_long start, u_long end, u_long count, 664 u_int flags, struct device *dev) 665 { 666 667 return (rman_reserve_resource_bound(rm, start, end, count, 0, flags, 668 dev)); 669 } 670 671 static int 672 int_rman_activate_resource(struct rman *rm, struct resource_i *r, 673 struct resource_i **whohas) 674 { 675 struct resource_i *s; 676 int ok; 677 678 /* 679 * If we are not timesharing, then there is nothing much to do. 680 * If we already have the resource, then there is nothing at all to do. 681 * If we are not on a sharing list with anybody else, then there is 682 * little to do. 683 */ 684 if ((r->r_flags & RF_TIMESHARE) == 0 685 || (r->r_flags & RF_ACTIVE) != 0 686 || r->r_sharehead == NULL) { 687 r->r_flags |= RF_ACTIVE; 688 return 0; 689 } 690 691 ok = 1; 692 for (s = LIST_FIRST(r->r_sharehead); s && ok; 693 s = LIST_NEXT(s, r_sharelink)) { 694 if ((s->r_flags & RF_ACTIVE) != 0) { 695 ok = 0; 696 *whohas = s; 697 } 698 } 699 if (ok) { 700 r->r_flags |= RF_ACTIVE; 701 return 0; 702 } 703 return EBUSY; 704 } 705 706 int 707 rman_activate_resource(struct resource *re) 708 { 709 int rv; 710 struct resource_i *r, *whohas; 711 struct rman *rm; 712 713 r = re->__r_i; 714 rm = r->r_rm; 715 mtx_lock(rm->rm_mtx); 716 rv = int_rman_activate_resource(rm, r, &whohas); 717 mtx_unlock(rm->rm_mtx); 718 return rv; 719 } 720 721 int 722 rman_await_resource(struct resource *re, int pri, int timo) 723 { 724 int rv; 725 struct resource_i *r, *whohas; 726 struct rman *rm; 727 728 r = re->__r_i; 729 rm = r->r_rm; 730 mtx_lock(rm->rm_mtx); 731 for (;;) { 732 rv = int_rman_activate_resource(rm, r, &whohas); 733 if (rv != EBUSY) 734 return (rv); /* returns with mutex held */ 735 736 if (r->r_sharehead == NULL) 737 panic("rman_await_resource"); 738 whohas->r_flags |= RF_WANTED; 739 rv = msleep(r->r_sharehead, rm->rm_mtx, pri, "rmwait", timo); 740 if (rv) { 741 mtx_unlock(rm->rm_mtx); 742 return (rv); 743 } 744 } 745 } 746 747 static int 748 int_rman_deactivate_resource(struct resource_i *r) 749 { 750 751 r->r_flags &= ~RF_ACTIVE; 752 if (r->r_flags & RF_WANTED) { 753 r->r_flags &= ~RF_WANTED; 754 wakeup(r->r_sharehead); 755 } 756 return 0; 757 } 758 759 int 760 rman_deactivate_resource(struct resource *r) 761 { 762 struct rman *rm; 763 764 rm = r->__r_i->r_rm; 765 mtx_lock(rm->rm_mtx); 766 int_rman_deactivate_resource(r->__r_i); 767 mtx_unlock(rm->rm_mtx); 768 return 0; 769 } 770 771 static int 772 int_rman_release_resource(struct rman *rm, struct resource_i *r) 773 { 774 struct resource_i *s, *t; 775 776 if (r->r_flags & RF_ACTIVE) 777 int_rman_deactivate_resource(r); 778 779 /* 780 * Check for a sharing list first. If there is one, then we don't 781 * have to think as hard. 782 */ 783 if (r->r_sharehead) { 784 /* 785 * If a sharing list exists, then we know there are at 786 * least two sharers. 