xref: /freebsd/sys/kern/subr_rman.c (revision 814bd1ed438f7dfc5bedcb1f3e772a46fe7026bb)
1 /*-
2  * Copyright 1998 Massachusetts Institute of Technology
3  *
4  * Permission to use, copy, modify, and distribute this software and
5  * its documentation for any purpose and without fee is hereby
6  * granted, provided that both the above copyright notice and this
7  * permission notice appear in all copies, that both the above
8  * copyright notice and this permission notice appear in all
9  * supporting documentation, and that the name of M.I.T. not be used
10  * in advertising or publicity pertaining to distribution of the
11  * software without specific, written prior permission.  M.I.T. makes
12  * no representations about the suitability of this software for any
13  * purpose.  It is provided "as is" without express or implied
14  * warranty.
15  *
16  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
17  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /*
31  * The kernel resource manager.  This code is responsible for keeping track
32  * of hardware resources which are apportioned out to various drivers.
33  * It does not actually assign those resources, and it is not expected
34  * that end-device drivers will call into this code directly.  Rather,
35  * the code which implements the buses that those devices are attached to,
36  * and the code which manages CPU resources, will call this code, and the
37  * end-device drivers will make upcalls to that code to actually perform
38  * the allocation.
39  *
40  * There are two sorts of resources managed by this code.  The first is
41  * the more familiar array (RMAN_ARRAY) type; resources in this class
42  * consist of a sequence of individually-allocatable objects which have
43  * been numbered in some well-defined order.  Most of the resources
44  * are of this type, as it is the most familiar.  The second type is
45  * called a gauge (RMAN_GAUGE), and models fungible resources (i.e.,
46  * resources in which each instance is indistinguishable from every
47  * other instance).  The principal anticipated application of gauges
48  * is in the context of power consumption, where a bus may have a specific
49  * power budget which all attached devices share.  RMAN_GAUGE is not
50  * implemented yet.
51  *
52  * For array resources, we make one simplifying assumption: two clients
53  * sharing the same resource must use the same range of indices.  That
54  * is to say, sharing of overlapping-but-not-identical regions is not
55  * permitted.
56  */
57 
58 #include "opt_ddb.h"
59 
60 #include <sys/cdefs.h>
61 __FBSDID("$FreeBSD$");
62 
63 #include <sys/param.h>
64 #include <sys/systm.h>
65 #include <sys/kernel.h>
66 #include <sys/limits.h>
67 #include <sys/lock.h>
68 #include <sys/malloc.h>
69 #include <sys/mutex.h>
70 #include <sys/bus.h>		/* XXX debugging */
71 #include <machine/bus.h>
72 #include <sys/rman.h>
73 #include <sys/sysctl.h>
74 
75 #ifdef DDB
76 #include <ddb/ddb.h>
77 #endif
78 
79 /*
80  * We use a linked list rather than a bitmap because we need to be able to
81  * represent potentially huge objects (like all of a processor's physical
82  * address space).
83  */
84 struct resource_i {
85 	struct resource		r_r;
86 	TAILQ_ENTRY(resource_i)	r_link;
87 	LIST_ENTRY(resource_i)	r_sharelink;
88 	LIST_HEAD(, resource_i)	*r_sharehead;
89 	rman_res_t	r_start;	/* index of the first entry in this resource */
90 	rman_res_t	r_end;		/* index of the last entry (inclusive) */
91 	u_int	r_flags;
92 	void	*r_virtual;	/* virtual address of this resource */
93 	void	*r_irq_cookie;	/* interrupt cookie for this (interrupt) resource */
94 	device_t r_dev;	/* device which has allocated this resource */
95 	struct rman *r_rm;	/* resource manager from whence this came */
96 	int	r_rid;		/* optional rid for this resource. */
97 };
98 
99 static int rman_debug = 0;
100 SYSCTL_INT(_debug, OID_AUTO, rman_debug, CTLFLAG_RWTUN,
101     &rman_debug, 0, "rman debug");
102 
103 #define DPRINTF(params) if (rman_debug) printf params
104 
