xref: /freebsd/sys/kern/subr_rman.c (revision 7dfd9569a2f0637fb9a48157b1c1bfe5709faee3)
1 /*-
2  * Copyright 1998 Massachusetts Institute of Technology
3  *
4  * Permission to use, copy, modify, and distribute this software and
5  * its documentation for any purpose and without fee is hereby
6  * granted, provided that both the above copyright notice and this
7  * permission notice appear in all copies, that both the above
8  * copyright notice and this permission notice appear in all
9  * supporting documentation, and that the name of M.I.T. not be used
10  * in advertising or publicity pertaining to distribution of the
11  * software without specific, written prior permission.  M.I.T. makes
12  * no representations about the suitability of this software for any
13  * purpose.  It is provided "as is" without express or implied
14  * warranty.
15  *
16  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
17  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /*
31  * The kernel resource manager.  This code is responsible for keeping track
32  * of hardware resources which are apportioned out to various drivers.
33  * It does not actually assign those resources, and it is not expected
34  * that end-device drivers will call into this code directly.  Rather,
35  * the code which implements the buses that those devices are attached to,
36  * and the code which manages CPU resources, will call this code, and the
37  * end-device drivers will make upcalls to that code to actually perform
38  * the allocation.
39  *
40  * There are two sorts of resources managed by this code.  The first is
41  * the more familiar array (RMAN_ARRAY) type; resources in this class
42  * consist of a sequence of individually-allocatable objects which have
43  * been numbered in some well-defined order.  Most of the resources
44  * are of this type, as it is the most familiar.  The second type is
45  * called a gauge (RMAN_GAUGE), and models fungible resources (i.e.,
46  * resources in which each instance is indistinguishable from every
47  * other instance).  The principal anticipated application of gauges
48  * is in the context of power consumption, where a bus may have a specific
49  * power budget which all attached devices share.  RMAN_GAUGE is not
50  * implemented yet.
51  *
52  * For array resources, we make one simplifying assumption: two clients
53  * sharing the same resource must use the same range of indices.  That
54  * is to say, sharing of overlapping-but-not-identical regions is not
55  * permitted.
56  */
57 
58 #include <sys/cdefs.h>
59 __FBSDID("$FreeBSD$");
60 
61 #include <sys/param.h>
62 #include <sys/systm.h>
63 #include <sys/kernel.h>
64 #include <sys/lock.h>
65 #include <sys/malloc.h>
66 #include <sys/mutex.h>
67 #include <sys/bus.h>		/* XXX debugging */
68 #include <machine/bus.h>
69 #include <sys/rman.h>
70 #include <sys/sysctl.h>
71 
72 /*
73  * We use a linked list rather than a bitmap because we need to be able to
74  * represent potentially huge objects (like all of a processor's physical
75  * address space).  That is also why the indices are defined to have type
76  * `unsigned long' -- that being the largest integral type in ISO C (1990).
77  * The 1999 version of C allows `long long'; we may need to switch to that
78  * at some point in the future, particularly if we want to support 36-bit
79  * addresses on IA32 hardware.
