1 /*- 2 * Copyright 1998 Massachusetts Institute of Technology 3 * 4 * Permission to use, copy, modify, and distribute this software and 5 * its documentation for any purpose and without fee is hereby 6 * granted, provided that both the above copyright notice and this 7 * permission notice appear in all copies, that both the above 8 * copyright notice and this permission notice appear in all 9 * supporting documentation, and that the name of M.I.T. not be used 10 * in advertising or publicity pertaining to distribution of the 11 * software without specific, written prior permission. M.I.T. makes 12 * no representations about the suitability of this software for any 13 * purpose. It is provided "as is" without express or implied 14 * warranty. 15 * 16 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS 17 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE, 18 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT 20 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF 23 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 25 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 26 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 /* 31 * The kernel resource manager. This code is responsible for keeping track 32 * of hardware resources which are apportioned out to various drivers. 33 * It does not actually assign those resources, and it is not expected 34 * that end-device drivers will call into this code directly. Rather, 35 * the code which implements the buses that those devices are attached to, 36 * and the code which manages CPU resources, will call this code, and the 37 * end-device drivers will make upcalls to that code to actually perform 38 * the allocation. 39 * 40 * There are two sorts of resources managed by this code. The first is 41 * the more familiar array (RMAN_ARRAY) type; resources in this class 42 * consist of a sequence of individually-allocatable objects which have 43 * been numbered in some well-defined order. Most of the resources 44 * are of this type, as it is the most familiar. The second type is 45 * called a gauge (RMAN_GAUGE), and models fungible resources (i.e., 46 * resources in which each instance is indistinguishable from every 47 * other instance). The principal anticipated application of gauges 48 * is in the context of power consumption, where a bus may have a specific 49 * power budget which all attached devices share. RMAN_GAUGE is not 50 * implemented yet. 51 * 52 * For array resources, we make one simplifying assumption: two clients 53 * sharing the same resource must use the same range of indices. That 54 * is to say, sharing of overlapping-but-not-identical regions is not 55 * permitted. 56 */ 57 58 #include "opt_ddb.h" 59 60 #include <sys/cdefs.h> 61 __FBSDID("$FreeBSD$"); 62 63 #include <sys/param.h> 64 #include <sys/systm.h> 65 #include <sys/kernel.h> 66 #include <sys/limits.h> 67 #include <sys/lock.h> 68 #include <sys/malloc.h> 69 #include <sys/mutex.h> 70 #include <sys/bus.h> /* XXX debugging */ 71 #include <machine/bus.h> 72 #include <sys/rman.h> 73 #include <sys/sysctl.h> 74 75 #ifdef DDB 76 #include <ddb/ddb.h> 77 #endif 78 79 /* 80 * We use a linked list rather than a bitmap because we need to be able to 81 * represent potentially huge objects (like all of a processor's physical 82 * address space). That is also why the indices are defined to have type 83 * `unsigned long' -- that being the largest integral type in ISO C (1990). 84 * The 1999 version of C allows `long long'; we may need to switch to that 85 * at some point in the future, particularly if we want to support 36-bit 86 * addresses on IA32 hardware. 