xref: /freebsd/sys/kern/subr_rman.c (revision 864c53ead899f7838cd2e1cca3b485a4a82f5cdc)
1 /*-
2  * Copyright 1998 Massachusetts Institute of Technology
3  *
4  * Permission to use, copy, modify, and distribute this software and
5  * its documentation for any purpose and without fee is hereby
6  * granted, provided that both the above copyright notice and this
7  * permission notice appear in all copies, that both the above
8  * copyright notice and this permission notice appear in all
9  * supporting documentation, and that the name of M.I.T. not be used
10  * in advertising or publicity pertaining to distribution of the
11  * software without specific, written prior permission.  M.I.T. makes
12  * no representations about the suitability of this software for any
13  * purpose.  It is provided "as is" without express or implied
14  * warranty.
15  *
16  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
17  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /*
31  * The kernel resource manager.  This code is responsible for keeping track
32  * of hardware resources which are apportioned out to various drivers.
33  * It does not actually assign those resources, and it is not expected
34  * that end-device drivers will call into this code directly.  Rather,
35  * the code which implements the buses that those devices are attached to,
36  * and the code which manages CPU resources, will call this code, and the
37  * end-device drivers will make upcalls to that code to actually perform
38  * the allocation.
39  *
40  * There are two sorts of resources managed by this code.  The first is
41  * the more familiar array (RMAN_ARRAY) type; resources in this class
42  * consist of a sequence of individually-allocatable objects which have
43  * been numbered in some well-defined order.  Most of the resources
44  * are of this type, as it is the most familiar.  The second type is
45  * called a gauge (RMAN_GAUGE), and models fungible resources (i.e.,
46  * resources in which each instance is indistinguishable from every
47  * other instance).  The principal anticipated application of gauges
48  * is in the context of power consumption, where a bus may have a specific
49  * power budget which all attached devices share.  RMAN_GAUGE is not
50  * implemented yet.
51  *
52  * For array resources, we make one simplifying assumption: two clients
53  * sharing the same resource must use the same range of indices.  That
54  * is to say, sharing of overlapping-but-not-identical regions is not
55  * permitted.
56  */
57 
58 #include "opt_ddb.h"
59 
60 #include <sys/cdefs.h>
61 __FBSDID("$FreeBSD$");
62 
63 #include <sys/param.h>
64 #include <sys/systm.h>
65 #include <sys/kernel.h>
66 #include <sys/limits.h>
67 #include <sys/lock.h>
68 #include <sys/malloc.h>
69 #include <sys/mutex.h>
70 #include <sys/bus.h>		/* XXX debugging */
71 #include <machine/bus.h>
72 #include <sys/rman.h>
73 #include <sys/sysctl.h>
74 
75 #ifdef DDB
76 #include <ddb/ddb.h>
77 #endif
78 
79 /*
80  * We use a linked list rather than a bitmap because we need to be able to
81  * represent potentially huge objects (like all of a processor's physical
82  * address space).  That is also why the indices are defined to have type
83  * `unsigned long' -- that being the largest integral type in ISO C (1990).
84  * The 1999 version of C allows `long long'; we may need to switch to that
85  * at some point in the future, particularly if we want to support 36-bit
86  * addresses on IA32 hardware.
87  */
88 struct resource_i {
89 	struct resource		r_r;
90 	TAILQ_ENTRY(resource_i)	r_link;
91 	LIST_ENTRY(resource_i)	r_sharelink;
92 	LIST_HEAD(, resource_i)	*r_sharehead;
93 	u_long	r_start;	/* index of the first entry in this resource */
94 	u_long	r_end;		/* index of the last entry (inclusive) */
95 	u_int	r_flags;
96 	void	*r_virtual;	/* virtual address of this resource */
97 	struct	device *r_dev;	/* device which has allocated this resource */
98 	struct	rman *r_rm;	/* resource manager from whence this came */
99 	int	r_rid;		/* optional rid for this resource. */
100 };
101 
102 static int     rman_debug = 0;
103 TUNABLE_INT("debug.rman_debug", &rman_debug);
104 SYSCTL_INT(_debug, OID_AUTO, rman_debug, CTLFLAG_RW,
105     &rman_debug, 0, "rman debug");
106 
107 #define DPRINTF(params) if (rman_debug) printf params
