xref: /freebsd/sys/kern/subr_rman.c (revision 7660b554bc59a07be0431c17e0e33815818baa69)
1 /*
2  * Copyright 1998 Massachusetts Institute of Technology
3  *
4  * Permission to use, copy, modify, and distribute this software and
5  * its documentation for any purpose and without fee is hereby
6  * granted, provided that both the above copyright notice and this
7  * permission notice appear in all copies, that both the above
8  * copyright notice and this permission notice appear in all
9  * supporting documentation, and that the name of M.I.T. not be used
10  * in advertising or publicity pertaining to distribution of the
11  * software without specific, written prior permission.  M.I.T. makes
12  * no representations about the suitability of this software for any
13  * purpose.  It is provided "as is" without express or implied
14  * warranty.
15  *
16  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
17  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /*
31  * The kernel resource manager.  This code is responsible for keeping track
32  * of hardware resources which are apportioned out to various drivers.
33  * It does not actually assign those resources, and it is not expected
34  * that end-device drivers will call into this code directly.  Rather,
35  * the code which implements the buses that those devices are attached to,
36  * and the code which manages CPU resources, will call this code, and the
37  * end-device drivers will make upcalls to that code to actually perform
38  * the allocation.
39  *
40  * There are two sorts of resources managed by this code.  The first is
41  * the more familiar array (RMAN_ARRAY) type; resources in this class
42  * consist of a sequence of individually-allocatable objects which have
43  * been numbered in some well-defined order.  Most of the resources
44  * are of this type, as it is the most familiar.  The second type is
45  * called a gauge (RMAN_GAUGE), and models fungible resources (i.e.,
46  * resources in which each instance is indistinguishable from every
47  * other instance).  The principal anticipated application of gauges
48  * is in the context of power consumption, where a bus may have a specific
49  * power budget which all attached devices share.  RMAN_GAUGE is not
50  * implemented yet.
51  *
52  * For array resources, we make one simplifying assumption: two clients
53  * sharing the same resource must use the same range of indices.  That
54  * is to say, sharing of overlapping-but-not-identical regions is not
55  * permitted.
56  */
57 
58 #include <sys/cdefs.h>
59 __FBSDID("$FreeBSD$");
60 
61 #include <sys/param.h>
62 #include <sys/systm.h>
63 #include <sys/kernel.h>
64 #include <sys/lock.h>
65 #include <sys/malloc.h>
66 #include <sys/mutex.h>
67 #include <sys/bus.h>		/* XXX debugging */
68 #include <machine/bus.h>
69 #include <sys/rman.h>
70 #include <sys/sysctl.h>
71 
72 int     rman_debug = 0;
73 TUNABLE_INT("debug.rman_debug", &rman_debug);
74 SYSCTL_INT(_debug, OID_AUTO, rman_debug, CTLFLAG_RW,
75     &rman_debug, 0, "rman debug");
76 
77 #define DPRINTF(params) if (rman_debug) printf params
78 
79 static MALLOC_DEFINE(M_RMAN, "rman", "Resource manager");
80 
81 struct	rman_head rman_head;
82 static	struct mtx rman_mtx; /* mutex to protect rman_head */
83 static	int int_rman_activate_resource(struct rman *rm, struct resource *r,
84 				       struct resource **whohas);
85 static	int int_rman_deactivate_resource(struct resource *r);
86 static	int int_rman_release_resource(struct rman *rm, struct resource *r);
87 
88 int
89 rman_init(struct rman *rm)
90 {
91 	static int once;
92 
93 	if (once == 0) {
94 		once = 1;
95 		TAILQ_INIT(&rman_head);
96 		mtx_init(&rman_mtx, "rman head", NULL, MTX_DEF);
97 	}
98 
99 	if (rm->rm_type == RMAN_UNINIT)
100 		panic("rman_init");
101 	if (rm->rm_type == RMAN_GAUGE)
102 		panic("implement RMAN_GAUGE");
103 
104 	TAILQ_INIT(&rm->rm_list);
105 	rm->rm_mtx = malloc(sizeof *rm->rm_mtx, M_RMAN, M_NOWAIT | M_ZERO);
106 	if (rm->rm_mtx == 0)
107 		return ENOMEM;
108 	mtx_init(rm->rm_mtx, "rman", NULL, MTX_DEF);
109 
110 	mtx_lock(&rman_mtx);
111 	TAILQ_INSERT_TAIL(&rman_head, rm, rm_link);
112 	mtx_unlock(&rman_mtx);
113 	return 0;
114 }
115 
116 /*
117  * NB: this interface is not robust against programming errors which
118  * add multiple copies of the same region.