87 */ 88 struct resource_i { 89 struct resource r_r; 90 TAILQ_ENTRY(resource_i) r_link; 91 LIST_ENTRY(resource_i) r_sharelink; 92 LIST_HEAD(, resource_i) *r_sharehead; 93 u_long r_start; /* index of the first entry in this resource */ 94 u_long r_end; /* index of the last entry (inclusive) */ 95 u_int r_flags; 96 void *r_virtual; /* virtual address of this resource */ 97 struct device *r_dev; /* device which has allocated this resource */ 98 struct rman *r_rm; /* resource manager from whence this came */ 99 int r_rid; /* optional rid for this resource. */ 100 }; 101 102 static int rman_debug = 0; 103 TUNABLE_INT("debug.rman_debug", &rman_debug); 104 SYSCTL_INT(_debug, OID_AUTO, rman_debug, CTLFLAG_RW, 105 &rman_debug, 0, "rman debug"); 106 107 #define DPRINTF(params) if (rman_debug) printf params 108 109 static MALLOC_DEFINE(M_RMAN, "rman", "Resource manager"); 110 111 struct rman_head rman_head; 112 static struct mtx rman_mtx; /* mutex to protect rman_head */ 113 static int int_rman_activate_resource(struct rman *rm, struct resource_i *r, 114 struct resource_i **whohas); 115 static int int_rman_deactivate_resource(struct resource_i *r); 116 static int int_rman_release_resource(struct rman *rm, struct resource_i *r); 117 118 static __inline struct resource_i * 119 int_alloc_resource(int malloc_flag) 120 { 121 struct resource_i *r; 122 123 r = malloc(sizeof *r, M_RMAN, malloc_flag | M_ZERO); 124 if (r != NULL) { 125 r->r_r.__r_i = r; 126 } 127 return (r); 128 } 129 130 int 131 rman_init(struct rman *rm) 132 { 133 static int once = 0; 134 135 if (once == 0) { 136 once = 1; 137 TAILQ_INIT(&rman_head); 138 mtx_init(&rman_mtx, "rman head", NULL, MTX_DEF); 139 } 140 141 if (rm->rm_start == 0 && rm->rm_end == 0) 142 rm->rm_end = ~0ul; 143 if (rm->rm_type == RMAN_UNINIT) 144 panic("rman_init"); 145 if (rm->rm_type == RMAN_GAUGE) 146 panic("implement RMAN_GAUGE"); 147 148 TAILQ_INIT(&rm->rm_list); 149 rm->rm_mtx = malloc(sizeof *rm->rm_mtx, M_RMAN, M_NOWAIT | M_ZERO); 150 if (rm->rm_mtx == NULL) 151 return ENOMEM; 152 mtx_init(rm->rm_mtx, "rman", NULL, MTX_DEF); 153 154 mtx_lock(&rman_mtx); 155 TAILQ_INSERT_TAIL(&rman_head, rm, rm_link); 156 mtx_unlock(&rman_mtx); 157 return 0; 158 } 159 160 int 161 rman_manage_region(struct rman *rm, u_long start, u_long end) 162 { 163 struct resource_i *r, *s, *t; 164 int rv = 0; 165 166 DPRINTF(("rman_manage_region: <%s> request: start %#lx, end %#lx\n", 167 rm->rm_descr, start, end)); 168 if (start < rm->rm_start || end > rm->rm_end) 169 return EINVAL; 170 r = int_alloc_resource(M_NOWAIT); 171 if (r == NULL) 172 return ENOMEM; 173 r->r_start = start; 174 r->r_end = end; 175 r->r_rm = rm; 176 177 mtx_lock(rm->rm_mtx); 178 179 /* Skip entries before us. */ 180 TAILQ_FOREACH(s, &rm->rm_list, r_link) { 181 if (s->r_end == ULONG_MAX) 182 break; 183 if (s->r_end + 1 >= r->r_start) 184 break; 185 } 186 187 /* If we ran off the end of the list, insert at the tail. */ 188 if (s == NULL) { 189 TAILQ_INSERT_TAIL(&rm->rm_list, r, r_link); 190 } else { 191 /* Check for any overlap with the current region. */ 192 if (r->r_start <= s->r_end && r->r_end >= s->r_start) { 193 rv = EBUSY; 194 goto out; 195 } 196 197 /* Check for any overlap with the next region. */ 198 t = TAILQ_NEXT(s, r_link); 199 if (t && r->r_start <= t->r_end && r->r_end >= t->r_start) { 200 rv = EBUSY; 201 goto out; 202 } 203 204 /* 205 * See if this region can be merged with the next region. If 206 * not, clear the pointer. 207 */ 208 if (t && (r->r_end + 1 != t->r_start || t->r_flags != 0)) 209 t = NULL; 210 211 /* See if we can merge with the current region. */ 212 if (s->r_end + 1 == r->r_start && s->r_flags == 0) { 213 /* Can we merge all 3 regions? */ 214 if (t != NULL) { 215 s->r_end = t->r_end; 216 TAILQ_REMOVE(&rm->rm_list, t, r_link); 217 free(r, M_RMAN); 218 free(t, M_RMAN); 219 } else { 220 s->r_end = r->r_end; 221 free(r, M_RMAN); 222 } 223 } else if (t != NULL) { 224 /* Can we merge with just the next region? */ 225 t->r_start = r->r_start; 226 free(r, M_RMAN); 227 } else if (s->r_end < r->r_start) { 228 TAILQ_INSERT_AFTER(&rm->rm_list, s, r, r_link); 229 } else { 230 TAILQ_INSERT_BEFORE(s, r, r_link); 231 } 232 } 233 out: 234 mtx_unlock(rm->rm_mtx); 235 return rv; 236 } 237 238 int 239 rman_init_from_resource(struct rman *rm, struct resource *r) 240 { 241 int rv; 242 243 if ((rv = rman_init(rm)) != 0) 244 return (rv); 245 return (rman_manage_region(rm, r->__r_i->r_start, r->__r_i->r_end)); 246 } 247 248 int 249 rman_fini(struct rman *rm) 250 { 251 struct resource_i *r; 252 253 mtx_lock(rm->rm_mtx); 254 TAILQ_FOREACH(r, &rm->rm_list, r_link) { 255 if (r->r_flags & RF_ALLOCATED) { 256 mtx_unlock(rm->rm_mtx); 257 return EBUSY; 258 } 259 } 260 261 /* 262 * There really should only be one of these if we are in this 263 * state and the code is working properly, but it can't hurt. 264 */ 265 while (!TAILQ_EMPTY(&rm->rm_list)) { 266 r = TAILQ_FIRST(&rm->rm_list); 267 TAILQ_REMOVE(&rm->rm_list, r, r_link); 268 free(r, M_RMAN); 269 } 270 mtx_unlock(rm->rm_mtx); 271 mtx_lock(&rman_mtx); 272 TAILQ_REMOVE(&rman_head, rm, rm_link); 273 mtx_unlock(&rman_mtx); 274 mtx_destroy(rm->rm_mtx); 275 free(rm->rm_mtx, M_RMAN); 276 277 return 0; 278 } 279 280 int 281 rman_first_free_region(struct rman *rm, u_long *start, u_long *end) 282 { 283 struct resource_i *r; 284 285 mtx_lock(rm->rm_mtx); 286 TAILQ_FOREACH(r, &rm->rm_list, r_link) { 287 if (!(r->r_flags & RF_ALLOCATED)) { 288 *start = r->r_start; 289 *end = r->r_end; 290 mtx_unlock(rm->rm_mtx); 291 return (0); 292 } 293 } 294 mtx_unlock(rm->rm_mtx); 295 return (ENOENT); 296 } 297 298 int 299 rman_last_free_region(struct rman *rm, u_long *start, u_long *end) 300 { 301 struct resource_i *r; 302 303 mtx_lock(rm->rm_mtx); 304 TAILQ_FOREACH_REVERSE(r, &rm->rm_list, resource_head, r_link) { 305 if (!(r->r_flags & RF_ALLOCATED)) { 306 *start = r->r_start; 307 *end = r->r_end; 308 mtx_unlock(rm->rm_mtx); 309 return (0); 310 } 311 } 312 mtx_unlock(rm->rm_mtx); 313 return (ENOENT); 314 } 315 316 /* Shrink or extend one or both ends of an allocated resource. */ 317 int 318 rman_adjust_resource(struct resource *rr, u_long start, u_long end) 319 { 320 struct resource_i *r, *s, *t, *new; 321 struct rman *rm; 322 323 /* Not supported for shared resources. */ 324 r = rr->__r_i; 325 if (r->r_flags & (RF_TIMESHARE | RF_SHAREABLE)) 326 return (EINVAL); 327 328 /* 329 * This does not support wholesale moving of a resource. At 330 * least part of the desired new range must overlap with the 331 * existing resource. 332 */ 333 if (end < r->r_start || r->r_end < start) 334 return (EINVAL); 335 336 /* 337 * Find the two resource regions immediately adjacent to the 338 * allocated resource. 339 */ 340 rm = r->r_rm; 341 mtx_lock(rm->rm_mtx); 342 #ifdef INVARIANTS 343 TAILQ_FOREACH(s, &rm->rm_list, r_link) { 344 if (s == r) 345 break; 346 } 347 if (s == NULL) 348 panic("resource not in list"); 349 #endif 350 s = TAILQ_PREV(r, resource_head, r_link); 351 t = TAILQ_NEXT(r, r_link); 352 KASSERT(s == NULL || s->r_end + 1 == r->r_start, 353 ("prev resource mismatch")); 354 KASSERT(t == NULL || r->r_end + 1 == t->r_start, 355 ("next resource mismatch")); 356 357 /* 358 * See if the changes are permitted. Shrinking is always allowed, 359 * but growing requires sufficient room in the adjacent region. 360 */ 361 if (start < r->r_start && (s == NULL || (s->r_flags & RF_ALLOCATED) || 362 s->r_start > start)) { 363 mtx_unlock(rm->rm_mtx); 364 return (EBUSY); 365 } 366 if (end > r->r_end && (t == NULL || (t->r_flags & RF_ALLOCATED) || 367 t->r_end < end)) { 368 mtx_unlock(rm->rm_mtx); 369 return (EBUSY); 370 } 371 372 /* 373 * While holding the lock, grow either end of the resource as 374 * needed and shrink either end if the shrinking does not require 375 * allocating a new resource. We can safely drop the lock and then 376 * insert a new range to handle the shrinking case afterwards. 377 */ 378 if (start < r->r_start || 379 (start > r->r_start && s != NULL && !(s->r_flags & RF_ALLOCATED))) { 380 KASSERT(s->r_flags == 0, ("prev is busy")); 381 r->r_start = start; 382 if (s->r_start == start) { 383 TAILQ_REMOVE(&rm->rm_list, s, r_link); 384 free(s, M_RMAN); 385 } else 386 s->r_end = start - 1; 387 } 388 if (end > r->r_end || 389 (end < r->r_end && t != NULL && !