108 
109 static MALLOC_DEFINE(M_RMAN, "rman", "Resource manager");
110 
111 struct	rman_head rman_head;
112 static	struct mtx rman_mtx; /* mutex to protect rman_head */
113 static	int int_rman_activate_resource(struct rman *rm, struct resource_i *r,
114 				       struct resource_i **whohas);
115 static	int int_rman_deactivate_resource(struct resource_i *r);
116 static	int int_rman_release_resource(struct rman *rm, struct resource_i *r);
117 
118 static __inline struct resource_i *
119 int_alloc_resource(int malloc_flag)
120 {
121 	struct resource_i *r;
122 
123 	r = malloc(sizeof *r, M_RMAN, malloc_flag | M_ZERO);
124 	if (r != NULL) {
125 		r->r_r.__r_i = r;
126 	}
127 	return (r);
128 }
129 
130 int
131 rman_init(struct rman *rm)
132 {
133 	static int once = 0;
134 
135 	if (once == 0) {
136 		once = 1;
137 		TAILQ_INIT(&rman_head);
138 		mtx_init(&rman_mtx, "rman head", NULL, MTX_DEF);
139 	}
140 
141 	if (rm->rm_start == 0 && rm->rm_end == 0)
142 		rm->rm_end = ~0ul;
143 	if (rm->rm_type == RMAN_UNINIT)
144 		panic("rman_init");
145 	if (rm->rm_type == RMAN_GAUGE)
146 		panic("implement RMAN_GAUGE");
147 
148 	TAILQ_INIT(&rm->rm_list);
149 	rm->rm_mtx = malloc(sizeof *rm->rm_mtx, M_RMAN, M_NOWAIT | M_ZERO);
150 	if (rm->rm_mtx == NULL)
151 		return ENOMEM;
152 	mtx_init(rm->rm_mtx, "rman", NULL, MTX_DEF);
153 
154 	mtx_lock(&rman_mtx);
155 	TAILQ_INSERT_TAIL(&rman_head, rm, rm_link);
156 	mtx_unlock(&rman_mtx);
157 	return 0;
158 }
159 
160 int
161 rman_manage_region(struct rman *rm, u_long start, u_long end)
162 {
163 	struct resource_i *r, *s, *t;
164 	int rv = 0;
165 
166 	DPRINTF(("rman_manage_region: <%s> request: start %#lx, end %#lx\n",
167 	    rm->rm_descr, start, end));
168 	if (start < rm->rm_start || end > rm->rm_end)
169 		return EINVAL;
170 	r = int_alloc_resource(M_NOWAIT);
171 	if (r == NULL)
172 		return ENOMEM;
173 	r->r_start = start;
174 	r->r_end = end;
175 	r->r_rm = rm;
176 
177 	mtx_lock(rm->rm_mtx);
178 
179 	/* Skip entries before us. */
180 	TAILQ_FOREACH(s, &rm->rm_list, r_link) {
181 		if (s->r_end == ULONG_MAX)
182 			break;
183 		if (s->r_end + 1 >= r->r_start)
184 			break;
185 	}
186 
187 	/* If we ran off the end of the list, insert at the tail. */
188 	if (s == NULL) {
189 		TAILQ_INSERT_TAIL(&rm->rm_list, r, r_link);
190 	} else {
191 		/* Check for any overlap with the current region. */
192 		if (r->r_start <= s->r_end && r->r_end >= s->r_start) {
193 			rv = EBUSY;
194 			goto out;
195 		}
196 
197 		/* Check for any overlap with the next region. */
198 		t = TAILQ_NEXT(s, r_link);
199 		if (t && r->r_start <= t->r_end && r->r_end >= t->r_start) {
200 			rv = EBUSY;
201 			goto out;
202 		}
203 
204 		/*
205 		 * See if this region can be merged with the next region.  If
206 		 * not, clear the pointer.
207 		 */
208 		if (t && (r->r_end + 1 != t->r_start || t->r_flags != 0))
209 			t = NULL;
210 
211 		/* See if we can merge with the current region. */
212 		if (s->r_end + 1 == r->r_start && s->r_flags == 0) {
213 			/* Can we merge all 3 regions? */
214 			if (t != NULL) {
215 				s->r_end = t->r_end;
216 				TAILQ_REMOVE(&rm->rm_list, t, r_link);
217 				free(r, M_RMAN);
218 				free(t, M_RMAN);
219 			} else {
220 				s->r_end = r->r_end;
221 				free(r, M_RMAN);
222 			}
223 		} else if (t != NULL) {
224 			/* Can we merge with just the next region? */
225 			t->r_start = r->r_start;
226 			free(r, M_RMAN);
227 		} else if (s->r_end < r->r_start) {
228 			TAILQ_INSERT_AFTER(&rm->rm_list, s, r, r_link);
229 		} else {
230 			TAILQ_INSERT_BEFORE(s, r, r_link);
231 		}
232 	}
233 out:
234 	mtx_unlock(rm->rm_mtx);
235 	return rv;
236 }
237 
238 int
239 rman_init_from_resource(struct rman *rm, struct resource *r)
240 {
241 	int rv;
242 
243 	if ((rv = rman_init(rm)) != 0)
244 		return (rv);
245 	return (rman_manage_region(rm, r->__r_i->r_start, r->__r_i->r_end));
246 }
247 
248 int
249 rman_fini(struct rman *rm)
250 {
251 	struct resource_i *r;
252 
253 	mtx_lock(rm->rm_mtx);
254 	TAILQ_FOREACH(r, &rm->rm_list, r_link) {
255 		if (r->r_flags & RF_ALLOCATED) {
256 			mtx_unlock(rm->rm_mtx);
257 			return EBUSY;
258 		}
259 	}
260 
261 	/*
262 	 * There really should only be one of these if we are in this
263 	 * state and the code is working properly, but it can't hurt.