80  */
81 struct resource_i {
82 	struct resource		r_r;
83 	TAILQ_ENTRY(resource_i)	r_link;
84 	LIST_ENTRY(resource_i)	r_sharelink;
85 	LIST_HEAD(, resource_i)	*r_sharehead;
86 	u_long	r_start;	/* index of the first entry in this resource */
87 	u_long	r_end;		/* index of the last entry (inclusive) */
88 	u_int	r_flags;
89 	void	*r_virtual;	/* virtual address of this resource */
90 	struct	device *r_dev;	/* device which has allocated this resource */
91 	struct	rman *r_rm;	/* resource manager from whence this came */
92 	int	r_rid;		/* optional rid for this resource. */
93 };
94 
95 int     rman_debug = 0;
96 TUNABLE_INT("debug.rman_debug", &rman_debug);
97 SYSCTL_INT(_debug, OID_AUTO, rman_debug, CTLFLAG_RW,
98     &rman_debug, 0, "rman debug");
99 
100 #define DPRINTF(params) if (rman_debug) printf params
101 
102 static MALLOC_DEFINE(M_RMAN, "rman", "Resource manager");
103 
104 struct	rman_head rman_head;
105 static	struct mtx rman_mtx; /* mutex to protect rman_head */
106 static	int int_rman_activate_resource(struct rman *rm, struct resource_i *r,
107 				       struct resource_i **whohas);
108 static	int int_rman_deactivate_resource(struct resource_i *r);
109 static	int int_rman_release_resource(struct rman *rm, struct resource_i *r);
110 
111 static __inline struct resource_i *
112 int_alloc_resource(int malloc_flag)
113 {
114 	struct resource_i *r;
115 
116 	r = malloc(sizeof *r, M_RMAN, malloc_flag | M_ZERO);
117 	if (r != NULL) {
118 		r->r_r.__r_i = r;
119 	}
120 	return (r);
121 }
122 
123 int
124 rman_init(struct rman *rm)
125 {
126 	static int once = 0;
127 
128 	if (once == 0) {
129 		once = 1;
130 		TAILQ_INIT(&rman_head);
131 		mtx_init(&rman_mtx, "rman head", NULL, MTX_DEF);
132 	}
133 
134 	if (rm->rm_type == RMAN_UNINIT)
135 		panic("rman_init");
136 	if (rm->rm_type == RMAN_GAUGE)
137 		panic("implement RMAN_GAUGE");
138 
139 	TAILQ_INIT(&rm->rm_list);
140 	rm->rm_mtx = malloc(sizeof *rm->rm_mtx, M_RMAN, M_NOWAIT | M_ZERO);
141 	if (rm->rm_mtx == NULL)
142 		return ENOMEM;
143 	mtx_init(rm->rm_mtx, "rman", NULL, MTX_DEF);
144 
145 	mtx_lock(&rman_mtx);
146 	TAILQ_INSERT_TAIL(&rman_head, rm, rm_link);
147 	mtx_unlock(&rman_mtx);
148 	return 0;
149 }
150 
151 /*
152  * NB: this interface is not robust against programming errors which
153  * add multiple copies of the same region.
154  */
155 int
156 rman_manage_region(struct rman *rm, u_long start, u_long end)
157 {
158 	struct resource_i *r, *s;
159 
160 	DPRINTF(("rman_manage_region: <%s> request: start %#lx, end %#lx\n",
161 	    rm->rm_descr, start, end));
162 	r = int_alloc_resource(M_NOWAIT);
163 	if (r == NULL)
164 		return ENOMEM;
165 	r->r_start = start;
166 	r->r_end = end;
167 	r->r_rm = rm;
168 
169 	mtx_lock(rm->rm_mtx);
170 	for (s = TAILQ_FIRST(&rm->rm_list);
171 	     s && s->r_end < r->r_start;
172 	     s = TAILQ_NEXT(s, r_link))
173 		;
174 
175 	if (s == NULL) {
176 		TAILQ_INSERT_TAIL(&rm->rm_list, r, r_link);
177 	} else {
178 		TAILQ_INSERT_BEFORE(s, r, r_link);
179 	}
180 
181 	mtx_unlock(rm->rm_mtx);
182 	return 0;
183 }
184 
185 int
186 rman_fini(struct rman *rm)
187 {
188 	struct resource_i *r;
189 
190 	mtx_lock(rm->rm_mtx);
191 	TAILQ_FOREACH(r, &rm->rm_list, r_link) {
192 		if (r->r_flags & RF_ALLOCATED) {
193 			mtx_unlock(rm->rm_mtx);
194 			return EBUSY;
195 		}
196 	}
197 
198 	/*
199 	 * There really should only be one of these if we are in this
200 	 * state and the code is working properly, but it can't hurt.