(t->r_flags & RF_ALLOCATED))) { 390 KASSERT(t->r_flags == 0, ("next is busy")); 391 r->r_end = end; 392 if (t->r_end == end) { 393 TAILQ_REMOVE(&rm->rm_list, t, r_link); 394 free(t, M_RMAN); 395 } else 396 t->r_start = end + 1; 397 } 398 mtx_unlock(rm->rm_mtx); 399 400 /* 401 * Handle the shrinking cases that require allocating a new 402 * resource to hold the newly-free region. We have to recheck 403 * if we still need this new region after acquiring the lock. 404 */ 405 if (start > r->r_start) { 406 new = int_alloc_resource(M_WAITOK); 407 new->r_start = r->r_start; 408 new->r_end = start - 1; 409 new->r_rm = rm; 410 mtx_lock(rm->rm_mtx); 411 r->r_start = start; 412 s = TAILQ_PREV(r, resource_head, r_link); 413 if (s != NULL && !(s->r_flags & RF_ALLOCATED)) { 414 s->r_end = start - 1; 415 free(new, M_RMAN); 416 } else 417 TAILQ_INSERT_BEFORE(r, new, r_link); 418 mtx_unlock(rm->rm_mtx); 419 } 420 if (end < r->r_end) { 421 new = int_alloc_resource(M_WAITOK); 422 new->r_start = end + 1; 423 new->r_end = r->r_end; 424 new->r_rm = rm; 425 mtx_lock(rm->rm_mtx); 426 r->r_end = end; 427 t = TAILQ_NEXT(r, r_link); 428 if (t != NULL && !(t->r_flags & RF_ALLOCATED)) { 429 t->r_start = end + 1; 430 free(new, M_RMAN); 431 } else 432 TAILQ_INSERT_AFTER(&rm->rm_list, r, new, r_link); 433 mtx_unlock(rm->rm_mtx); 434 } 435 return (0); 436 } 437 438 struct resource * 439 rman_reserve_resource_bound(struct rman *rm, u_long start, u_long end, 440 u_long count, u_long bound, u_int flags, 441 struct device *dev) 442 { 443 u_int want_activate; 444 struct resource_i *r, *s, *rv; 445 u_long rstart, rend, amask, bmask; 446 447 rv = NULL; 448 449 DPRINTF(("rman_reserve_resource_bound: <%s> request: [%#lx, %#lx], " 450 "length %#lx, flags %u, device %s\n", rm->rm_descr, start, end, 451 count, flags, 452 dev == NULL ? "<null>" : device_get_nameunit(dev))); 453 want_activate = (flags & RF_ACTIVE); 454 flags &= ~RF_ACTIVE; 455 456 mtx_lock(rm->rm_mtx); 457 458 for (r = TAILQ_FIRST(&rm->rm_list); 459 r && r->r_end < start + count - 1; 460 r = TAILQ_NEXT(r, r_link)) 461 ; 462 463 if (r == NULL) { 464 DPRINTF(("could not find a region\n")); 465 goto out; 466 } 467 468 amask = (1ul << RF_ALIGNMENT(flags)) - 1; 469 if (start + amask < start) { 470 DPRINTF(("start+amask wrapped around\n")); 471 goto out; 472 } 473 474 /* If bound is 0, bmask will also be 0 */ 475 bmask = ~(bound - 1); 476 /* 477 * First try to find an acceptable totally-unshared region. 478 */ 479 for (s = r; s; s = TAILQ_NEXT(s, r_link)) { 480 DPRINTF(("considering [%#lx, %#lx]\n", s->r_start, s->r_end)); 481 /* 482 * The resource list is sorted, so there is no point in 483 * searching further once r_start is too large. 484 */ 485 if (s->r_start > end - (count - 1)) { 486 DPRINTF(("s->r_start (%#lx) + count - 1> end (%#lx)\n", 487 s->r_start, end)); 488 break; 489 } 490 if (s->r_start + amask < s->r_start) { 491 DPRINTF(("s->r_start (%#lx) + amask (%#lx) wrapped\n", 492 s->r_start, amask)); 493 break; 494 } 495 if (s->r_flags & RF_ALLOCATED) { 496 DPRINTF(("region is allocated\n")); 497 continue; 498 } 499 rstart = ulmax(s->r_start, start); 500 /* 501 * Try to find a region by adjusting to boundary and alignment 502 * until both conditions are satisfied. This is not an optimal 503 * algorithm, but in most cases it isn't really bad, either. 504 */ 505 do { 506 rstart = (rstart + amask) & ~amask; 507 if (((rstart ^ (rstart + count - 1)) & bmask) != 0) 508 rstart += bound - (rstart & ~bmask); 509 } while ((rstart & amask) != 0 && rstart < end && 510 rstart < s->r_end); 511 rend = ulmin(s->r_end, ulmax(rstart + count - 1, end)); 512 if (rstart > rend) { 513 DPRINTF(("adjusted start exceeds end\n")); 514 continue; 515 } 516 DPRINTF(("truncated region: [%#lx, %#lx]; size %#lx (requested %#lx)\n", 517 rstart, rend, (rend - rstart + 1), count)); 518 519 if ((rend - rstart + 1) >= count) { 520 DPRINTF(("candidate region: [%#lx, %#lx], size %#lx\n", 521 rstart, rend, (rend - rstart + 1))); 522 if ((s->r_end - s->r_start + 1) == count) { 523 DPRINTF(("candidate region is entire chunk\n")); 524 rv = s; 525 rv->r_flags |= RF_ALLOCATED | flags; 526 rv->r_dev = dev; 527 goto out; 528 } 529 530 /* 531 * If s->r_start < rstart and 532 * s->r_end > rstart + count - 1, then 533 * we need to split the region into three pieces 534 * (the middle one will get returned to the user). 