264 	 */
265 	while (!TAILQ_EMPTY(&rm->rm_list)) {
266 		r = TAILQ_FIRST(&rm->rm_list);
267 		TAILQ_REMOVE(&rm->rm_list, r, r_link);
268 		free(r, M_RMAN);
269 	}
270 	mtx_unlock(rm->rm_mtx);
271 	mtx_lock(&rman_mtx);
272 	TAILQ_REMOVE(&rman_head, rm, rm_link);
273 	mtx_unlock(&rman_mtx);
274 	mtx_destroy(rm->rm_mtx);
275 	free(rm->rm_mtx, M_RMAN);
276 
277 	return 0;
278 }
279 
280 int
281 rman_first_free_region(struct rman *rm, u_long *start, u_long *end)
282 {
283 	struct resource_i *r;
284 
285 	mtx_lock(rm->rm_mtx);
286 	TAILQ_FOREACH(r, &rm->rm_list, r_link) {
287 		if (!(r->r_flags & RF_ALLOCATED)) {
288 			*start = r->r_start;
289 			*end = r->r_end;
290 			mtx_unlock(rm->rm_mtx);
291 			return (0);
292 		}
293 	}
294 	mtx_unlock(rm->rm_mtx);
295 	return (ENOENT);
296 }
297 
298 int
299 rman_last_free_region(struct rman *rm, u_long *start, u_long *end)
300 {
301 	struct resource_i *r;
302 
303 	mtx_lock(rm->rm_mtx);
304 	TAILQ_FOREACH_REVERSE(r, &rm->rm_list, resource_head, r_link) {
305 		if (!(r->r_flags & RF_ALLOCATED)) {
306 			*start = r->r_start;
307 			*end = r->r_end;
308 			mtx_unlock(rm->rm_mtx);
309 			return (0);
310 		}
311 	}
312 	mtx_unlock(rm->rm_mtx);
313 	return (ENOENT);
314 }
315 
316 /* Shrink or extend one or both ends of an allocated resource. */
317 int
318 rman_adjust_resource(struct resource *rr, u_long start, u_long end)
319 {
320 	struct	resource_i *r, *s, *t, *new;
321 	struct	rman *rm;
322 
323 	/* Not supported for shared resources. */
324 	r = rr->__r_i;
325 	if (r->r_flags & (RF_TIMESHARE | RF_SHAREABLE))
326 		return (EINVAL);
327 
328 	/*
329 	 * This does not support wholesale moving of a resource.  At
330 	 * least part of the desired new range must overlap with the
331 	 * existing resource.
332 	 */
333 	if (end < r->r_start || r->r_end < start)
334 		return (EINVAL);
335 
336 	/*
337 	 * Find the two resource regions immediately adjacent to the
338 	 * allocated resource.
339 	 */
340 	rm = r->r_rm;
341 	mtx_lock(rm->rm_mtx);
342 #ifdef INVARIANTS
343 	TAILQ_FOREACH(s, &rm->rm_list, r_link) {
344 		if (s == r)
345 			break;
346 	}
347 	if (s == NULL)
348 		panic("resource not in list");
349 #endif
350 	s = TAILQ_PREV(r, resource_head, r_link);
351 	t = TAILQ_NEXT(r, r_link);
352 	KASSERT(s == NULL || s->r_end + 1 == r->r_start,
353 	    ("prev resource mismatch"));
354 	KASSERT(t == NULL || r->r_end + 1 == t->r_start,
355 	    ("next resource mismatch"));
356 
357 	/*
358 	 * See if the changes are permitted.  Shrinking is always allowed,
359 	 * but growing requires sufficient room in the adjacent region.
360 	 */
361 	if (start < r->r_start && (s == NULL || (s->r_flags & RF_ALLOCATED) ||
362 	    s->r_start > start)) {
363 		mtx_unlock(rm->rm_mtx);
364 		return (EBUSY);
365 	}
366 	if (end > r->r_end && (t == NULL || (t->r_flags & RF_ALLOCATED) ||
367 	    t->r_end < end)) {
368 		mtx_unlock(rm->rm_mtx);
369 		return (EBUSY);
370 	}
371 
372 	/*
373 	 * While holding the lock, grow either end of the resource as
374 	 * needed and shrink either end if the shrinking does not require
375 	 * allocating a new resource.  We can safely drop the lock and then
376 	 * insert a new range to handle the shrinking case afterwards.
377 	 */
378 	if (start < r->r_start ||
379 	    (start > r->r_start && s != NULL && !(s->r_flags & RF_ALLOCATED))) {
380 		KASSERT(s->r_flags == 0, ("prev is busy"));
381 		r->r_start = start;
382 		if (s->r_start == start) {
383 			TAILQ_REMOVE(&rm->rm_list, s, r_link);
384 			free(s, M_RMAN);
385 		} else
386 			s->r_end = start - 1;
387 	}
388 	if (end > r->r_end ||
389 	    (end < r->r_end && t != NULL && !(t->r_flags & RF_ALLOCATED))) {
390 		KASSERT(t->r_flags == 0, ("next is busy"));
391 		r->r_end = end;
392 		if (t->r_end == end) {
393 			TAILQ_REMOVE(&rm->rm_list, t, r_link);
394 			free(t, M_RMAN);
395 		} else
396 			t->r_start = end + 1;
397 	}
398 	mtx_unlock(rm->rm_mtx);
399 
400 	/*
401 	 * Handle the shrinking cases that require allocating a new
402 	 * resource to hold the newly-free region.  We have to recheck
403 	 * if we still need this new region after acquiring the lock.