119  */
120 int
121 rman_manage_region(struct rman *rm, u_long start, u_long end)
122 {
123 	struct resource *r, *s;
124 
125 	r = malloc(sizeof *r, M_RMAN, M_NOWAIT | M_ZERO);
126 	if (r == 0)
127 		return ENOMEM;
128 	r->r_start = start;
129 	r->r_end = end;
130 	r->r_rm = rm;
131 
132 	mtx_lock(rm->rm_mtx);
133 	for (s = TAILQ_FIRST(&rm->rm_list);
134 	     s && s->r_end < r->r_start;
135 	     s = TAILQ_NEXT(s, r_link))
136 		;
137 
138 	if (s == NULL) {
139 		TAILQ_INSERT_TAIL(&rm->rm_list, r, r_link);
140 	} else {
141 		TAILQ_INSERT_BEFORE(s, r, r_link);
142 	}
143 
144 	mtx_unlock(rm->rm_mtx);
145 	return 0;
146 }
147 
148 int
149 rman_fini(struct rman *rm)
150 {
151 	struct resource *r;
152 
153 	mtx_lock(rm->rm_mtx);
154 	TAILQ_FOREACH(r, &rm->rm_list, r_link) {
155 		if (r->r_flags & RF_ALLOCATED) {
156 			mtx_unlock(rm->rm_mtx);
157 			return EBUSY;
158 		}
159 	}
160 
161 	/*
162 	 * There really should only be one of these if we are in this
163 	 * state and the code is working properly, but it can't hurt.
164 	 */
165 	while (!TAILQ_EMPTY(&rm->rm_list)) {
166 		r = TAILQ_FIRST(&rm->rm_list);
167 		TAILQ_REMOVE(&rm->rm_list, r, r_link);
168 		free(r, M_RMAN);
169 	}
170 	mtx_unlock(rm->rm_mtx);
171 	mtx_lock(&rman_mtx);
172 	TAILQ_REMOVE(&rman_head, rm, rm_link);
173 	mtx_unlock(&rman_mtx);
174 	mtx_destroy(rm->rm_mtx);
175 	free(rm->rm_mtx, M_RMAN);
176 
177 	return 0;
178 }
179 
180 struct resource *
181 rman_reserve_resource_bound(struct rman *rm, u_long start, u_long end,
182 		      u_long count, u_long bound,  u_int flags,
183 		      struct device *dev)
184 {
185 	u_int	want_activate;
186 	struct	resource *r, *s, *rv;
187 	u_long	rstart, rend, amask, bmask;
188 
189 	rv = 0;
190 
191 	DPRINTF(("rman_reserve_resource: <%s> request: [%#lx, %#lx], length "
192 	       "%#lx, flags %u, device %s\n", rm->rm_descr, start, end, count,
193 	       flags, dev == NULL ? "<null>" : device_get_nameunit(dev)));
194 	want_activate = (flags & RF_ACTIVE);
195 	flags &= ~RF_ACTIVE;
196 
197 	mtx_lock(rm->rm_mtx);
198 
199 	for (r = TAILQ_FIRST(&rm->rm_list);
200 	     r && r->r_end < start;
201 	     r = TAILQ_NEXT(r, r_link))
202 		;
203 
204 	if (r == NULL) {
205 		DPRINTF(("could not find a region\n"));
206 		goto out;
207 	}
208 
209 	amask = (1ul << RF_ALIGNMENT(flags)) - 1;
210 	/* If bound is 0, bmask will also be 0 */
211 	bmask = ~(bound - 1);
212 	/*
213 	 * First try to find an acceptable totally-unshared region.
214 	 */
215 	for (s = r; s; s = TAILQ_NEXT(s, r_link)) {
216 		DPRINTF(("considering [%#lx, %#lx]\n", s->r_start, s->r_end));
217 		if (s->r_start > end) {
218 			DPRINTF(("s->r_start (%#lx) > end (%#lx)\n", s->r_start, end));
219 			break;
220 		}
221 		if (s->r_flags & RF_ALLOCATED) {
222 			DPRINTF(("region is allocated\n"));
223 			continue;
224 		}
225 		rstart = ulmax(s->r_start, start);
226 		/*
227 		 * Try to find a region by adjusting to boundary and alignment
228 		 * until both conditions are satisfied. This is not an optimal
229 		 * algorithm, but in most cases it isn't really bad, either.
230 		 */
231 		do {
232 			rstart = (rstart + amask) & ~amask;
233 			if (((rstart ^ (rstart + count - 1)) & bmask) != 0)
234 				rstart += bound - (rstart & ~bmask);
235 		} while ((rstart & amask) != 0 && rstart < end &&
236 		    rstart < s->r_end);
237 		rend = ulmin(s->r_end, ulmax(rstart + count, end));
238 		if (rstart > rend) {
239 			DPRINTF(("adjusted start exceeds end\n"));
240 			continue;
241 		}
242 		DPRINTF(("truncated region: [%#lx, %#lx]; size %#lx (requested %#lx)\n",
243 		       rstart, rend, (rend - rstart + 1), count));
244 
245 		if ((rend - rstart + 1) >= count) {
246 			DPRINTF(("candidate region: [%#lx, %#lx], size %#lx\n",
247 			       rend, rstart, (rend - rstart + 1)));
248 			if ((s->r_end - s->r_start + 1) == count) {
249 				DPRINTF(("candidate region is entire chunk\n"));
250 				rv = s;
251 				rv->r_flags |= RF_ALLOCATED | flags;
252 				rv->r_dev = dev;
253 				goto out;
254 			}
255 
256 			/*
257 			 * If s->r_start < rstart and
258 			 *    s->r_end > rstart + count - 1, then
259 			 * we need to split the region into three pieces
260 			 * (the middle one will get returned to the user).