201 	 */
202 	while (!TAILQ_EMPTY(&rm->rm_list)) {
203 		r = TAILQ_FIRST(&rm->rm_list);
204 		TAILQ_REMOVE(&rm->rm_list, r, r_link);
205 		free(r, M_RMAN);
206 	}
207 	mtx_unlock(rm->rm_mtx);
208 	mtx_lock(&rman_mtx);
209 	TAILQ_REMOVE(&rman_head, rm, rm_link);
210 	mtx_unlock(&rman_mtx);
211 	mtx_destroy(rm->rm_mtx);
212 	free(rm->rm_mtx, M_RMAN);
213 
214 	return 0;
215 }
216 
217 struct resource *
218 rman_reserve_resource_bound(struct rman *rm, u_long start, u_long end,
219 		      u_long count, u_long bound,  u_int flags,
220 		      struct device *dev)
221 {
222 	u_int	want_activate;
223 	struct	resource_i *r, *s, *rv;
224 	u_long	rstart, rend, amask, bmask;
225 
226 	rv = NULL;
227 
228 	DPRINTF(("rman_reserve_resource: <%s> request: [%#lx, %#lx], length "
229 	       "%#lx, flags %u, device %s\n", rm->rm_descr, start, end, count,
230 	       flags, dev == NULL ? "<null>" : device_get_nameunit(dev)));
231 	want_activate = (flags & RF_ACTIVE);
232 	flags &= ~RF_ACTIVE;
233 
234 	mtx_lock(rm->rm_mtx);
235 
236 	for (r = TAILQ_FIRST(&rm->rm_list);
237 	     r && r->r_end < start;
238 	     r = TAILQ_NEXT(r, r_link))
239 		;
240 
241 	if (r == NULL) {
242 		DPRINTF(("could not find a region\n"));
243 		goto out;
244 	}
245 
246 	amask = (1ul << RF_ALIGNMENT(flags)) - 1;
247 	/* If bound is 0, bmask will also be 0 */
248 	bmask = ~(bound - 1);
249 	/*
250 	 * First try to find an acceptable totally-unshared region.
251 	 */
252 	for (s = r; s; s = TAILQ_NEXT(s, r_link)) {
253 		DPRINTF(("considering [%#lx, %#lx]\n", s->r_start, s->r_end));
254 		if (s->r_start + count - 1 > end) {
255 			DPRINTF(("s->r_start (%#lx) + count - 1> end (%#lx)\n",
256 			    s->r_start, end));
257 			break;
258 		}
259 		if (s->r_flags & RF_ALLOCATED) {
260 			DPRINTF(("region is allocated\n"));
261 			continue;
262 		}
263 		rstart = ulmax(s->r_start, start);
264 		/*
265 		 * Try to find a region by adjusting to boundary and alignment
266 		 * until both conditions are satisfied. This is not an optimal
267 		 * algorithm, but in most cases it isn't really bad, either.
268 		 */
269 		do {
270 			rstart = (rstart + amask) & ~amask;
271 			if (((rstart ^ (rstart + count - 1)) & bmask) != 0)
272 				rstart += bound - (rstart & ~bmask);
273 		} while ((rstart & amask) != 0 && rstart < end &&
274 		    rstart < s->r_end);
275 		rend = ulmin(s->r_end, ulmax(rstart + count - 1, end));
276 		if (rstart > rend) {
277 			DPRINTF(("adjusted start exceeds end\n"));
278 			continue;
279 		}
280 		DPRINTF(("truncated region: [%#lx, %#lx]; size %#lx (requested %#lx)\n",
281 		       rstart, rend, (rend - rstart + 1), count));
282 
283 		if ((rend - rstart + 1) >= count) {
284 			DPRINTF(("candidate region: [%#lx, %#lx], size %#lx\n",
285 			       rstart, rend, (rend - rstart + 1)));
286 			if ((s->r_end - s->r_start + 1) == count) {
287 				DPRINTF(("candidate region is entire chunk\n"));
288 				rv = s;
289 				rv->r_flags |= RF_ALLOCATED | flags;
290 				rv->r_dev = dev;
291 				goto out;
292 			}
293 
294 			/*
295 			 * If s->r_start < rstart and
296 			 *    s->r_end > rstart + count - 1, then
297 			 * we need to split the region into three pieces
298 			 * (the middle one will get returned to the user).