404 	 */
405 	if (start > r->r_start) {
406 		new = int_alloc_resource(M_WAITOK);
407 		new->r_start = r->r_start;
408 		new->r_end = start - 1;
409 		new->r_rm = rm;
410 		mtx_lock(rm->rm_mtx);
411 		r->r_start = start;
412 		s = TAILQ_PREV(r, resource_head, r_link);
413 		if (s != NULL && !(s->r_flags & RF_ALLOCATED)) {
414 			s->r_end = start - 1;
415 			free(new, M_RMAN);
416 		} else
417 			TAILQ_INSERT_BEFORE(r, new, r_link);
418 		mtx_unlock(rm->rm_mtx);
419 	}
420 	if (end < r->r_end) {
421 		new = int_alloc_resource(M_WAITOK);
422 		new->r_start = end + 1;
423 		new->r_end = r->r_end;
424 		new->r_rm = rm;
425 		mtx_lock(rm->rm_mtx);
426 		r->r_end = end;
427 		t = TAILQ_NEXT(r, r_link);
428 		if (t != NULL && !(t->r_flags & RF_ALLOCATED)) {
429 			t->r_start = end + 1;
430 			free(new, M_RMAN);
431 		} else
432 			TAILQ_INSERT_AFTER(&rm->rm_list, r, new, r_link);
433 		mtx_unlock(rm->rm_mtx);
434 	}
435 	return (0);
436 }
437 
438 #define	SHARE_TYPE(f)	(f & (RF_SHAREABLE | RF_TIMESHARE | RF_PREFETCHABLE))
439 
440 struct resource *
441 rman_reserve_resource_bound(struct rman *rm, u_long start, u_long end,
442 		      u_long count, u_long bound,  u_int flags,
443 		      struct device *dev)
444 {
445 	u_int	new_rflags;
446 	struct	resource_i *r, *s, *rv;
447 	u_long	rstart, rend, amask, bmask;
448 
449 	rv = NULL;
450 
451 	DPRINTF(("rman_reserve_resource_bound: <%s> request: [%#lx, %#lx], "
452 	       "length %#lx, flags %u, device %s\n", rm->rm_descr, start, end,
453 	       count, flags,
454 	       dev == NULL ? "<null>" : device_get_nameunit(dev)));
455 	KASSERT((flags & (RF_WANTED | RF_FIRSTSHARE)) == 0,
456 	    ("invalid flags %#x", flags));
457 	new_rflags = (flags & ~(RF_ACTIVE | RF_WANTED | RF_FIRSTSHARE)) |
458 	    RF_ALLOCATED;
459 
460 	mtx_lock(rm->rm_mtx);
461 
462 	for (r = TAILQ_FIRST(&rm->rm_list);
463 	     r && r->r_end < start + count - 1;
464 	     r = TAILQ_NEXT(r, r_link))
465 		;
466 
467 	if (r == NULL) {
468 		DPRINTF(("could not find a region\n"));
469 		goto out;
470 	}
471 
472 	amask = (1ul << RF_ALIGNMENT(flags)) - 1;
473 	KASSERT(start <= ULONG_MAX - amask,
474 	    ("start (%#lx) + amask (%#lx) would wrap around", start, amask));
475 
476 	/* If bound is 0, bmask will also be 0 */
477 	bmask = ~(bound - 1);
478 	/*
479 	 * First try to find an acceptable totally-unshared region.
480 	 */
481 	for (s = r; s; s = TAILQ_NEXT(s, r_link)) {
482 		DPRINTF(("considering [%#lx, %#lx]\n", s->r_start, s->r_end));
483 		/*
484 		 * The resource list is sorted, so there is no point in
485 		 * searching further once r_start is too large.
486 		 */
487 		if (s->r_start > end - (count - 1)) {
488 			DPRINTF(("s->r_start (%#lx) + count - 1> end (%#lx)\n",
489 			    s->r_start, end));
490 			break;
491 		}
492 		if (s->r_start > ULONG_MAX - amask) {
493 			DPRINTF(("s->r_start (%#lx) + amask (%#lx) too large\n",
494 			    s->r_start, amask));
495 			break;
496 		}
497 		if (s->r_flags & RF_ALLOCATED) {
498 			DPRINTF(("region is allocated\n"));
499 			continue;
500 		}
501 		rstart = ulmax(s->r_start, start);
502 		/*
503 		 * Try to find a region by adjusting to boundary and alignment
504 		 * until both conditions are satisfied. This is not an optimal
505 		 * algorithm, but in most cases it isn't really bad, either.
506 		 */
507 		do {
508 			rstart = (rstart + amask) & ~amask;
509 			if (((rstart ^ (rstart + count - 1)) & bmask) != 0)
510 				rstart += bound - (rstart & ~bmask);
511 		} while ((rstart & amask) != 0 && rstart < end &&
512 		    rstart < s->r_end);
513 		rend = ulmin(s->r_end, ulmax(rstart + count - 1, end));
514 		if (rstart > rend) {
515 			DPRINTF(("adjusted start exceeds end\n"));
516 			continue;
517 		}
518 		DPRINTF(("truncated region: [%#lx, %#lx]; size %#lx (requested %#lx)\n",
519 		       rstart, rend, (rend - rstart + 1), count));
520 
521 		if ((rend - rstart + 1) >= count) {
522 			DPRINTF(("candidate region: [%#lx, %#lx], size %#lx\n",
523 			       rstart, rend, (rend - rstart + 1)));
524 			if ((s->r_end - s->r_start + 1) == count) {
525 				DPRINTF(("candidate region is entire chunk\n"));
526 				rv = s;
527 				rv->r_flags = new_rflags;
528 				rv->r_dev = dev;
529 				goto out;
530 			}
531 
532 			/*
533 			 * If s->r_start < rstart and
534 			 *    s->r_end > rstart + count - 1, then
535 			 * we need to split the region into three pieces
536 			 * (the middle one will get returned to the user).