787 * 788 * If we are in the main circleq, appoint someone else. 789 */ 790 LIST_REMOVE(r, r_sharelink); 791 s = LIST_FIRST(r->r_sharehead); 792 if (r->r_flags & RF_FIRSTSHARE) { 793 s->r_flags |= RF_FIRSTSHARE; 794 TAILQ_INSERT_BEFORE(r, s, r_link); 795 TAILQ_REMOVE(&rm->rm_list, r, r_link); 796 } 797 798 /* 799 * Make sure that the sharing list goes away completely 800 * if the resource is no longer being shared at all. 801 */ 802 if (LIST_NEXT(s, r_sharelink) == NULL) { 803 free(s->r_sharehead, M_RMAN); 804 s->r_sharehead = NULL; 805 s->r_flags &= ~RF_FIRSTSHARE; 806 } 807 goto out; 808 } 809 810 /* 811 * Look at the adjacent resources in the list and see if our 812 * segment can be merged with any of them. If either of the 813 * resources is allocated or is not exactly adjacent then they 814 * cannot be merged with our segment. 815 */ 816 s = TAILQ_PREV(r, resource_head, r_link); 817 if (s != NULL && ((s->r_flags & RF_ALLOCATED) != 0 || 818 s->r_end + 1 != r->r_start)) 819 s = NULL; 820 t = TAILQ_NEXT(r, r_link); 821 if (t != NULL && ((t->r_flags & RF_ALLOCATED) != 0 || 822 r->r_end + 1 != t->r_start)) 823 t = NULL; 824 825 if (s != NULL && t != NULL) { 826 /* 827 * Merge all three segments. 828 */ 829 s->r_end = t->r_end; 830 TAILQ_REMOVE(&rm->rm_list, r, r_link); 831 TAILQ_REMOVE(&rm->rm_list, t, r_link); 832 free(t, M_RMAN); 833 } else if (s != NULL) { 834 /* 835 * Merge previous segment with ours. 836 */ 837 s->r_end = r->r_end; 838 TAILQ_REMOVE(&rm->rm_list, r, r_link); 839 } else if (t != NULL) { 840 /* 841 * Merge next segment with ours. 842 */ 843 t->r_start = r->r_start; 844 TAILQ_REMOVE(&rm->rm_list, r, r_link); 845 } else { 846 /* 847 * At this point, we know there is nothing we 848 * can potentially merge with, because on each 849 * side, there is either nothing there or what is 850 * there is still allocated. In that case, we don't 851 * want to remove r from the list; we simply want to 852 * change it to an unallocated region and return 853 * without freeing anything. 854 */ 855 r->r_flags &= ~RF_ALLOCATED; 856 r->r_dev = NULL; 857 return 0; 858 } 859 860 out: 861 free(r, M_RMAN); 862 return 0; 863 } 864 865 int 866 rman_release_resource(struct resource *re) 867 { 868 int rv; 869 struct resource_i *r; 870 struct rman *rm; 871 872 r = re->__r_i; 873 rm = r->r_rm; 874 mtx_lock(rm->rm_mtx); 875 rv = int_rman_release_resource(rm, r); 876 mtx_unlock(rm->rm_mtx); 877 return (rv); 878 } 879 880 uint32_t 881 rman_make_alignment_flags(uint32_t size) 882 { 883 int i; 884 885 /* 886 * Find the hightest bit set, and add one if more than one bit 887 * set. We're effectively computing the ceil(log2(size)) here. 888 */ 889 for (i = 31; i > 0; i--) 890 if ((1 << i) & size) 891 break; 892 if (~(1 << i) & size) 893 i++; 894 895 return(RF_ALIGNMENT_LOG2(i)); 896 } 897 898 void 899 rman_set_start(struct resource *r, u_long start) 900 { 901 r->__r_i->r_start = start; 902 } 903 904 