105 static MALLOC_DEFINE(M_RMAN, "rman", "Resource manager");
106 
107 struct rman_head rman_head;
108 static struct mtx rman_mtx; /* mutex to protect rman_head */
109 static int int_rman_release_resource(struct rman *rm, struct resource_i *r);
110 
111 static __inline struct resource_i *
112 int_alloc_resource(int malloc_flag)
113 {
114 	struct resource_i *r;
115 
116 	r = malloc(sizeof *r, M_RMAN, malloc_flag | M_ZERO);
117 	if (r != NULL) {
118 		r->r_r.__r_i = r;
119 	}
120 	return (r);
121 }
122 
123 int
124 rman_init(struct rman *rm)
125 {
126 	static int once = 0;
127 
128 	if (once == 0) {
129 		once = 1;
130 		TAILQ_INIT(&rman_head);
131 		mtx_init(&rman_mtx, "rman head", NULL, MTX_DEF);
132 	}
133 
134 	if (rm->rm_start == 0 && rm->rm_end == 0)
135 		rm->rm_end = ~0;
136 	if (rm->rm_type == RMAN_UNINIT)
137 		panic("rman_init");
138 	if (rm->rm_type == RMAN_GAUGE)
139 		panic("implement RMAN_GAUGE");
140 
141 	TAILQ_INIT(&rm->rm_list);
142 	rm->rm_mtx = malloc(sizeof *rm->rm_mtx, M_RMAN, M_NOWAIT | M_ZERO);
143 	if (rm->rm_mtx == NULL)
144 		return ENOMEM;
145 	mtx_init(rm->rm_mtx, "rman", NULL, MTX_DEF);
146 
147 	mtx_lock(&rman_mtx);
148 	TAILQ_INSERT_TAIL(&rman_head, rm, rm_link);
149 	mtx_unlock(&rman_mtx);
150 	return 0;
151 }
152 
153 int
154 rman_manage_region(struct rman *rm, rman_res_t start, rman_res_t end)
155 {
156 	struct resource_i *r, *s, *t;
157 	int rv = 0;
158 
159 	DPRINTF(("rman_manage_region: <%s> request: start %#jx, end %#jx\n",
160 	    rm->rm_descr, start, end));
161 	if (start < rm->rm_start || end > rm->rm_end)
162 		return EINVAL;
163 	r = int_alloc_resource(M_NOWAIT);
164 	if (r == NULL)
165 		return ENOMEM;
166 	r->r_start = start;
167 	r->r_end = end;
168 	r->r_rm = rm;
169 
170 	mtx_lock(rm->rm_mtx);
171 
172 	/* Skip entries before us. */
173 	TAILQ_FOREACH(s, &rm->rm_list, r_link) {
174 		if (s->r_end == ~0)
175 			break;
176 		if (s->r_end + 1 >= r->r_start)
177 			break;
178 	}
179 
180 	/* If we ran off the end of the list, insert at the tail. */
181 	if (s == NULL) {
182 		TAILQ_INSERT_TAIL(&rm->rm_list, r, r_link);
183 	} else {
184 		/* Check for any overlap with the current region. */
185 		if (r->r_start <= s->r_end && r->r_end >= s->r_start) {
186 			rv = EBUSY;
187 			goto out;
188 		}
189 
190 		/* Check for any overlap with the next region. */
191 		t = TAILQ_NEXT(s, r_link);
192 		if (t && r->r_start <= t->r_end && r->r_end >= t->r_start) {
193 			rv = EBUSY;
194 			goto out;
195 		}
196 
197 		/*
198 		 * See if this region can be merged with the next region.  If
199 		 * not, clear the pointer.
200 		 */
201 		if (t && (r->r_end + 1 != t->r_start || t->r_flags != 0))
202 			t = NULL;
203 
204 		/* See if we can merge with the current region. */
205 		if (s->r_end + 1 == r->r_start && s->r_flags == 0) {
206 			/* Can we merge all 3 regions? */
207 			if (t != NULL) {
208 				s->r_end = t->r_end;
209 				TAILQ_REMOVE(&rm->rm_list, t, r_link);
210 				free(r, M_RMAN);
211 				free(t, M_RMAN);
212 			} else {
213 				s->r_end = r->r_end;
214 				free(r, M_RMAN);
215 			}
216 		} else if (t != NULL) {
217 			/* Can we merge with just the next region? */
218 			t->r_start = r->r_start;
219 			free(r, M_RMAN);
220 		} else if (s->r_end < r->r_start) {
221 			TAILQ_INSERT_AFTER(&rm->rm_list, s, r, r_link);
222 		} else {
223 			TAILQ_INSERT_BEFORE(s, r, r_link);
224 		}
225 	}
226 out:
227 	mtx_unlock(rm->rm_mtx);
228 	return rv;
229 }
230 
231 int
232 rman_init_from_resource(struct rman *rm, struct resource *r)
233 {
234 	int rv;
235 
236 	if ((rv = rman_init(rm)) != 0)
237 		return (rv);
238 	return (rman_manage_region(rm, r->__r_i->r_start, r->__r_i->r_end));
239 }
240 
241 int
242 rman_fini(struct rman *rm)
243 {
244 	struct resource_i *r;
245 
246 	mtx_lock(rm->rm_mtx);
247 	TAILQ_FOREACH(r, &rm->rm_list, r_link) {
248 		if (r->r_flags & RF_ALLOCATED) {
249 			mtx_unlock(rm->rm_mtx);
250 			return EBUSY;
251 		}
252 	}
253 
254 	/*
255 	 * There really should only be one of these if we are in this
256 	 * state and the code is working properly, but it can't hurt.