299 			 * Otherwise, we are allocating at either the
300 			 * beginning or the end of s, so we only need to
301 			 * split it in two.  The first case requires
302 			 * two new allocations; the second requires but one.
303 			 */
304 			rv = int_alloc_resource(M_NOWAIT);
305 			if (rv == NULL)
306 				goto out;
307 			rv->r_start = rstart;
308 			rv->r_end = rstart + count - 1;
309 			rv->r_flags = flags | RF_ALLOCATED;
310 			rv->r_dev = dev;
311 			rv->r_rm = rm;
312 
313 			if (s->r_start < rv->r_start && s->r_end > rv->r_end) {
314 				DPRINTF(("splitting region in three parts: "
315 				       "[%#lx, %#lx]; [%#lx, %#lx]; [%#lx, %#lx]\n",
316 				       s->r_start, rv->r_start - 1,
317 				       rv->r_start, rv->r_end,
318 				       rv->r_end + 1, s->r_end));
319 				/*
320 				 * We are allocating in the middle.
321 				 */
322 				r = int_alloc_resource(M_NOWAIT);
323 				if (r == NULL) {
324 					free(rv, M_RMAN);
325 					rv = NULL;
326 					goto out;
327 				}
328 				r->r_start = rv->r_end + 1;
329 				r->r_end = s->r_end;
330 				r->r_flags = s->r_flags;
331 				r->r_rm = rm;
332 				s->r_end = rv->r_start - 1;
333 				TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
334 						     r_link);
335 				TAILQ_INSERT_AFTER(&rm->rm_list, rv, r,
336 						     r_link);
337 			} else if (s->r_start == rv->r_start) {
338 				DPRINTF(("allocating from the beginning\n"));
339 				/*
340 				 * We are allocating at the beginning.
341 				 */
342 				s->r_start = rv->r_end + 1;
343 				TAILQ_INSERT_BEFORE(s, rv, r_link);
344 			} else {
345 				DPRINTF(("allocating at the end\n"));
346 				/*
347 				 * We are allocating at the end.
348 				 */
349 				s->r_end = rv->r_start - 1;
350 				TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
351 						     r_link);
352 			}
353 			goto out;
354 		}
355 	}
356 
357 	/*
358 	 * Now find an acceptable shared region, if the client's requirements
359 	 * allow sharing.  By our implementation restriction, a candidate
360 	 * region must match exactly by both size and sharing type in order
361 	 * to be considered compatible with the client's request.  (The
362 	 * former restriction could probably be lifted without too much
363 	 * additional work, but this does not seem warranted.)
364 	 */
365 	DPRINTF(("no unshared regions found\n"));
366 	if ((flags & (RF_SHAREABLE | RF_TIMESHARE)) == 0)
367 		goto out;
368 
369 	for (s = r; s; s = TAILQ_NEXT(s, r_link)) {
370 		if (s->r_start > end)
371 			break;
372 		if ((s->r_flags & flags) != flags)
373 			continue;
374 		rstart = ulmax(s->r_start, start);
375 		rend = ulmin(s->r_end, ulmax(start + count - 1, end));
376 		if (s->r_start >= start && s->r_end <= end
377 		    && (s->r_end - s->r_start + 1) == count &&
378 		    (s->r_start & amask) == 0 &&
379 		    ((s->r_start ^ s->r_end) & bmask) == 0) {
380 			rv = int_alloc_resource(M_NOWAIT);
381 			if (rv == NULL)
382 				goto out;
383 			rv->r_start = s->r_start;
384 			rv->r_end = s->r_end;
385 			rv->r_flags = s->r_flags &
386 				(RF_ALLOCATED | RF_SHAREABLE | RF_TIMESHARE);
387 			rv->r_dev = dev;
388 			rv->r_rm = rm;
389 			if (s->r_sharehead == NULL) {
390 				s->r_sharehead = malloc(sizeof *s->r_sharehead,
391 						M_RMAN, M_NOWAIT | M_ZERO);
392 				if (s->r_sharehead == NULL) {
393 					free(rv, M_RMAN);
394 					rv = NULL;
395 					goto out;
396 				}
397 				LIST_INIT(s->r_sharehead);
398 				LIST_INSERT_HEAD(s->r_sharehead, s,
399 						 r_sharelink);
400 				s->r_flags |= RF_FIRSTSHARE;
401 			}
402 			rv->r_sharehead = s->r_sharehead;
403 			LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink);
404 			goto out;
405 		}
406 	}
407 
408 	/*
409 	 * We couldn't find anything.