u_long 905 rman_get_start(struct resource *r) 906 { 907 return (r->__r_i->r_start); 908 } 909 910 void 911 rman_set_end(struct resource *r, u_long end) 912 { 913 r->__r_i->r_end = end; 914 } 915 916 u_long 917 rman_get_end(struct resource *r) 918 { 919 return (r->__r_i->r_end); 920 } 921 922 u_long 923 rman_get_size(struct resource *r) 924 { 925 return (r->__r_i->r_end - r->__r_i->r_start + 1); 926 } 927 928 u_int 929 rman_get_flags(struct resource *r) 930 { 931 return (r->__r_i->r_flags); 932 } 933 934 void 935 rman_set_virtual(struct resource *r, void *v) 936 { 937 r->__r_i->r_virtual = v; 938 } 939 940 void * 941 rman_get_virtual(struct resource *r) 942 { 943 return (r->__r_i->r_virtual); 944 } 945 946 void 947 rman_set_bustag(struct resource *r, bus_space_tag_t t) 948 { 949 r->r_bustag = t; 950 } 951 952 bus_space_tag_t 953 rman_get_bustag(struct resource *r) 954 { 955 return (r->r_bustag); 956 } 957 958 void 959 rman_set_bushandle(struct resource *r, bus_space_handle_t h) 960 { 961 r->r_bushandle = h; 962 } 963 964 bus_space_handle_t 965 rman_get_bushandle(struct resource *r) 966 { 967 return (r->r_bushandle); 968 } 969 970 void 971 rman_set_rid(struct resource *r, int rid) 972 { 973 r->__r_i->r_rid = rid; 974 } 975 976 int 977 rman_get_rid(struct resource *r) 978 { 979 return (r->__r_i->r_rid); 980 } 981 982 void 983 rman_set_device(struct resource *r, struct device *dev) 984 { 985 r->__r_i->r_dev = dev; 986 } 987 988 struct device * 989 rman_get_device(struct resource *r) 990 { 991 return (r->__r_i->r_dev); 992 } 993 994 int 995 rman_is_region_manager(struct resource *r, struct rman *rm) 996 { 997 998 return (r->__r_i->r_rm == rm); 999 } 1000 1001 /* 1002 * Sysctl interface for scanning the resource lists. 1003 * 1004 * We take two input parameters; the index into the list of resource 1005 * managers, and the resource offset into the list. 1006 */ 1007 static int 1008 sysctl_rman(SYSCTL_HANDLER_ARGS) 1009 { 1010 int *name = (int *)arg1; 1011 u_int namelen = arg2; 1012 int rman_idx, res_idx; 1013 struct rman *rm; 1014 struct resource_i *res; 1015 struct resource_i *sres; 1016 struct u_rman urm; 1017 struct u_resource ures; 1018 int error; 1019 1020 if (namelen != 3) 1021 return (EINVAL); 1022 1023 if (bus_data_generation_check(name[0])) 1024 return (EINVAL); 1025 rman_idx = name[1]; 1026 res_idx = name[2]; 1027 1028 /* 1029 * Find the indexed resource manager 1030 */ 1031 mtx_lock(&rman_mtx); 1032 TAILQ_FOREACH(rm, &rman_head, rm_link) { 1033 if (rman_idx-- == 0) 1034 break; 1035 } 1036 mtx_unlock(&rman_mtx); 1037 if (rm == NULL) 1038 return (ENOENT); 1039 1040 /* 1041 * If the resource index is -1, we want details on the 1042 * resource manager. 