257 	 */
258 	while (!TAILQ_EMPTY(&rm->rm_list)) {
259 		r = TAILQ_FIRST(&rm->rm_list);
260 		TAILQ_REMOVE(&rm->rm_list, r, r_link);
261 		free(r, M_RMAN);
262 	}
263 	mtx_unlock(rm->rm_mtx);
264 	mtx_lock(&rman_mtx);
265 	TAILQ_REMOVE(&rman_head, rm, rm_link);
266 	mtx_unlock(&rman_mtx);
267 	mtx_destroy(rm->rm_mtx);
268 	free(rm->rm_mtx, M_RMAN);
269 
270 	return 0;
271 }
272 
273 int
274 rman_first_free_region(struct rman *rm, rman_res_t *start, rman_res_t *end)
275 {
276 	struct resource_i *r;
277 
278 	mtx_lock(rm->rm_mtx);
279 	TAILQ_FOREACH(r, &rm->rm_list, r_link) {
280 		if (!(r->r_flags & RF_ALLOCATED)) {
281 			*start = r->r_start;
282 			*end = r->r_end;
283 			mtx_unlock(rm->rm_mtx);
284 			return (0);
285 		}
286 	}
287 	mtx_unlock(rm->rm_mtx);
288 	return (ENOENT);
289 }
290 
291 int
292 rman_last_free_region(struct rman *rm, rman_res_t *start, rman_res_t *end)
293 {
294 	struct resource_i *r;
295 
296 	mtx_lock(rm->rm_mtx);
297 	TAILQ_FOREACH_REVERSE(r, &rm->rm_list, resource_head, r_link) {
298 		if (!(r->r_flags & RF_ALLOCATED)) {
299 			*start = r->r_start;
300 			*end = r->r_end;
301 			mtx_unlock(rm->rm_mtx);
302 			return (0);
303 		}
304 	}
305 	mtx_unlock(rm->rm_mtx);
306 	return (ENOENT);
307 }
308 
309 /* Shrink or extend one or both ends of an allocated resource. */
310 int
311 rman_adjust_resource(struct resource *rr, rman_res_t start, rman_res_t end)
312 {
313 	struct resource_i *r, *s, *t, *new;
314 	struct rman *rm;
315 
316 	/* Not supported for shared resources. */
317 	r = rr->__r_i;
318 	if (r->r_flags & RF_SHAREABLE)
319 		return (EINVAL);
320 
321 	/*
322 	 * This does not support wholesale moving of a resource.  At
323 	 * least part of the desired new range must overlap with the
324 	 * existing resource.
325 	 */
326 	if (end < r->r_start || r->r_end < start)
327 		return (EINVAL);
328 
329 	/*
330 	 * Find the two resource regions immediately adjacent to the
331 	 * allocated resource.
332 	 */
333 	rm = r->r_rm;
334 	mtx_lock(rm->rm_mtx);
335 #ifdef INVARIANTS
336 	TAILQ_FOREACH(s, &rm->rm_list, r_link) {
337 		if (s == r)
338 			break;
339 	}
340 	if (s == NULL)
341 		panic("resource not in list");
342 #endif
343 	s = TAILQ_PREV(r, resource_head, r_link);
344 	t = TAILQ_NEXT(r, r_link);
345 	KASSERT(s == NULL || s->r_end + 1 == r->r_start,
346 	    ("prev resource mismatch"));
347 	KASSERT(t == NULL || r->r_end + 1 == t->r_start,
348 	    ("next resource mismatch"));
349 
350 	/*
351 	 * See if the changes are permitted.  Shrinking is always allowed,
352 	 * but growing requires sufficient room in the adjacent region.
353 	 */
354 	if (start < r->r_start && (s == NULL || (s->r_flags & RF_ALLOCATED) ||
355 	    s->r_start > start)) {
356 		mtx_unlock(rm->rm_mtx);
357 		return (EBUSY);
358 	}
359 	if (end > r->r_end && (t == NULL || (t->r_flags & RF_ALLOCATED) ||
360 	    t->r_end < end)) {
361 		mtx_unlock(rm->rm_mtx);
362 		return (EBUSY);
363 	}
364 
365 	/*
366 	 * While holding the lock, grow either end of the resource as
367 	 * needed and shrink either end if the shrinking does not require
368 	 * allocating a new resource.  We can safely drop the lock and then
369 	 * insert a new range to handle the shrinking case afterwards.
370 	 */
371 	if (start < r->r_start ||
372 	    (start > r->r_start && s != NULL && !(s->r_flags & RF_ALLOCATED))) {
373 		KASSERT(s->r_flags == 0, ("prev is busy"));
374 		r->r_start = start;
375 		if (s->r_start == start) {
376 			TAILQ_REMOVE(&rm->rm_list, s, r_link);
377 			free(s, M_RMAN);
378 		} else
379 			s->r_end = start - 1;
380 	}
381 	if (end > r->r_end ||
382 	    (end < r->r_end && t != NULL && !(t->r_flags & RF_ALLOCATED))) {
383 		KASSERT(t->r_flags == 0, ("next is busy"));
384 		r->r_end = end;
385 		if (t->r_end == end) {
386 			TAILQ_REMOVE(&rm->rm_list, t, r_link);
387 			free(t, M_RMAN);
388 		} else
389 			t->r_start = end + 1;
390 	}
391 	mtx_unlock(rm->rm_mtx);
392 
393 	/*
394 	 * Handle the shrinking cases that require allocating a new
395 	 * resource to hold the newly-free region.  We have to recheck
396 	 * if we still need this new region after acquiring the lock.