535 * Otherwise, we are allocating at either the 536 * beginning or the end of s, so we only need to 537 * split it in two. The first case requires 538 * two new allocations; the second requires but one. 539 */ 540 rv = int_alloc_resource(M_NOWAIT); 541 if (rv == NULL) 542 goto out; 543 rv->r_start = rstart; 544 rv->r_end = rstart + count - 1; 545 rv->r_flags = flags | RF_ALLOCATED; 546 rv->r_dev = dev; 547 rv->r_rm = rm; 548 549 if (s->r_start < rv->r_start && s->r_end > rv->r_end) { 550 DPRINTF(("splitting region in three parts: " 551 "[%#lx, %#lx]; [%#lx, %#lx]; [%#lx, %#lx]\n", 552 s->r_start, rv->r_start - 1, 553 rv->r_start, rv->r_end, 554 rv->r_end + 1, s->r_end)); 555 /* 556 * We are allocating in the middle. 557 */ 558 r = int_alloc_resource(M_NOWAIT); 559 if (r == NULL) { 560 free(rv, M_RMAN); 561 rv = NULL; 562 goto out; 563 } 564 r->r_start = rv->r_end + 1; 565 r->r_end = s->r_end; 566 r->r_flags = s->r_flags; 567 r->r_rm = rm; 568 s->r_end = rv->r_start - 1; 569 TAILQ_INSERT_AFTER(&rm->rm_list, s, rv, 570 r_link); 571 TAILQ_INSERT_AFTER(&rm->rm_list, rv, r, 572 r_link); 573 } else if (s->r_start == rv->r_start) { 574 DPRINTF(("allocating from the beginning\n")); 575 /* 576 * We are allocating at the beginning. 577 */ 578 s->r_start = rv->r_end + 1; 579 TAILQ_INSERT_BEFORE(s, rv, r_link); 580 } else { 581 DPRINTF(("allocating at the end\n")); 582 /* 583 * We are allocating at the end. 584 */ 585 s->r_end = rv->r_start - 1; 586 TAILQ_INSERT_AFTER(&rm->rm_list, s, rv, 587 r_link); 588 } 589 goto out; 590 } 591 } 592 593 /* 594 * Now find an acceptable shared region, if the client's requirements 595 * allow sharing. By our implementation restriction, a candidate 596 * region must match exactly by both size and sharing type in order 597 * to be considered compatible with the client's request. (The 598 * former restriction could probably be lifted without too much 599 * additional work, but this does not seem warranted.) 600 */ 601 DPRINTF(("no unshared regions found\n")); 602 if ((flags & (RF_SHAREABLE | RF_TIMESHARE)) == 0) 603 goto out; 604 605 for (s = r; s; s = TAILQ_NEXT(s, r_link)) { 606 if (s->r_start > end) 607 break; 608 if ((s->r_flags & flags) != flags) 609 continue; 610 rstart = ulmax(s->r_start, start); 611 rend = ulmin(s->r_end, ulmax(start + count - 1, end)); 612 if (s->r_start >= start && s->r_end <= end 613 && (s->r_end - s->r_start + 1) == count && 614 (s->r_start & amask) == 0 && 615 ((s->r_start ^ s->r_end) & bmask) == 0) { 616 rv = int_alloc_resource(M_NOWAIT); 617 if (rv == NULL) 618 goto out; 619 rv->r_start = s->r_start; 620 rv->r_end = s->r_end; 621 rv->r_flags = s->r_flags & 622 (RF_ALLOCATED | RF_SHAREABLE | RF_TIMESHARE); 623 rv->r_dev = dev; 624 rv->r_rm = rm; 625 if (s->r_sharehead == NULL) { 626 s->r_sharehead = malloc(sizeof *s->r_sharehead, 627 M_RMAN, M_NOWAIT | M_ZERO); 628 if (s->r_sharehead == NULL) { 629 free(rv, M_RMAN); 630 rv = NULL; 631 goto out; 632 } 633 LIST_INIT(s->r_sharehead); 634 LIST_INSERT_HEAD(s->r_sharehead, s, 635 r_sharelink); 636 s->r_flags |= RF_FIRSTSHARE; 637 } 638 rv->r_sharehead = s->r_sharehead; 639 LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink); 640 goto out; 641 } 642 } 643 644 /* 645 * We couldn't find anything. 646 */ 647 out: 648 /* 649 * If the user specified RF_ACTIVE in the initial flags, 650 * which is reflected in `want_activate', we attempt to atomically 651 * activate the resource. If this fails, we release the resource 652 * and indicate overall failure. (This behavior probably doesn't 653 * make sense for RF_TIMESHARE-type resources.) 