410 	 */
411 out:
412 	/*
413 	 * If the user specified RF_ACTIVE in the initial flags,
414 	 * which is reflected in `want_activate', we attempt to atomically
415 	 * activate the resource.  If this fails, we release the resource
416 	 * and indicate overall failure.  (This behavior probably doesn't
417 	 * make sense for RF_TIMESHARE-type resources.)
418 	 */
419 	if (rv && want_activate) {
420 		struct resource_i *whohas;
421 		if (int_rman_activate_resource(rm, rv, &whohas)) {
422 			int_rman_release_resource(rm, rv);
423 			rv = NULL;
424 		}
425 	}
426 
427 	mtx_unlock(rm->rm_mtx);
428 	return (rv == NULL ? NULL : &rv->r_r);
429 }
430 
431 struct resource *
432 rman_reserve_resource(struct rman *rm, u_long start, u_long end, u_long count,
433 		      u_int flags, struct device *dev)
434 {
435 
436 	return (rman_reserve_resource_bound(rm, start, end, count, 0, flags,
437 	    dev));
438 }
439 
440 static int
441 int_rman_activate_resource(struct rman *rm, struct resource_i *r,
442 			   struct resource_i **whohas)
443 {
444 	struct resource_i *s;
445 	int ok;
446 
447 	/*
448 	 * If we are not timesharing, then there is nothing much to do.
449 	 * If we already have the resource, then there is nothing at all to do.
450 	 * If we are not on a sharing list with anybody else, then there is
451 	 * little to do.
452 	 */
453 	if ((r->r_flags & RF_TIMESHARE) == 0
454 	    || (r->r_flags & RF_ACTIVE) != 0
455 	    || r->r_sharehead == NULL) {
456 		r->r_flags |= RF_ACTIVE;
457 		return 0;
458 	}
459 
460 	ok = 1;
461 	for (s = LIST_FIRST(r->r_sharehead); s && ok;
462 	     s = LIST_NEXT(s, r_sharelink)) {
463 		if ((s->r_flags & RF_ACTIVE) != 0) {
464 			ok = 0;
465 			*whohas = s;
466 		}
467 	}
468 	if (ok) {
469 		r->r_flags |= RF_ACTIVE;
470 		return 0;
471 	}
472 	return EBUSY;
473 }
474 
475 int
476 rman_activate_resource(struct resource *re)
477 {
478 	int rv;
479 	struct resource_i *r, *whohas;
480 	struct rman *rm;
481 
482 	r = re->__r_i;
483 	rm = r->r_rm;
484 	mtx_lock(rm->rm_mtx);
485 	rv = int_rman_activate_resource(rm, r, &whohas);
486 	mtx_unlock(rm->rm_mtx);
487 	return rv;
488 }
489 
490 int
491 rman_await_resource(struct resource *re, int pri, int timo)
492 {
493 	int	rv;
494 	struct	resource_i *r, *whohas;
495 	struct	rman *rm;
496 
497 	r = re->__r_i;
498 	rm = r->r_rm;
499 	mtx_lock(rm->rm_mtx);
500 	for (;;) {
501 		rv = int_rman_activate_resource(rm, r, &whohas);
502 		if (rv != EBUSY)
503 			return (rv);	/* returns with mutex held */
504 
505 		if (r->r_sharehead == NULL)
506 			panic("rman_await_resource");
507 		whohas->r_flags |= RF_WANTED;