397 	 */
398 	if (start > r->r_start) {
399 		new = int_alloc_resource(M_WAITOK);
400 		new->r_start = r->r_start;
401 		new->r_end = start - 1;
402 		new->r_rm = rm;
403 		mtx_lock(rm->rm_mtx);
404 		r->r_start = start;
405 		s = TAILQ_PREV(r, resource_head, r_link);
406 		if (s != NULL && !(s->r_flags & RF_ALLOCATED)) {
407 			s->r_end = start - 1;
408 			free(new, M_RMAN);
409 		} else
410 			TAILQ_INSERT_BEFORE(r, new, r_link);
411 		mtx_unlock(rm->rm_mtx);
412 	}
413 	if (end < r->r_end) {
414 		new = int_alloc_resource(M_WAITOK);
415 		new->r_start = end + 1;
416 		new->r_end = r->r_end;
417 		new->r_rm = rm;
418 		mtx_lock(rm->rm_mtx);
419 		r->r_end = end;
420 		t = TAILQ_NEXT(r, r_link);
421 		if (t != NULL && !(t->r_flags & RF_ALLOCATED)) {
422 			t->r_start = end + 1;
423 			free(new, M_RMAN);
424 		} else
425 			TAILQ_INSERT_AFTER(&rm->rm_list, r, new, r_link);
426 		mtx_unlock(rm->rm_mtx);
427 	}
428 	return (0);
429 }
430 
431 #define	SHARE_TYPE(f)	(f & (RF_SHAREABLE | RF_PREFETCHABLE))
432 
433 struct resource *
434 rman_reserve_resource_bound(struct rman *rm, rman_res_t start, rman_res_t end,
435 			    rman_res_t count, rman_res_t bound, u_int flags,
436 			    device_t dev)
437 {
438 	u_int new_rflags;
439 	struct resource_i *r, *s, *rv;
440 	rman_res_t rstart, rend, amask, bmask;
441 
442 	rv = NULL;
443 
444 	DPRINTF(("rman_reserve_resource_bound: <%s> request: [%#jx, %#jx], "
445 	       "length %#jx, flags %x, device %s\n", rm->rm_descr, start, end,
446 	       count, flags,
447 	       dev == NULL ? "<null>" : device_get_nameunit(dev)));
448 	KASSERT(count != 0, ("%s: attempted to allocate an empty range",
449 	    __func__));
450 	KASSERT((flags & RF_FIRSTSHARE) == 0,
451 	    ("invalid flags %#x", flags));
452 	new_rflags = (flags & ~RF_FIRSTSHARE) | RF_ALLOCATED;
453 
454 	mtx_lock(rm->rm_mtx);
455 
456 	r = TAILQ_FIRST(&rm->rm_list);
457 	if (r == NULL) {
458 	    DPRINTF(("NULL list head\n"));
459 	} else {
460 	    DPRINTF(("rman_reserve_resource_bound: trying %#jx <%#jx,%#jx>\n",
461 		    r->r_end, start, count-1));
462 	}
463 	for (r = TAILQ_FIRST(&rm->rm_list);
464 	     r && r->r_end < start + count - 1;
465 	     r = TAILQ_NEXT(r, r_link)) {
466 		;
467 		DPRINTF(("rman_reserve_resource_bound: tried %#jx <%#jx,%#jx>\n",
468 			r->r_end, start, count-1));
469 	}
470 
471 	if (r == NULL) {
472 		DPRINTF(("could not find a region\n"));
473 		goto out;
474 	}
475 
476 	amask = (1ull << RF_ALIGNMENT(flags)) - 1;
477 	KASSERT(start <= RM_MAX_END - amask,
478 	    ("start (%#jx) + amask (%#jx) would wrap around", start, amask));
479 
480 	/* If bound is 0, bmask will also be 0 */
481 	bmask = ~(bound - 1);
482 	/*
483 	 * First try to find an acceptable totally-unshared region.
484 	 */
485 	for (s = r; s; s = TAILQ_NEXT(s, r_link)) {
486 		DPRINTF(("considering [%#jx, %#jx]\n", s->r_start, s->r_end));
487 		/*
488 		 * The resource list is sorted, so there is no point in
489 		 * searching further once r_start is too large.
490 		 */
491 		if (s->r_start > end - (count - 1)) {
492 			DPRINTF(("s->r_start (%#jx) + count - 1> end (%#jx)\n",
493 			    s->r_start, end));
494 			break;
495 		}
496 		if (s->r_start > RM_MAX_END - amask) {
497 			DPRINTF(("s->r_start (%#jx) + amask (%#jx) too large\n",
498 			    s->r_start, amask));
499 			break;
500 		}
501 		if (s->r_flags & RF_ALLOCATED) {
502 			DPRINTF(("region is allocated\n"));
503 			continue;
504 		}
505 		rstart = ummax(s->r_start, start);
506 		/*
507 		 * Try to find a region by adjusting to boundary and alignment
508 		 * until both conditions are satisfied. This is not an optimal
509 		 * algorithm, but in most cases it isn't really bad, either.