537 			 * Otherwise, we are allocating at either the
538 			 * beginning or the end of s, so we only need to
539 			 * split it in two.  The first case requires
540 			 * two new allocations; the second requires but one.
541 			 */
542 			rv = int_alloc_resource(M_NOWAIT);
543 			if (rv == NULL)
544 				goto out;
545 			rv->r_start = rstart;
546 			rv->r_end = rstart + count - 1;
547 			rv->r_flags = new_rflags;
548 			rv->r_dev = dev;
549 			rv->r_rm = rm;
550 
551 			if (s->r_start < rv->r_start && s->r_end > rv->r_end) {
552 				DPRINTF(("splitting region in three parts: "
553 				       "[%#lx, %#lx]; [%#lx, %#lx]; [%#lx, %#lx]\n",
554 				       s->r_start, rv->r_start - 1,
555 				       rv->r_start, rv->r_end,
556 				       rv->r_end + 1, s->r_end));
557 				/*
558 				 * We are allocating in the middle.
559 				 */
560 				r = int_alloc_resource(M_NOWAIT);
561 				if (r == NULL) {
562 					free(rv, M_RMAN);
563 					rv = NULL;
564 					goto out;
565 				}
566 				r->r_start = rv->r_end + 1;
567 				r->r_end = s->r_end;
568 				r->r_flags = s->r_flags;
569 				r->r_rm = rm;
570 				s->r_end = rv->r_start - 1;
571 				TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
572 						     r_link);
573 				TAILQ_INSERT_AFTER(&rm->rm_list, rv, r,
574 						     r_link);
575 			} else if (s->r_start == rv->r_start) {
576 				DPRINTF(("allocating from the beginning\n"));
577 				/*
578 				 * We are allocating at the beginning.
579 				 */
580 				s->r_start = rv->r_end + 1;
581 				TAILQ_INSERT_BEFORE(s, rv, r_link);
582 			} else {
583 				DPRINTF(("allocating at the end\n"));
584 				/*
585 				 * We are allocating at the end.
586 				 */
587 				s->r_end = rv->r_start - 1;
588 				TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
589 						     r_link);
590 			}
591 			goto out;
592 		}
593 	}
594 
595 	/*
596 	 * Now find an acceptable shared region, if the client's requirements
597 	 * allow sharing.  By our implementation restriction, a candidate
598 	 * region must match exactly by both size and sharing type in order
599 	 * to be considered compatible with the client's request.  (The
600 	 * former restriction could probably be lifted without too much
601 	 * additional work, but this does not seem warranted.)
602 	 */
603 	DPRINTF(("no unshared regions found\n"));
604 	if ((flags & (RF_SHAREABLE | RF_TIMESHARE)) == 0)
605 		goto out;
606 
607 	for (s = r; s && s->r_end <= end; s = TAILQ_NEXT(s, r_link)) {
608 		if (SHARE_TYPE(s->r_flags) == SHARE_TYPE(flags) &&
609 		    s->r_start >= start &&
610 		    (s->r_end - s->r_start + 1) == count &&
611 		    (s->r_start & amask) == 0 &&
612 		    ((s->r_start ^ s->r_end) & bmask) == 0) {
613 			rv = int_alloc_resource(M_NOWAIT);
614 			if (rv == NULL)
615 				goto out;
616 			rv->r_start = s->r_start;
617 			rv->r_end = s->r_end;
618 			rv->r_flags = new_rflags;
619 			rv->r_dev = dev;
620 			rv->r_rm = rm;
621 			if (s->r_sharehead == NULL) {
622 				s->r_sharehead = malloc(sizeof *s->r_sharehead,
623 						M_RMAN, M_NOWAIT | M_ZERO);
624 				if (s->r_sharehead == NULL) {
625 					free(rv, M_RMAN);
626 					rv = NULL;
627 					goto out;
628 				}
629 				LIST_INIT(s->r_sharehead);
630 				LIST_INSERT_HEAD(s->r_sharehead, s,
631 						 r_sharelink);
632 				s->r_flags |= RF_FIRSTSHARE;
633 			}
634 			rv->r_sharehead = s->r_sharehead;
635 			LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink);
636 			goto out;
637 		}
638 	}
639 
640 	/*
641 	 * We couldn't find anything.
642 	 */
643 out:
644 	/*
645 	 * If the user specified RF_ACTIVE in flags, we attempt to atomically
646 	 * activate the resource.  If this fails, we release the resource
647 	 * and indicate overall failure.  (This behavior probably doesn't
648 	 * make sense for RF_TIMESHARE-type resources.)
649 	 */
650 	if (rv && (flags & RF_ACTIVE) != 0) {
651 		struct resource_i *whohas;
652 		if (int_rman_activate_resource(rm, rv, &whohas)) {
653 			int_rman_release_resource(rm, rv);
654 			rv = NULL;
655 		}
656 	}
657 
658 	mtx_unlock(rm->rm_mtx);
659 	return (rv == NULL ? NULL : &rv->r_r);
660 }
661 
662 struct resource *
663 rman_reserve_resource(struct rman *rm, u_long start, u_long end, u_long count,
664 		      u_int flags, struct device *dev)
665 {
666 
667 	return (rman_reserve_resource_bound(rm, start, end, count, 0, flags,
668 	    dev));
669 }
670 
671 static int
672 int_rman_activate_resource(struct rman *rm, struct resource_i *r,
673 			   struct resource_i **whohas)
674 {
675 	struct resource_i *s;
676 	int ok;
677 
678 	/*
679 	 * If we are not timesharing, then there is nothing much to do.