1043 */ 1044 if (res_idx == -1) { 1045 bzero(&urm, sizeof(urm)); 1046 urm.rm_handle = (uintptr_t)rm; 1047 if (rm->rm_descr != NULL) 1048 strlcpy(urm.rm_descr, rm->rm_descr, RM_TEXTLEN); 1049 urm.rm_start = rm->rm_start; 1050 urm.rm_size = rm->rm_end - rm->rm_start + 1; 1051 urm.rm_type = rm->rm_type; 1052 1053 error = SYSCTL_OUT(req, &urm, sizeof(urm)); 1054 return (error); 1055 } 1056 1057 /* 1058 * Find the indexed resource and return it. 1059 */ 1060 mtx_lock(rm->rm_mtx); 1061 TAILQ_FOREACH(res, &rm->rm_list, r_link) { 1062 if (res->r_sharehead != NULL) { 1063 LIST_FOREACH(sres, res->r_sharehead, r_sharelink) 1064 if (res_idx-- == 0) { 1065 res = sres; 1066 goto found; 1067 } 1068 } 1069 else if (res_idx-- == 0) 1070 goto found; 1071 } 1072 mtx_unlock(rm->rm_mtx); 1073 return (ENOENT); 1074 1075 found: 1076 bzero(&ures, sizeof(ures)); 1077 ures.r_handle = (uintptr_t)res; 1078 ures.r_parent = (uintptr_t)res->r_rm; 1079 ures.r_device = (uintptr_t)res->r_dev; 1080 if (res->r_dev != NULL) { 1081 if (device_get_name(res->r_dev) != NULL) { 1082 snprintf(ures.r_devname, RM_TEXTLEN, 1083 "%s%d", 1084 device_get_name(res->r_dev), 1085 device_get_unit(res->r_dev)); 1086 } else { 1087 strlcpy(ures.r_devname, "nomatch", 1088 RM_TEXTLEN); 1089 } 1090 } else { 1091 ures.r_devname[0] = '\0'; 1092 } 1093 ures.r_start = res->r_start; 1094 ures.r_size = res->r_end - res->r_start + 1; 1095 ures.r_flags = res->r_flags; 1096 1097 mtx_unlock(rm->rm_mtx); 1098 error = SYSCTL_OUT(req, &ures, sizeof(ures)); 1099 return (error); 1100 } 1101 1102 static SYSCTL_NODE(_hw_bus, OID_AUTO, rman, CTLFLAG_RD, sysctl_rman, 1103 "kernel resource manager"); 1104 1105 #ifdef DDB 1106 static void 1107 dump_rman_header(struct rman *rm) 1108 { 1109 1110 if (db_pager_quit) 1111 return; 1112 db_printf("rman %p: %s (0x%lx-0x%lx full range)\n", 1113 rm, rm->rm_descr, rm->rm_start, rm->rm_end); 1114 } 1115 1116 static void 1117 dump_rman(struct rman *rm) 1118 { 1119 struct resource_i *r; 1120 const char *devname; 1121 1122 if (db_pager_quit) 1123 return; 1124 TAILQ_FOREACH(r, &rm->rm_list, r_link) { 1125 if (r->r_dev != NULL) { 1126 devname = device_get_nameunit(r->r_dev); 1127 if (devname == NULL) 1128 devname = "nomatch"; 1129 } else 1130 devname = NULL; 1131 db_printf(" 0x%lx-0x%lx ", r->r_start, r->r_end); 1132 if (devname != NULL) 1133 db_printf("(%s)\n", devname); 1134 else 1135 db_printf("----\n"); 1136 if (db_pager_quit) 1137 return; 1138 } 1139 } 1140 1141 DB_SHOW_COMMAND(rman, db_show_rman) 1142 { 1143 1144 if (have_addr) { 1145 dump_rman_header((struct rman *)addr); 1146 dump_rman((struct rman *)addr); 1147 } 1148 } 1149 1150 DB_SHOW_COMMAND(rmans, db_show_rmans) 1151 { 1152 struct rman *rm; 1153 1154 TAILQ_FOREACH(rm, &rman_head, rm_link) { 1155 dump_rman_header(rm); 1156 } 1157 } 1158 1159 DB_SHOW_ALL_COMMAND(rman, db_show_all_rman) 1160 { 1161 struct rman *rm; 1162 1163 TAILQ_FOREACH(rm, &rman_head, rm_link) { 1164 dump_rman_header(rm); 1165 dump_rman(rm); 1166 } 1167 } 1168 DB_SHOW_ALIAS(allrman, db_show_all_rman); 1169 #endif 1170