508 		rv = msleep(r->r_sharehead, rm->rm_mtx, pri, "rmwait", timo);
509 		if (rv) {
510 			mtx_unlock(rm->rm_mtx);
511 			return (rv);
512 		}
513 	}
514 }
515 
516 static int
517 int_rman_deactivate_resource(struct resource_i *r)
518 {
519 
520 	r->r_flags &= ~RF_ACTIVE;
521 	if (r->r_flags & RF_WANTED) {
522 		r->r_flags &= ~RF_WANTED;
523 		wakeup(r->r_sharehead);
524 	}
525 	return 0;
526 }
527 
528 int
529 rman_deactivate_resource(struct resource *r)
530 {
531 	struct	rman *rm;
532 
533 	rm = r->__r_i->r_rm;
534 	mtx_lock(rm->rm_mtx);
535 	int_rman_deactivate_resource(r->__r_i);
536 	mtx_unlock(rm->rm_mtx);
537 	return 0;
538 }
539 
540 static int
541 int_rman_release_resource(struct rman *rm, struct resource_i *r)
542 {
543 	struct	resource_i *s, *t;
544 
545 	if (r->r_flags & RF_ACTIVE)
546 		int_rman_deactivate_resource(r);
547 
548 	/*
549 	 * Check for a sharing list first.  If there is one, then we don't
550 	 * have to think as hard.
551 	 */
552 	if (r->r_sharehead) {
553 		/*
554 		 * If a sharing list exists, then we know there are at
555 		 * least two sharers.
556 		 *
557 		 * If we are in the main circleq, appoint someone else.
558 		 */
559 		LIST_REMOVE(r, r_sharelink);
560 		s = LIST_FIRST(r->r_sharehead);
561 		if (r->r_flags & RF_FIRSTSHARE) {
562 			s->r_flags |= RF_FIRSTSHARE;
563 			TAILQ_INSERT_BEFORE(r, s, r_link);
564 			TAILQ_REMOVE(&rm->rm_list, r, r_link);
565 		}
566 
567 		/*
568 		 * Make sure that the sharing list goes away completely
569 		 * if the resource is no longer being shared at all.
570 		 */
571 		if (LIST_NEXT(s, r_sharelink) == NULL) {
572 			free(s->r_sharehead, M_RMAN);
573 			s->r_sharehead = NULL;
574 			s->r_flags &= ~RF_FIRSTSHARE;
575 		}
576 		goto out;
577 	}
578 
579 	/*
580 	 * Look at the adjacent resources in the list and see if our
581 	 * segment can be merged with any of them.  If either of the
582 	 * resources is allocated or is not exactly adjacent then they
583 	 * cannot be merged with our segment.
584 	 */
585 	s = TAILQ_PREV(r, resource_head, r_link);
586 	if (s != NULL && ((s->r_flags & RF_ALLOCATED) != 0 ||
587 	    s->r_end + 1 != r->r_start))
588 		s = NULL;
589 	t = TAILQ_NEXT(r, r_link);
590 	if (t != NULL && ((t->r_flags & RF_ALLOCATED) != 0 ||
591 	    r->r_end + 1 != t->r_start))
592 		t = NULL;
593 
594 	if (s != NULL && t != NULL) {
595 		/*
596 		 * Merge all three segments.
597 		 */
598 		s->r_end = t->r_end;
599 		TAILQ_REMOVE(&rm->rm_list, r, r_link);
600 		TAILQ_REMOVE(&rm->rm_list, t, r_link);
601 		free(t, M_RMAN);
602 	} else if (s != NULL) {
603 		/*
604 		 * Merge previous segment with ours.