654 */ 655 if (rv && want_activate) { 656 struct resource_i *whohas; 657 if (int_rman_activate_resource(rm, rv, &whohas)) { 658 int_rman_release_resource(rm, rv); 659 rv = NULL; 660 } 661 } 662 663 mtx_unlock(rm->rm_mtx); 664 return (rv == NULL ? NULL : &rv->r_r); 665 } 666 667 struct resource * 668 rman_reserve_resource(struct rman *rm, u_long start, u_long end, u_long count, 669 u_int flags, struct device *dev) 670 { 671 672 return (rman_reserve_resource_bound(rm, start, end, count, 0, flags, 673 dev)); 674 } 675 676 static int 677 int_rman_activate_resource(struct rman *rm, struct resource_i *r, 678 struct resource_i **whohas) 679 { 680 struct resource_i *s; 681 int ok; 682 683 /* 684 * If we are not timesharing, then there is nothing much to do. 685 * If we already have the resource, then there is nothing at all to do. 686 * If we are not on a sharing list with anybody else, then there is 687 * little to do. 688 */ 689 if ((r->r_flags & RF_TIMESHARE) == 0 690 || (r->r_flags & RF_ACTIVE) != 0 691 || r->r_sharehead == NULL) { 692 r->r_flags |= RF_ACTIVE; 693 return 0; 694 } 695 696 ok = 1; 697 for (s = LIST_FIRST(r->r_sharehead); s && ok; 698 s = LIST_NEXT(s, r_sharelink)) { 699 if ((s->r_flags & RF_ACTIVE) != 0) { 700 ok = 0; 701 *whohas = s; 702 } 703 } 704 if (ok) { 705 r->r_flags |= RF_ACTIVE; 706 return 0; 707 } 708 return EBUSY; 709 } 710 711 int 712 rman_activate_resource(struct resource *re) 713 { 714 int rv; 715 struct resource_i *r, *whohas; 716 struct rman *rm; 717 718 r = re->__r_i; 719 rm = r->r_rm; 720 mtx_lock(rm->rm_mtx); 721 rv = int_rman_activate_resource(rm, r, &whohas); 722 mtx_unlock(rm->rm_mtx); 723 return rv; 724 } 725 726 int 727 rman_await_resource(struct resource *re, int pri, int timo) 728 { 729 int rv; 730 struct resource_i *r, *whohas; 731 struct rman *rm; 732 733 r = re->__r_i; 734 rm = r->r_rm; 735 mtx_lock(rm->rm_mtx); 736 for (;;) { 737 rv = int_rman_activate_resource(rm, r, &whohas); 738 if (rv != EBUSY) 739 return (rv); /* returns with mutex held */ 740 741 if (r->r_sharehead == NULL) 742 panic("rman_await_resource"); 743 whohas->r_flags |= RF_WANTED; 744 rv = msleep(r->r_sharehead, rm->rm_mtx, pri, "rmwait", timo); 745 if (rv) { 746 mtx_unlock(rm->rm_mtx); 747 return (rv); 748 } 749 } 750 } 751 752 static int 753 int_rman_deactivate_resource(struct resource_i *r) 754 { 755 756 r->r_flags &= ~RF_ACTIVE; 757 if (r->r_flags & RF_WANTED) { 758 r->r_flags &= ~RF_WANTED; 759 wakeup(r->r_sharehead); 760 } 761 return 0; 762 } 763 764 int 765 rman_deactivate_resource(struct resource *r) 766 { 767 struct rman *rm; 768 769 rm = r->__r_i->r_rm; 770 mtx_lock(rm->rm_mtx); 771 int_rman_deactivate_resource(r->__r_i); 772 mtx_unlock(rm->rm_mtx); 773 return 0; 774 } 775 776 static int 777 int_rman_release_resource(struct rman *rm, struct resource_i *r) 778 { 779 struct resource_i *s, *t; 780 781 if (r->r_flags & RF_ACTIVE) 782 int_rman_deactivate_resource(r); 783 784 /* 785 * Check for a sharing list first. If there is one, then we don't 786 * have to think as hard. 787 */ 788 if (r->r_sharehead) { 789 /* 790 * If a sharing list exists, then we know there are at 791 * least two sharers. 792 * 793 * If we are in the main circleq, appoint someone else. 794 */ 795 LIST_REMOVE(r, r_sharelink); 796 s = LIST_FIRST(r->r_sharehead); 797 if (r->r_flags & RF_FIRSTSHARE) { 798 s->r_flags |= RF_FIRSTSHARE; 799 TAILQ_INSERT_BEFORE(r, s, r_link); 800 TAILQ_REMOVE(&rm->rm_list, r, r_link); 801 } 802 803 /* 804 * Make sure that the sharing list goes away completely 805 * if the resource is no longer being shared at all. 806 */ 807 if (LIST_NEXT(s, r_sharelink) == NULL) { 808 free(s->r_sharehead, M_RMAN); 809 s->r_sharehead = NULL; 810 s->r_flags &= ~RF_FIRSTSHARE; 811 } 812 goto out; 813 } 814 815 /* 816 * Look at the adjacent resources in the list and see if our 817 * segment can be merged with any of them. If either of the 818 * resources is allocated or is not exactly adjacent then they 819 * cannot be merged with our segment. 