510 		 */
511 		do {
512 			rstart = (rstart + amask) & ~amask;
513 			if (((rstart ^ (rstart + count - 1)) & bmask) != 0)
514 				rstart += bound - (rstart & ~bmask);
515 		} while ((rstart & amask) != 0 && rstart < end &&
516 		    rstart < s->r_end);
517 		rend = ummin(s->r_end, ummax(rstart + count - 1, end));
518 		if (rstart > rend) {
519 			DPRINTF(("adjusted start exceeds end\n"));
520 			continue;
521 		}
522 		DPRINTF(("truncated region: [%#jx, %#jx]; size %#jx (requested %#jx)\n",
523 		       rstart, rend, (rend - rstart + 1), count));
524 
525 		if ((rend - rstart) >= (count - 1)) {
526 			DPRINTF(("candidate region: [%#jx, %#jx], size %#jx\n",
527 			       rstart, rend, (rend - rstart + 1)));
528 			if ((s->r_end - s->r_start + 1) == count) {
529 				DPRINTF(("candidate region is entire chunk\n"));
530 				rv = s;
531 				rv->r_flags = new_rflags;
532 				rv->r_dev = dev;
533 				goto out;
534 			}
535 
536 			/*
537 			 * If s->r_start < rstart and
538 			 *    s->r_end > rstart + count - 1, then
539 			 * we need to split the region into three pieces
540 			 * (the middle one will get returned to the user).
541 			 * Otherwise, we are allocating at either the
542 			 * beginning or the end of s, so we only need to
543 			 * split it in two.  The first case requires
544 			 * two new allocations; the second requires but one.
545 			 */
546 			rv = int_alloc_resource(M_NOWAIT);
547 			if (rv == NULL)
548 				goto out;
549 			rv->r_start = rstart;
550 			rv->r_end = rstart + count - 1;
551 			rv->r_flags = new_rflags;
552 			rv->r_dev = dev;
553 			rv->r_rm = rm;
554 
555 			if (s->r_start < rv->r_start && s->r_end > rv->r_end) {
556 				DPRINTF(("splitting region in three parts: "
557 				       "[%#jx, %#jx]; [%#jx, %#jx]; [%#jx, %#jx]\n",
558 				       s->r_start, rv->r_start - 1,
559 				       rv->r_start, rv->r_end,
560 				       rv->r_end + 1, s->r_end));
561 				/*
562 				 * We are allocating in the middle.
563 				 */
564 				r = int_alloc_resource(M_NOWAIT);
565 				if (r == NULL) {
566 					free(rv, M_RMAN);
567 					rv = NULL;
568 					goto out;
569 				}
570 				r->r_start = rv->r_end + 1;
571 				r->r_end = s->r_end;
572 				r->r_flags = s->r_flags;
573 				r->r_rm = rm;
574 				s->r_end = rv->r_start - 1;
575 				TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
576 						     r_link);
577 				TAILQ_INSERT_AFTER(&rm->rm_list, rv, r,
578 						     r_link);
579 			} else if (s->r_start == rv->r_start) {
580 				DPRINTF(("allocating from the beginning\n"));
581 				/*
582 				 * We are allocating at the beginning.
583 				 */
584 				s->r_start = rv->r_end + 1;
585 				TAILQ_INSERT_BEFORE(s, rv, r_link);
586 			} else {
587 				DPRINTF(("allocating at the end\n"));
588 				/*
589 				 * We are allocating at the end.
590 				 */
591 				s->r_end = rv->r_start - 1;
592 				TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
593 						     r_link);
594 			}
595 			goto out;
596 		}
597 	}
598 
599 	/*
600 	 * Now find an acceptable shared region, if the client's requirements
601 	 * allow sharing.  By our implementation restriction, a candidate
602 	 * region must match exactly by both size and sharing type in order
603 	 * to be considered compatible with the client's request.  (The
604 	 * former restriction could probably be lifted without too much
605 	 * additional work, but this does not seem warranted.)
606 	 */
607 	DPRINTF(("no unshared regions found\n"));
608 	if ((flags & RF_SHAREABLE) == 0)
609 		goto out;
610 
611 	for (s = r; s && s->r_end <= end; s = TAILQ_NEXT(s, r_link)) {
612 		if (SHARE_TYPE(s->r_flags) == SHARE_TYPE(flags) &&
613 		    s->r_start >= start &&
614 		    (s->r_end - s->r_start + 1) == count &&
615 		    (s->r_start & amask) == 0 &&
616 		    ((s->r_start ^ s->r_end) & bmask) == 0) {
617 			rv = int_alloc_resource(M_NOWAIT);
618 			if (rv == NULL)
619 				goto out;
620 			rv->r_start = s->r_start;
621 			rv->r_end = s->r_end;
622 			rv->r_flags = new_rflags;
623 			rv->r_dev = dev;
624 			rv->r_rm = rm;
625 			if (s->r_sharehead == NULL) {
626 				s->r_sharehead = malloc(sizeof *s->r_sharehead,
627 						M_RMAN, M_NOWAIT | M_ZERO);
628 				if (s->r_sharehead == NULL) {
629 					free(rv, M_RMAN);
630 					rv = NULL;
631 					goto out;
632 				}
633 				LIST_INIT(s->r_sharehead);
634 				LIST_INSERT_HEAD(s->r_sharehead, s,
635 						 r_sharelink);
636 				s->r_flags |= RF_FIRSTSHARE;
637 			}
638 			rv->r_sharehead = s->r_sharehead;
639 			LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink);
640 			goto out;
641 		}
642 	}
643 	/*
644 	 * We couldn't find anything.