680 	 * If we already have the resource, then there is nothing at all to do.
681 	 * If we are not on a sharing list with anybody else, then there is
682 	 * little to do.
683 	 */
684 	if ((r->r_flags & RF_TIMESHARE) == 0
685 	    || (r->r_flags & RF_ACTIVE) != 0
686 	    || r->r_sharehead == NULL) {
687 		r->r_flags |= RF_ACTIVE;
688 		return 0;
689 	}
690 
691 	ok = 1;
692 	for (s = LIST_FIRST(r->r_sharehead); s && ok;
693 	     s = LIST_NEXT(s, r_sharelink)) {
694 		if ((s->r_flags & RF_ACTIVE) != 0) {
695 			ok = 0;
696 			*whohas = s;
697 		}
698 	}
699 	if (ok) {
700 		r->r_flags |= RF_ACTIVE;
701 		return 0;
702 	}
703 	return EBUSY;
704 }
705 
706 int
707 rman_activate_resource(struct resource *re)
708 {
709 	int rv;
710 	struct resource_i *r, *whohas;
711 	struct rman *rm;
712 
713 	r = re->__r_i;
714 	rm = r->r_rm;
715 	mtx_lock(rm->rm_mtx);
716 	rv = int_rman_activate_resource(rm, r, &whohas);
717 	mtx_unlock(rm->rm_mtx);
718 	return rv;
719 }
720 
721 int
722 rman_await_resource(struct resource *re, int pri, int timo)
723 {
724 	int	rv;
725 	struct	resource_i *r, *whohas;
726 	struct	rman *rm;
727 
728 	r = re->__r_i;
729 	rm = r->r_rm;
730 	mtx_lock(rm->rm_mtx);
731 	for (;;) {
732 		rv = int_rman_activate_resource(rm, r, &whohas);
733 		if (rv != EBUSY)
734 			return (rv);	/* returns with mutex held */
735 
736 		if (r->r_sharehead == NULL)
737 			panic("rman_await_resource");
738 		whohas->r_flags |= RF_WANTED;
739 		rv = msleep(r->r_sharehead, rm->rm_mtx, pri, "rmwait", timo);
740 		if (rv) {
741 			mtx_unlock(rm->rm_mtx);
742 			return (rv);
743 		}
744 	}
745 }
746 
747 static int
748 int_rman_deactivate_resource(struct resource_i *r)
749 {
750 
751 	r->r_flags &= ~RF_ACTIVE;
752 	if (r->r_flags & RF_WANTED) {
753 		r->r_flags &= ~RF_WANTED;
754 		wakeup(r->r_sharehead);
755 	}
756 	return 0;
757 }
758 
759 int
760 rman_deactivate_resource(struct resource *r)
761 {
762 	struct	rman *rm;
763 
764 	rm = r->__r_i->r_rm;
765 	mtx_lock(rm->rm_mtx);
766 	int_rman_deactivate_resource(r->__r_i);
767 	mtx_unlock(rm->rm_mtx);
768 	return 0;
769 }
770 
771 static int
772 int_rman_release_resource(struct rman *rm, struct resource_i *r)
773 {
774 	struct	resource_i *s, *t;
775 
776 	if (r->r_flags & RF_ACTIVE)
777 		int_rman_deactivate_resource(r);
778 
779 	/*
780 	 * Check for a sharing list first.  If there is one, then we don't
781 	 * have to think as hard.
782 	 */
783 	if (r->r_sharehead) {
784 		/*
785 		 * If a sharing list exists, then we know there are at
786 		 * least two sharers.
787 		 *
788 		 * If we are in the main circleq, appoint someone else.
789 		 */
790 		LIST_REMOVE(r, r_sharelink);
791 		s = LIST_FIRST(r->r_sharehead);
792 		if (r->r_flags & RF_FIRSTSHARE) {
793 			s->r_flags |= RF_FIRSTSHARE;
794 			TAILQ_INSERT_BEFORE(r, s, r_link);
795 			TAILQ_REMOVE(&rm->rm_list, r, r_link);
796 		}
797 
798 		/*
799 		 * Make sure that the sharing list goes away completely
800 		 * if the resource is no longer being shared at all.
801 		 */
802 		if (LIST_NEXT(s, r_sharelink) == NULL) {
803 			free(s->r_sharehead, M_RMAN);
804 			s->r_sharehead = NULL;
805 			s->r_flags &= ~RF_FIRSTSHARE;
806 		}
807 		goto out;
808 	}
809 
810 	/*
811 	 * Look at the adjacent resources in the list and see if our
812 	 * segment can be merged with any of them.  If either of the
813 	 * resources is allocated or is not exactly adjacent then they
814 	 * cannot be merged with our segment.
815 	 */
816 	s = TAILQ_PREV(r, resource_head, r_link);
817 	if (s != NULL && ((s->r_flags & RF_ALLOCATED) != 0 ||
818 	    s->r_end + 1 != r->r_start))
819 		s = NULL;
820 	t = TAILQ_NEXT(r, r_link);
821 	if (t != NULL && ((t->r_flags & RF_ALLOCATED) != 0 ||
822 	    r->r_end + 1 != t->r_start))
823 		t = NULL;
824 
825 	if (s != NULL && t != NULL) {
826 		/*
827 		 * Merge all three segments.