605 		 */
606 		s->r_end = r->r_end;
607 		TAILQ_REMOVE(&rm->rm_list, r, r_link);
608 	} else if (t != NULL) {
609 		/*
610 		 * Merge next segment with ours.
611 		 */
612 		t->r_start = r->r_start;
613 		TAILQ_REMOVE(&rm->rm_list, r, r_link);
614 	} else {
615 		/*
616 		 * At this point, we know there is nothing we
617 		 * can potentially merge with, because on each
618 		 * side, there is either nothing there or what is
619 		 * there is still allocated.  In that case, we don't
620 		 * want to remove r from the list; we simply want to
621 		 * change it to an unallocated region and return
622 		 * without freeing anything.
623 		 */
624 		r->r_flags &= ~RF_ALLOCATED;
625 		return 0;
626 	}
627 
628 out:
629 	free(r, M_RMAN);
630 	return 0;
631 }
632 
633 int
634 rman_release_resource(struct resource *re)
635 {
636 	int	rv;
637 	struct	resource_i *r;
638 	struct	rman *rm;
639 
640 	r = re->__r_i;
641 	rm = r->r_rm;
642 	mtx_lock(rm->rm_mtx);
643 	rv = int_rman_release_resource(rm, r);
644 	mtx_unlock(rm->rm_mtx);
645 	return (rv);
646 }
647 
648 uint32_t
649 rman_make_alignment_flags(uint32_t size)
650 {
651 	int	i;
652 
653 	/*
654 	 * Find the hightest bit set, and add one if more than one bit
655 	 * set.  We're effectively computing the ceil(log2(size)) here.
656 	 */
657 	for (i = 31; i > 0; i--)
658 		if ((1 << i) & size)
659 			break;
660 	if (~(1 << i) & size)
661 		i++;
662 
663 	return(RF_ALIGNMENT_LOG2(i));
664 }
665 
666 u_long
667 rman_get_start(struct resource *r)
668 {
669 	return (r->__r_i->r_start);
670 }
671 
672 u_long
673 rman_get_end(struct resource *r)
674 {
675 	return (r->__r_i->r_end);
676 }
677 
678 u_long
679 rman_get_size(struct resource *r)
680 {
681 	return (r->__r_i->r_end - r->__r_i->r_start + 1);
682 }
683 
684 u_int
685 rman_get_flags(struct resource *r)
686 {
687 	return (r->__r_i->r_flags);
688 }
689 
690 void
691 rman_set_virtual(struct resource *r, void *v)
692 {
693 	r->__r_i->r_virtual = v;
694 }
695 
696 void *
697 rman_get_virtual(struct resource *r)
698 {
699 	return (r->__r_i->r_virtual);
700 }
701 
702 void
703 rman_set_bustag(struct resource *r, bus_space_tag_t t)
704 {
705 	r->r_bustag = t;
706 }
707 
708 bus_space_tag_t
709 rman_get_bustag(struct resource *r)
710 {
711 	return (r->r_bustag);
712 }
713 
714 void
715 rman_set_bushandle(struct resource *r, bus_space_handle_t h)
716 {
717 	r->r_bushandle = h;
718 }
719 
720 bus_space_handle_t
721 rman_get_bushandle(struct resource *r)
722 {
723 	return (r->r_bushandle);
724 }
725 
726 void
727 rman_set_rid(struct resource *r, int rid)
728 {
729 	r->__r_i->r_rid = rid;
730 }
731 
732 void
733 rman_set_start(struct resource *r, u_long start)
734 {
735 	r->__r_i->r_start = start;
736 }
737 
738 void
739 rman_set_end(struct resource *r, u_long end)
740 {
741 	r->__r_i->r_end = end;
742 }
743 
744 int
745 rman_get_rid(struct resource *r)
746 {
747 	return (r->__r_i->r_rid);
748 }
749 
750 struct device *
751 rman_get_device(struct resource *r)
752 {
753 	return (r->__r_i->r_dev);
754 }
755 
756 void
757 rman_set_device(struct resource *r, struct device *dev)
758 {
759 	r->__r_i->r_dev = dev;
760 }
761 
762 int
763 rman_is_region_manager(struct resource *r, struct rman *rm)
764 {
765 
766 	return (r->__r_i->r_rm == rm);
767 }
768 
769 /*
770  * Sysctl interface for scanning the resource lists.