645 	 */
646 
647 out:
648 	mtx_unlock(rm->rm_mtx);
649 	return (rv == NULL ? NULL : &rv->r_r);
650 }
651 
652 struct resource *
653 rman_reserve_resource(struct rman *rm, rman_res_t start, rman_res_t end,
654 		      rman_res_t count, u_int flags, device_t dev)
655 {
656 
657 	return (rman_reserve_resource_bound(rm, start, end, count, 0, flags,
658 	    dev));
659 }
660 
661 int
662 rman_activate_resource(struct resource *re)
663 {
664 	struct resource_i *r;
665 	struct rman *rm;
666 
667 	r = re->__r_i;
668 	rm = r->r_rm;
669 	mtx_lock(rm->rm_mtx);
670 	r->r_flags |= RF_ACTIVE;
671 	mtx_unlock(rm->rm_mtx);
672 	return 0;
673 }
674 
675 int
676 rman_deactivate_resource(struct resource *r)
677 {
678 	struct rman *rm;
679 
680 	rm = r->__r_i->r_rm;
681 	mtx_lock(rm->rm_mtx);
682 	r->__r_i->r_flags &= ~RF_ACTIVE;
683 	mtx_unlock(rm->rm_mtx);
684 	return 0;
685 }
686 
687 static int
688 int_rman_release_resource(struct rman *rm, struct resource_i *r)
689 {
690 	struct resource_i *s, *t;
691 
692 	if (r->r_flags & RF_ACTIVE)
693 		r->r_flags &= ~RF_ACTIVE;
694 
695 	/*
696 	 * Check for a sharing list first.  If there is one, then we don't
697 	 * have to think as hard.
698 	 */
699 	if (r->r_sharehead) {
700 		/*
701 		 * If a sharing list exists, then we know there are at
702 		 * least two sharers.
703 		 *
704 		 * If we are in the main circleq, appoint someone else.
705 		 */
706 		LIST_REMOVE(r, r_sharelink);
707 		s = LIST_FIRST(r->r_sharehead);
708 		if (r->r_flags & RF_FIRSTSHARE) {
709 			s->r_flags |= RF_FIRSTSHARE;
710 			TAILQ_INSERT_BEFORE(r, s, r_link);
711 			TAILQ_REMOVE(&rm->rm_list, r, r_link);
712 		}
713 
714 		/*
715 		 * Make sure that the sharing list goes away completely
716 		 * if the resource is no longer being shared at all.
717 		 */
718 		if (LIST_NEXT(s, r_sharelink) == NULL) {
719 			free(s->r_sharehead, M_RMAN);
720 			s->r_sharehead = NULL;
721 			s->r_flags &= ~RF_FIRSTSHARE;
722 		}
723 		goto out;
724 	}
725 
726 	/*
727 	 * Look at the adjacent resources in the list and see if our
728 	 * segment can be merged with any of them.  If either of the
729 	 * resources is allocated or is not exactly adjacent then they
730 	 * cannot be merged with our segment.
731 	 */
732 	s = TAILQ_PREV(r, resource_head, r_link);
733 	if (s != NULL && ((s->r_flags & RF_ALLOCATED) != 0 ||
734 	    s->r_end + 1 != r->r_start))
735 		s = NULL;
736 	t = TAILQ_NEXT(r, r_link);
737 	if (t != NULL && ((t->r_flags & RF_ALLOCATED) != 0 ||
738 	    r->r_end + 1 != t->r_start))
739 		t = NULL;
740 
741 	if (s != NULL && t != NULL) {
742 		/*
743 		 * Merge all three segments.
744 		 */
745 		s->r_end = t->r_end;
746 		TAILQ_REMOVE(&rm->rm_list, r, r_link);
747 		TAILQ_REMOVE(&rm->rm_list, t, r_link);
748 		free(t, M_RMAN);
749 	} else if (s != NULL) {
750 		/*
751 		 * Merge previous segment with ours.
752 		 */
753 		s->r_end = r->r_end;
754 		TAILQ_REMOVE(&rm->rm_list, r, r_link);
755 	} else if (t != NULL) {
756 		/*
757 		 * Merge next segment with ours.
758 		 */
759 		t->r_start = r->r_start;
760 		TAILQ_REMOVE(&rm->rm_list, r, r_link);
761 	} else {
762 		/*
763 		 * At this point, we know there is nothing we
764 		 * can potentially merge with, because on each
765 		 * side, there is either nothing there or what is
766 		 * there is still allocated.  In that case, we don't
767 		 * want to remove r from the list; we simply want to
768 		 * change it to an unallocated region and return
769 		 * without freeing anything.
770 		 */
771 		r->r_flags &= ~RF_ALLOCATED;
772 		r->r_dev = NULL;
773 		return 0;
774 	}
775 
776 out:
777 	free(r, M_RMAN);
778 	return 0;
779 }
780 
781 int
782 rman_release_resource(struct resource *re)
783 {
784 	int rv;
785 	struct resource_i *r;
786 	struct rman *rm;
787 
788 	r = re->__r_i;
789 	rm = r->r_rm;
790 	mtx_lock(rm->rm_mtx);
791 	rv = int_rman_release_resource(rm, r);
792 	mtx_unlock(rm->rm_mtx);
793 	return (rv);
794 }
795 
796 uint32_t
797 rman_make_alignment_flags(uint32_t size)
798 {
799 	int i;
800 
801 	/*
802 	 * Find the hightest bit set, and add one if more than one bit
803 	 * set.  We're effectively computing the ceil(log2(size)) here.