828 		 */
829 		s->r_end = t->r_end;
830 		TAILQ_REMOVE(&rm->rm_list, r, r_link);
831 		TAILQ_REMOVE(&rm->rm_list, t, r_link);
832 		free(t, M_RMAN);
833 	} else if (s != NULL) {
834 		/*
835 		 * Merge previous segment with ours.
836 		 */
837 		s->r_end = r->r_end;
838 		TAILQ_REMOVE(&rm->rm_list, r, r_link);
839 	} else if (t != NULL) {
840 		/*
841 		 * Merge next segment with ours.
842 		 */
843 		t->r_start = r->r_start;
844 		TAILQ_REMOVE(&rm->rm_list, r, r_link);
845 	} else {
846 		/*
847 		 * At this point, we know there is nothing we
848 		 * can potentially merge with, because on each
849 		 * side, there is either nothing there or what is
850 		 * there is still allocated.  In that case, we don't
851 		 * want to remove r from the list; we simply want to
852 		 * change it to an unallocated region and return
853 		 * without freeing anything.
854 		 */
855 		r->r_flags &= ~RF_ALLOCATED;
856 		r->r_dev = NULL;
857 		return 0;
858 	}
859 
860 out:
861 	free(r, M_RMAN);
862 	return 0;
863 }
864 
865 int
866 rman_release_resource(struct resource *re)
867 {
868 	int	rv;
869 	struct	resource_i *r;
870 	struct	rman *rm;
871 
872 	r = re->__r_i;
873 	rm = r->r_rm;
874 	mtx_lock(rm->rm_mtx);
875 	rv = int_rman_release_resource(rm, r);
876 	mtx_unlock(rm->rm_mtx);
877 	return (rv);
878 }
879 
880 uint32_t
881 rman_make_alignment_flags(uint32_t size)
882 {
883 	int	i;
884 
885 	/*
886 	 * Find the hightest bit set, and add one if more than one bit
887 	 * set.  We're effectively computing the ceil(log2(size)) here.
888 	 */
889 	for (i = 31; i > 0; i--)
890 		if ((1 << i) & size)
891 			break;
892 	if (~(1 << i) & size)
893 		i++;
894 
895 	return(RF_ALIGNMENT_LOG2(i));
896 }
897 
898 void
899 rman_set_start(struct resource *r, u_long start)
900 {
901 	r->__r_i->r_start = start;
902 }
903 
904 u_long
905 rman_get_start(struct resource *r)
906 {
907 	return (r->__r_i->r_start);
908 }
909 
910 void
911 rman_set_end(struct resource *r, u_long end)
912 {
913 	r->__r_i->r_end = end;
914 }
915 
916 u_long
917 rman_get_end(struct resource *r)
918 {
919 	return (r->__r_i->r_end);
920 }
921 
922 u_long
923 rman_get_size(struct resource *r)
924 {
925 	return (r->__r_i->r_end - r->__r_i->r_start + 1);
926 }
927 
928 u_int
929 rman_get_flags(struct resource *r)
930 {
931 	return (r->__r_i->r_flags);
932 }
933 
934 void
935 rman_set_virtual(struct resource *r, void *v)
936 {
937 	r->__r_i->r_virtual = v;
938 }
939 
940 void *
941 rman_get_virtual(struct resource *r)
942 {
943 	return (r->__r_i->r_virtual);
944 }
945 
946 void
947 rman_set_bustag(struct resource *r, bus_space_tag_t t)
948 {
949 	r->r_bustag = t;
950 }
951 
952 bus_space_tag_t
953 rman_get_bustag(struct resource *r)
954 {
955 	return (r->r_bustag);
956 }
957 
958 void
959 rman_set_bushandle(struct resource *r, bus_space_handle_t h)
960 {
961 	r->r_bushandle = h;
962 }
963 
964 bus_space_handle_t
965 rman_get_bushandle(struct resource *r)
966 {
967 	return (r->r_bushandle);
968 }
969 
970 void
971 rman_set_rid(struct resource *r, int rid)
972 {
973 	r->__r_i->r_rid = rid;
974 }
975 
976 int
977 rman_get_rid(struct resource *r)
978 {
979 	return (r->__r_i->r_rid);
980 }
981 
982 void
983 rman_set_device(struct resource *r, struct device *dev)
984 {
985 	r->__r_i->r_dev = dev;
986 }
987 
988 struct device *
989 rman_get_device(struct resource *r)
990 {
991 	return (r->__r_i->r_dev);
992 }
993 
994 int
995 rman_is_region_manager(struct resource *r, struct rman *rm)
996 {
997 
998 	return (r->__r_i->r_rm == rm);
999 }
1000 
1001 /*
1002  * Sysctl interface for scanning the resource lists.
1003  *
1004  * We take two input parameters; the index into the list of resource
1005  * managers, and the resource offset into the list.
1006  */
1007 static int
1008 sysctl_rman(SYSCTL_HANDLER_ARGS)
1009 {
1010 	int			*name = (int *)arg1;
1011 	u_int			namelen = arg2;
1012 	int			rman_idx, res_idx;
1013 	struct rman		*rm;
1014 	struct resource_i	*res;
1015 	struct resource_i	*sres;
1016 	struct u_rman		urm;
1017 	struct u_resource	ures;
1018 	int			error;
1019 
1020 	if (namelen != 3)
1021 		return (EINVAL);
1022 
1023 	if (bus_data_generation_check(name[0]))
1024 		return (EINVAL);
1025 	rman_idx = name[1];
1026 	res_idx = name[2];
1027 
1028 	/*
1029 	 * Find the indexed resource manager
1030 	 */
1031 	mtx_lock(&rman_mtx);
1032 	TAILQ_FOREACH(rm, &rman_head, rm_link) {
1033 		if (rman_idx-- == 0)
1034 			break;
1035 	}
1036 	mtx_unlock(&rman_mtx);
1037 	if (rm == NULL)
1038 		return (ENOENT);
1039 
1040 	/*
1041 	 * If the resource index is -1, we want details on the
1042 	 * resource manager.