820 */ 821 s = TAILQ_PREV(r, resource_head, r_link); 822 if (s != NULL && ((s->r_flags & RF_ALLOCATED) != 0 || 823 s->r_end + 1 != r->r_start)) 824 s = NULL; 825 t = TAILQ_NEXT(r, r_link); 826 if (t != NULL && ((t->r_flags & RF_ALLOCATED) != 0 || 827 r->r_end + 1 != t->r_start)) 828 t = NULL; 829 830 if (s != NULL && t != NULL) { 831 /* 832 * Merge all three segments. 833 */ 834 s->r_end = t->r_end; 835 TAILQ_REMOVE(&rm->rm_list, r, r_link); 836 TAILQ_REMOVE(&rm->rm_list, t, r_link); 837 free(t, M_RMAN); 838 } else if (s != NULL) { 839 /* 840 * Merge previous segment with ours. 841 */ 842 s->r_end = r->r_end; 843 TAILQ_REMOVE(&rm->rm_list, r, r_link); 844 } else if (t != NULL) { 845 /* 846 * Merge next segment with ours. 847 */ 848 t->r_start = r->r_start; 849 TAILQ_REMOVE(&rm->rm_list, r, r_link); 850 } else { 851 /* 852 * At this point, we know there is nothing we 853 * can potentially merge with, because on each 854 * side, there is either nothing there or what is 855 * there is still allocated. In that case, we don't 856 * want to remove r from the list; we simply want to 857 * change it to an unallocated region and return 858 * without freeing anything. 859 */ 860 r->r_flags &= ~RF_ALLOCATED; 861 r->r_dev = NULL; 862 return 0; 863 } 864 865 out: 866 free(r, M_RMAN); 867 return 0; 868 } 869 870 int 871 rman_release_resource(struct resource *re) 872 { 873 int rv; 874 struct resource_i *r; 875 struct rman *rm; 876 877 r = re->__r_i; 878 rm = r->r_rm; 879 mtx_lock(rm->rm_mtx); 880 rv = int_rman_release_resource(rm, r); 881 mtx_unlock(rm->rm_mtx); 882 return (rv); 883 } 884 885 uint32_t 886 rman_make_alignment_flags(uint32_t size) 887 { 888 int i; 889 890 /* 891 * Find the hightest bit set, and add one if more than one bit 892 * set. We're effectively computing the ceil(log2(size)) here. 893 */ 894 for (i = 31; i > 0; i--) 895 if ((1 << i) & size) 896 break; 897 if (~(1 << i) & size) 898 i++; 899 900 return(RF_ALIGNMENT_LOG2(i)); 901 } 902 903 void 904 rman_set_start(struct resource *r, u_long start) 905 { 906 r->__r_i->r_start = start; 907 } 908 909 u_long 910 rman_get_start(struct resource *r) 911 { 912 return (r->__r_i->r_start); 913 } 914 915 void 916 rman_set_end(struct resource *r, u_long end) 917 { 918 r->__r_i->r_end = end; 919 } 920 921 u_long 922 rman_get_end(struct resource *r) 923 { 924 return (r->__r_i->r_end); 925 } 926 927 u_long 928 rman_get_size(struct resource *r) 929 { 930 return (r->__r_i->r_end - r->__r_i->r_start + 1); 931 } 932 933 u_int 934 rman_get_flags(struct resource *r) 935 { 936 return (r->__r_i->r_flags); 937 } 938 939 void 940 rman_set_virtual(struct resource *r, void *v) 941 { 942 r->__r_i->r_virtual = v; 943 } 944 945 void * 946 rman_get_virtual(struct resource *r) 947 { 948 return (r->__r_i->r_virtual); 949 } 950 951 void 952 rman_set_bustag(struct resource *r, bus_space_tag_t t) 953 { 954 r->r_bustag = t; 955 } 956 957 bus_space_tag_t 958 rman_get_bustag(struct resource *r) 959 { 960 return (r->r_bustag); 961 } 962 963 void 964 rman_set_bushandle(struct resource *r, bus_space_handle_t h) 965 { 966 r->r_bushandle = h; 967 } 968 969 bus_space_handle_t 970 rman_get_bushandle(struct resource *r) 971 { 972 return (r->r_bushandle); 973 } 974 975 void 976 rman_set_rid(struct resource *r, int rid) 977 { 978 r->__r_i->r_rid = rid; 979 } 980 981 int 982 rman_get_rid(struct resource *r) 983 { 984 return (r->__r_i->r_rid); 985 } 986 987 void 988 rman_set_device(struct resource *r, struct device *dev) 989 { 990 r->__r_i->r_dev = dev; 991 } 992 993 struct device * 994 rman_get_device(struct resource *r) 995 { 996 return (r->__r_i->r_dev); 997 } 998 999 int 1000 rman_is_region_manager(struct resource *r, struct rman *rm) 1001 { 1002 1003 return (r->__r_i->r_rm == rm); 1004 } 1005 1006 /* 1007 * Sysctl interface for scanning the resource lists. 