804 	 */
805 	for (i = 31; i > 0; i--)
806 		if ((1 << i) & size)
807 			break;
808 	if (~(1 << i) & size)
809 		i++;
810 
811 	return(RF_ALIGNMENT_LOG2(i));
812 }
813 
814 void
815 rman_set_start(struct resource *r, rman_res_t start)
816 {
817 
818 	r->__r_i->r_start = start;
819 }
820 
821 rman_res_t
822 rman_get_start(struct resource *r)
823 {
824 
825 	return (r->__r_i->r_start);
826 }
827 
828 void
829 rman_set_end(struct resource *r, rman_res_t end)
830 {
831 
832 	r->__r_i->r_end = end;
833 }
834 
835 rman_res_t
836 rman_get_end(struct resource *r)
837 {
838 
839 	return (r->__r_i->r_end);
840 }
841 
842 rman_res_t
843 rman_get_size(struct resource *r)
844 {
845 
846 	return (r->__r_i->r_end - r->__r_i->r_start + 1);
847 }
848 
849 u_int
850 rman_get_flags(struct resource *r)
851 {
852 
853 	return (r->__r_i->r_flags);
854 }
855 
856 void
857 rman_set_virtual(struct resource *r, void *v)
858 {
859 
860 	r->__r_i->r_virtual = v;
861 }
862 
863 void *
864 rman_get_virtual(struct resource *r)
865 {
866 
867 	return (r->__r_i->r_virtual);
868 }
869 
870 void
871 rman_set_irq_cookie(struct resource *r, void *c)
872 {
873 
874 	r->__r_i->r_irq_cookie = c;
875 }
876 
877 void *
878 rman_get_irq_cookie(struct resource *r)
879 {
880 
881 	return (r->__r_i->r_irq_cookie);
882 }
883 
884 void
885 rman_set_bustag(struct resource *r, bus_space_tag_t t)
886 {
887 
888 	r->r_bustag = t;
889 }
890 
891 bus_space_tag_t
892 rman_get_bustag(struct resource *r)
893 {
894 
895 	return (r->r_bustag);
896 }
897 
898 void
899 rman_set_bushandle(struct resource *r, bus_space_handle_t h)
900 {
901 
902 	r->r_bushandle = h;
903 }
904 
905 bus_space_handle_t
906 rman_get_bushandle(struct resource *r)
907 {
908 
909 	return (r->r_bushandle);
910 }
911 
912 void
913 rman_set_mapping(struct resource *r, struct resource_map *map)
914 {
915 
916 	KASSERT(rman_get_size(r) == map->r_size,
917 	    ("rman_set_mapping: size mismatch"));
918 	rman_set_bustag(r, map->r_bustag);
919 	rman_set_bushandle(r, map->r_bushandle);
920 	rman_set_virtual(r, map->r_vaddr);
921 }
922 
923 void
924 rman_get_mapping(struct resource *r, struct resource_map *map)
925 {
926 
927 	map->r_bustag = rman_get_bustag(r);
928 	map->r_bushandle = rman_get_bushandle(r);
929 	map->r_size = rman_get_size(r);
930 	map->r_vaddr = rman_get_virtual(r);
931 }
932 
933 void
934 rman_set_rid(struct resource *r, int rid)
935 {
936 
937 	r->__r_i->r_rid = rid;
938 }
939 
940 int
941 rman_get_rid(struct resource *r)
942 {
943 
944 	return (r->__r_i->r_rid);
945 }
946 
947 void
948 rman_set_device(struct resource *r, device_t dev)
949 {
950 
951 	r->__r_i->r_dev = dev;
952 }
953 
954 device_t
955 rman_get_device(struct resource *r)
956 {
957 
958 	return (r->__r_i->r_dev);
959 }
960 
961 int
962 rman_is_region_manager(struct resource *r, struct rman *rm)
963 {
964 
965 	return (r->__r_i->r_rm == rm);
966 }
967 
968 /*
969  * Sysctl interface for scanning the resource lists.
970  *
971  * We take two input parameters; the index into the list of resource
972  * managers, and the resource offset into the list.
973  */
974 static int
975 sysctl_rman(SYSCTL_HANDLER_ARGS)
976 {
977 	int			*name = (int *)arg1;
978 	u_int			namelen = arg2;
979 	int			rman_idx, res_idx;
980 	struct rman		*rm;
981 	struct resource_i	*res;
982 	struct resource_i	*sres;
983 	struct u_rman		urm;
984 	struct u_resource	ures;
985 	int			error;
986 
987 	if (namelen != 3)
988 		return (EINVAL);
989 
990 	if (bus_data_generation_check(name[0]))
991 		return (EINVAL);
992 	rman_idx = name[1];
993 	res_idx = name[2];
994 
995 	/*
996 	 * Find the indexed resource manager
997 	 */
998 	mtx_lock(&rman_mtx);
999 	TAILQ_FOREACH(rm, &rman_head, rm_link) {
1000 		if (rman_idx-- == 0)
1001 			break;
1002 	}
1003 	mtx_unlock(&rman_mtx);
1004 	if (rm == NULL)
1005 		return (ENOENT);
1006 
1007 	/*
1008 	 * If the resource index is -1, we want details on the
1009 	 * resource manager.