771  *
772  * We take two input parameters; the index into the list of resource
773  * managers, and the resource offset into the list.
774  */
775 static int
776 sysctl_rman(SYSCTL_HANDLER_ARGS)
777 {
778 	int			*name = (int *)arg1;
779 	u_int			namelen = arg2;
780 	int			rman_idx, res_idx;
781 	struct rman		*rm;
782 	struct resource_i	*res;
783 	struct u_rman		urm;
784 	struct u_resource	ures;
785 	int			error;
786 
787 	if (namelen != 3)
788 		return (EINVAL);
789 
790 	if (bus_data_generation_check(name[0]))
791 		return (EINVAL);
792 	rman_idx = name[1];
793 	res_idx = name[2];
794 
795 	/*
796 	 * Find the indexed resource manager
797 	 */
798 	mtx_lock(&rman_mtx);
799 	TAILQ_FOREACH(rm, &rman_head, rm_link) {
800 		if (rman_idx-- == 0)
801 			break;
802 	}
803 	mtx_unlock(&rman_mtx);
804 	if (rm == NULL)
805 		return (ENOENT);
806 
807 	/*
808 	 * If the resource index is -1, we want details on the
809 	 * resource manager.
810 	 */
811 	if (res_idx == -1) {
812 		bzero(&urm, sizeof(urm));
813 		urm.rm_handle = (uintptr_t)rm;
814 		strlcpy(urm.rm_descr, rm->rm_descr, RM_TEXTLEN);
815 		urm.rm_start = rm->rm_start;
816 		urm.rm_size = rm->rm_end - rm->rm_start + 1;
817 		urm.rm_type = rm->rm_type;
818 
819 		error = SYSCTL_OUT(req, &urm, sizeof(urm));
820 		return (error);
821 	}
822 
823 	/*
824 	 * Find the indexed resource and return it.
825 	 */
826 	mtx_lock(rm->rm_mtx);
827 	TAILQ_FOREACH(res, &rm->rm_list, r_link) {
828 		if (res_idx-- == 0) {
829 			bzero(&ures, sizeof(ures));
830 			ures.r_handle = (uintptr_t)res;
831 			ures.r_parent = (uintptr_t)res->r_rm;
832 			ures.r_device = (uintptr_t)res->r_dev;
833 			if (res->r_dev != NULL) {
834 				if (device_get_name(res->r_dev) != NULL) {
835 					snprintf(ures.r_devname, RM_TEXTLEN,
836 					    "%s%d",
837 					    device_get_name(res->r_dev),
838 					    device_get_unit(res->r_dev));
839 				} else {
840 					strlcpy(ures.r_devname, "nomatch",
841 					    RM_TEXTLEN);
842 				}
843 			} else {
844 				ures.r_devname[0] = '\0';
845 			}
846 			ures.r_start = res->r_start;
847 			ures.r_size = res->r_end - res->r_start + 1;
848 			ures.r_flags = res->r_flags;
849 
850 			mtx_unlock(rm->rm_mtx);
851 			error = SYSCTL_OUT(req, &ures, sizeof(ures));
852 			return (error);
853 		}
854 	}
855 	mtx_unlock(rm->rm_mtx);
856 	return (ENOENT);
857 }
858 
859 SYSCTL_NODE(_hw_bus, OID_AUTO, rman, CTLFLAG_RD, sysctl_rman,
860     "kernel resource manager");
861