1008 * 1009 * We take two input parameters; the index into the list of resource 1010 * managers, and the resource offset into the list. 1011 */ 1012 static int 1013 sysctl_rman(SYSCTL_HANDLER_ARGS) 1014 { 1015 int *name = (int *)arg1; 1016 u_int namelen = arg2; 1017 int rman_idx, res_idx; 1018 struct rman *rm; 1019 struct resource_i *res; 1020 struct resource_i *sres; 1021 struct u_rman urm; 1022 struct u_resource ures; 1023 int error; 1024 1025 if (namelen != 3) 1026 return (EINVAL); 1027 1028 if (bus_data_generation_check(name[0])) 1029 return (EINVAL); 1030 rman_idx = name[1]; 1031 res_idx = name[2]; 1032 1033 /* 1034 * Find the indexed resource manager 1035 */ 1036 mtx_lock(&rman_mtx); 1037 TAILQ_FOREACH(rm, &rman_head, rm_link) { 1038 if (rman_idx-- == 0) 1039 break; 1040 } 1041 mtx_unlock(&rman_mtx); 1042 if (rm == NULL) 1043 return (ENOENT); 1044 1045 /* 1046 * If the resource index is -1, we want details on the 1047 * resource manager. 1048 */ 1049 if (res_idx == -1) { 1050 bzero(&urm, sizeof(urm)); 1051 urm.rm_handle = (uintptr_t)rm; 1052 if (rm->rm_descr != NULL) 1053 strlcpy(urm.rm_descr, rm->rm_descr, RM_TEXTLEN); 1054 urm.rm_start = rm->rm_start; 1055 urm.rm_size = rm->rm_end - rm->rm_start + 1; 1056 urm.rm_type = rm->rm_type; 1057 1058 error = SYSCTL_OUT(req, &urm, sizeof(urm)); 1059 return (error); 1060 } 1061 1062 /* 1063 * Find the indexed resource and return it. 1064 */ 1065 mtx_lock(rm->rm_mtx); 1066 TAILQ_FOREACH(res, &rm->rm_list, r_link) { 1067 if (res->r_sharehead != NULL) { 1068 LIST_FOREACH(sres, res->r_sharehead, r_sharelink) 1069 if (res_idx-- == 0) { 1070 res = sres; 1071 goto found; 1072 } 1073 } 1074 else if (res_idx-- == 0) 1075 goto found; 1076 } 1077 mtx_unlock(rm->rm_mtx); 1078 return (ENOENT); 1079 1080 found: 1081 bzero(&ures, sizeof(ures)); 1082 ures.r_handle = (uintptr_t)res; 1083 ures.r_parent = (uintptr_t)res->r_rm; 1084 ures.r_device = (uintptr_t)res->r_dev; 1085 if (res->r_dev != NULL) { 1086 if (device_get_name(res->r_dev) != NULL) { 1087 snprintf(ures.r_devname, RM_TEXTLEN, 1088 "%s%d", 1089 device_get_name(res->r_dev), 1090 device_get_unit(res->r_dev)); 1091 } else { 1092 strlcpy(ures.r_devname, "nomatch", 1093 RM_TEXTLEN); 1094 } 1095 } else { 1096 ures.r_devname[0] = '\0'; 1097 } 1098 ures.r_start = res->r_start; 1099 ures.r_size = res->r_end - res->r_start + 1; 1100 ures.r_flags = res->r_flags; 1101 1102 mtx_unlock(rm->rm_mtx); 1103 error = SYSCTL_OUT(req, &ures, sizeof(ures)); 1104 return (error); 1105 } 1106 1107 static SYSCTL_NODE(_hw_bus, OID_AUTO, rman, CTLFLAG_RD, sysctl_rman, 1108 "kernel resource manager"); 1109 1110 #ifdef DDB 1111 static void 1112 dump_rman_header(struct rman *rm) 1113 { 1114 1115 if (db_pager_quit) 1116 return; 1117 db_printf("rman %p: %s (0x%lx-0x%lx full range)\n", 1118 rm, rm->rm_descr, rm->rm_start, rm->rm_end); 1119 } 1120 1121 static void 1122 dump_rman(struct rman *rm) 1123 { 1124 struct resource_i *r; 1125 const char *devname; 1126 1127 if (db_pager_quit) 1128 return; 1129 TAILQ_FOREACH(r, &rm->rm_list, r_link) { 1130 if (r->r_dev != NULL) { 1131 devname = device_get_nameunit(r->r_dev); 1132 if (devname == NULL) 1133 devname = "nomatch"; 1134 } else 1135 devname = NULL; 1136 db_printf(" 0x%lx-0x%lx ", r->r_start, r->r_end); 1137 if (devname != NULL) 1138 db_printf("(%s)\n", devname); 1139 else 1140 db_printf("----\n"); 1141 if (db_pager_quit) 1142 return; 1143 } 1144 } 1145 1146 DB_SHOW_COMMAND(rman, db_show_rman) 1147 { 1148 1149 if (have_addr) { 1150 dump_rman_header((struct rman *)addr); 1151 dump_rman((struct rman *)addr); 1152 } 1153 } 1154 1155 DB_SHOW_COMMAND(rmans, db_show_rmans) 1156 { 1157 struct rman *rm; 1158 1159 TAILQ_FOREACH(rm, &rman_head, rm_link) { 1160 dump_rman_header(rm); 1161 } 1162 } 1163 1164 DB_SHOW_ALL_COMMAND(rman, db_show_all_rman) 1165 { 1166 struct rman *rm; 1167 1168 TAILQ_FOREACH(rm, &rman_head, rm_link) { 1169 dump_rman_header(rm); 1170 dump_rman(rm); 1171 } 1172 } 1173 DB_SHOW_ALIAS(allrman, db_show_all_rman); 1174 #endif 1175