1010 	 */
1011 	if (res_idx == -1) {
1012 		bzero(&urm, sizeof(urm));
1013 		urm.rm_handle = (uintptr_t)rm;
1014 		if (rm->rm_descr != NULL)
1015 			strlcpy(urm.rm_descr, rm->rm_descr, RM_TEXTLEN);
1016 		urm.rm_start = rm->rm_start;
1017 		urm.rm_size = rm->rm_end - rm->rm_start + 1;
1018 		urm.rm_type = rm->rm_type;
1019 
1020 		error = SYSCTL_OUT(req, &urm, sizeof(urm));
1021 		return (error);
1022 	}
1023 
1024 	/*
1025 	 * Find the indexed resource and return it.
1026 	 */
1027 	mtx_lock(rm->rm_mtx);
1028 	TAILQ_FOREACH(res, &rm->rm_list, r_link) {
1029 		if (res->r_sharehead != NULL) {
1030 			LIST_FOREACH(sres, res->r_sharehead, r_sharelink)
1031 				if (res_idx-- == 0) {
1032 					res = sres;
1033 					goto found;
1034 				}
1035 		}
1036 		else if (res_idx-- == 0)
1037 				goto found;
1038 	}
1039 	mtx_unlock(rm->rm_mtx);
1040 	return (ENOENT);
1041 
1042 found:
1043 	bzero(&ures, sizeof(ures));
1044 	ures.r_handle = (uintptr_t)res;
1045 	ures.r_parent = (uintptr_t)res->r_rm;
1046 	ures.r_device = (uintptr_t)res->r_dev;
1047 	if (res->r_dev != NULL) {
1048 		if (device_get_name(res->r_dev) != NULL) {
1049 			snprintf(ures.r_devname, RM_TEXTLEN,
1050 			    "%s%d",
1051 			    device_get_name(res->r_dev),
1052 			    device_get_unit(res->r_dev));
1053 		} else {
1054 			strlcpy(ures.r_devname, "nomatch",
1055 			    RM_TEXTLEN);
1056 		}
1057 	} else {
1058 		ures.r_devname[0] = '\0';
1059 	}
1060 	ures.r_start = res->r_start;
1061 	ures.r_size = res->r_end - res->r_start + 1;
1062 	ures.r_flags = res->r_flags;
1063 
1064 	mtx_unlock(rm->rm_mtx);
1065 	error = SYSCTL_OUT(req, &ures, sizeof(ures));
1066 	return (error);
1067 }
1068 
1069 static SYSCTL_NODE(_hw_bus, OID_AUTO, rman, CTLFLAG_RD | CTLFLAG_MPSAFE,
1070     sysctl_rman,
1071     "kernel resource manager");
1072 
1073 #ifdef DDB
1074 static void
1075 dump_rman_header(struct rman *rm)
1076 {
1077 
1078 	if (db_pager_quit)
1079 		return;
1080 	db_printf("rman %p: %s (0x%jx-0x%jx full range)\n",
1081 	    rm, rm->rm_descr, (rman_res_t)rm->rm_start, (rman_res_t)rm->rm_end);
1082 }
1083 
1084 static void
1085 dump_rman(struct rman *rm)
1086 {
1087 	struct resource_i *r;
1088 	const char *devname;
1089 
1090 	if (db_pager_quit)
1091 		return;
1092 	TAILQ_FOREACH(r, &rm->rm_list, r_link) {
1093 		if (r->r_dev != NULL) {
1094 			devname = device_get_nameunit(r->r_dev);
1095 			if (devname == NULL)
1096 				devname = "nomatch";
1097 		} else
1098 			devname = NULL;
1099 		db_printf("    0x%jx-0x%jx (RID=%d) ",
1100 		    r->r_start, r->r_end, r->r_rid);
1101 		if (devname != NULL)
1102 			db_printf("(%s)\n", devname);
1103 		else
1104 			db_printf("----\n");
1105 		if (db_pager_quit)
1106 			return;
1107 	}
1108 }
1109 
1110 DB_SHOW_COMMAND(rman, db_show_rman)
1111 {
1112 
1113 	if (have_addr) {
1114 		dump_rman_header((struct rman *)addr);
1115 		dump_rman((struct rman *)addr);
1116 	}
1117 }
1118 
1119 DB_SHOW_COMMAND_FLAGS(rmans, db_show_rmans, DB_CMD_MEMSAFE)
1120 {
1121 	struct rman *rm;
1122 
1123 	TAILQ_FOREACH(rm, &rman_head, rm_link) {
1124 		dump_rman_header(rm);
1125 	}
1126 }
1127 
1128 DB_SHOW_ALL_COMMAND(rman, db_show_all_rman)
1129 {
1130 	struct rman *rm;
1131 
1132 	TAILQ_FOREACH(rm, &rman_head, rm_link) {
1133 		dump_rman_header(rm);
1134 		dump_rman(rm);
1135 	}
1136 }
1137 DB_SHOW_ALIAS_FLAGS(allrman, db_show_all_rman, DB_CMD_MEMSAFE);
1138 #endif
1139