1043 	 */
1044 	if (res_idx == -1) {
1045 		bzero(&urm, sizeof(urm));
1046 		urm.rm_handle = (uintptr_t)rm;
1047 		if (rm->rm_descr != NULL)
1048 			strlcpy(urm.rm_descr, rm->rm_descr, RM_TEXTLEN);
1049 		urm.rm_start = rm->rm_start;
1050 		urm.rm_size = rm->rm_end - rm->rm_start + 1;
1051 		urm.rm_type = rm->rm_type;
1052 
1053 		error = SYSCTL_OUT(req, &urm, sizeof(urm));
1054 		return (error);
1055 	}
1056 
1057 	/*
1058 	 * Find the indexed resource and return it.
1059 	 */
1060 	mtx_lock(rm->rm_mtx);
1061 	TAILQ_FOREACH(res, &rm->rm_list, r_link) {
1062 		if (res->r_sharehead != NULL) {
1063 			LIST_FOREACH(sres, res->r_sharehead, r_sharelink)
1064 				if (res_idx-- == 0) {
1065 					res = sres;
1066 					goto found;
1067 				}
1068 		}
1069 		else if (res_idx-- == 0)
1070 				goto found;
1071 	}
1072 	mtx_unlock(rm->rm_mtx);
1073 	return (ENOENT);
1074 
1075 found:
1076 	bzero(&ures, sizeof(ures));
1077 	ures.r_handle = (uintptr_t)res;
1078 	ures.r_parent = (uintptr_t)res->r_rm;
1079 	ures.r_device = (uintptr_t)res->r_dev;
1080 	if (res->r_dev != NULL) {
1081 		if (device_get_name(res->r_dev) != NULL) {
1082 			snprintf(ures.r_devname, RM_TEXTLEN,
1083 			    "%s%d",
1084 			    device_get_name(res->r_dev),
1085 			    device_get_unit(res->r_dev));
1086 		} else {
1087 			strlcpy(ures.r_devname, "nomatch",
1088 			    RM_TEXTLEN);
1089 		}
1090 	} else {
1091 		ures.r_devname[0] = '\0';
1092 	}
1093 	ures.r_start = res->r_start;
1094 	ures.r_size = res->r_end - res->r_start + 1;
1095 	ures.r_flags = res->r_flags;
1096 
1097 	mtx_unlock(rm->rm_mtx);
1098 	error = SYSCTL_OUT(req, &ures, sizeof(ures));
1099 	return (error);
1100 }
1101 
1102 static SYSCTL_NODE(_hw_bus, OID_AUTO, rman, CTLFLAG_RD, sysctl_rman,
1103     "kernel resource manager");
1104 
1105 #ifdef DDB
1106 static void
1107 dump_rman_header(struct rman *rm)
1108 {
1109 
1110 	if (db_pager_quit)
1111 		return;
1112 	db_printf("rman %p: %s (0x%lx-0x%lx full range)\n",
1113 	    rm, rm->rm_descr, rm->rm_start, rm->rm_end);
1114 }
1115 
1116 static void
1117 dump_rman(struct rman *rm)
1118 {
1119 	struct resource_i *r;
1120 	const char *devname;
1121 
1122 	if (db_pager_quit)
1123 		return;
1124 	TAILQ_FOREACH(r, &rm->rm_list, r_link) {
1125 		if (r->r_dev != NULL) {
1126 			devname = device_get_nameunit(r->r_dev);
1127 			if (devname == NULL)
1128 				devname = "nomatch";
1129 		} else
1130 			devname = NULL;
1131 		db_printf("    0x%lx-0x%lx ", r->r_start, r->r_end);
1132 		if (devname != NULL)
1133 			db_printf("(%s)\n", devname);
1134 		else
1135 			db_printf("----\n");
1136 		if (db_pager_quit)
1137 			return;
1138 	}
1139 }
1140 
1141 DB_SHOW_COMMAND(rman, db_show_rman)
1142 {
1143 
1144 	if (have_addr) {
1145 		dump_rman_header((struct rman *)addr);
1146 		dump_rman((struct rman *)addr);
1147 	}
1148 }
1149 
1150 DB_SHOW_COMMAND(rmans, db_show_rmans)
1151 {
1152 	struct rman *rm;
1153 
1154 	TAILQ_FOREACH(rm, &rman_head, rm_link) {
1155 		dump_rman_header(rm);
1156 	}
1157 }
1158 
1159 DB_SHOW_ALL_COMMAND(rman, db_show_all_rman)
1160 {
1161 	struct rman *rm;
1162 
1163 	TAILQ_FOREACH(rm, &rman_head, rm_link) {
1164 		dump_rman_header(rm);
1165 		dump_rman(rm);
1166 	}
1167 }
1168 DB_SHOW_ALIAS(allrman, db_show_all_rman);
1169 #endif
1170