261 			 * Otherwise, we are allocating at either the
262 			 * beginning or the end of s, so we only need to
263 			 * split it in two.  The first case requires
264 			 * two new allocations; the second requires but one.
265 			 */
266 			rv = malloc(sizeof *rv, M_RMAN, M_NOWAIT | M_ZERO);
267 			if (rv == 0)
268 				goto out;
269 			rv->r_start = rstart;
270 			rv->r_end = rstart + count - 1;
271 			rv->r_flags = flags | RF_ALLOCATED;
272 			rv->r_dev = dev;
273 			rv->r_rm = rm;
274 
275 			if (s->r_start < rv->r_start && s->r_end > rv->r_end) {
276 				DPRINTF(("splitting region in three parts: "
277 				       "[%#lx, %#lx]; [%#lx, %#lx]; [%#lx, %#lx]\n",
278 				       s->r_start, rv->r_start - 1,
279 				       rv->r_start, rv->r_end,
280 				       rv->r_end + 1, s->r_end));
281 				/*
282 				 * We are allocating in the middle.
283 				 */
284 				r = malloc(sizeof *r, M_RMAN, M_NOWAIT|M_ZERO);
285 				if (r == 0) {
286 					free(rv, M_RMAN);
287 					rv = 0;
288 					goto out;
289 				}
290 				r->r_start = rv->r_end + 1;
291 				r->r_end = s->r_end;
292 				r->r_flags = s->r_flags;
293 				r->r_rm = rm;
294 				s->r_end = rv->r_start - 1;
295 				TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
296 						     r_link);
297 				TAILQ_INSERT_AFTER(&rm->rm_list, rv, r,
298 						     r_link);
299 			} else if (s->r_start == rv->r_start) {
300 				DPRINTF(("allocating from the beginning\n"));
301 				/*
302 				 * We are allocating at the beginning.
303 				 */
304 				s->r_start = rv->r_end + 1;
305 				TAILQ_INSERT_BEFORE(s, rv, r_link);
306 			} else {
307 				DPRINTF(("allocating at the end\n"));
308 				/*
309 				 * We are allocating at the end.
310 				 */
311 				s->r_end = rv->r_start - 1;
312 				TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
313 						     r_link);
314 			}
315 			goto out;
316 		}
317 	}
318 
319 	/*
320 	 * Now find an acceptable shared region, if the client's requirements
321 	 * allow sharing.  By our implementation restriction, a candidate
322 	 * region must match exactly by both size and sharing type in order
323 	 * to be considered compatible with the client's request.  (The
324 	 * former restriction could probably be lifted without too much
325 	 * additional work, but this does not seem warranted.)
326 	 */
327 	DPRINTF(("no unshared regions found\n"));
328 	if ((flags & (RF_SHAREABLE | RF_TIMESHARE)) == 0)
329 		goto out;
330 
331 	for (s = r; s; s = TAILQ_NEXT(s, r_link)) {
332 		if (s->r_start > end)
333 			break;
334 		if ((s->r_flags & flags) != flags)
335 			continue;
336 		rstart = ulmax(s->r_start, start);
337 		rend = ulmin(s->r_end, ulmax(start + count, end));
338 		if (s->r_start >= start && s->r_end <= end
339 		    && (s->r_end - s->r_start + 1) == count &&
340 		    (s->r_start & amask) == 0 &&
341 		    ((s->r_start ^ s->r_end) & bmask) == 0) {
342 			rv = malloc(sizeof *rv, M_RMAN, M_NOWAIT | M_ZERO);
343 			if (rv == 0)
344 				goto out;
345 			rv->r_start = s->r_start;
346 			rv->r_end = s->r_end;
347 			rv->r_flags = s->r_flags &
348 				(RF_ALLOCATED | RF_SHAREABLE | RF_TIMESHARE);
349 			rv->r_dev = dev;
350 			rv->r_rm = rm;
351 			if (s->r_sharehead == 0) {
352 				s->r_sharehead = malloc(sizeof *s->r_sharehead,
353 						M_RMAN, M_NOWAIT | M_ZERO);
354 				if (s->r_sharehead == 0) {
355 					free(rv, M_RMAN);
356 					rv = 0;
357 					goto out;
358 				}
359 				LIST_INIT(s->r_sharehead);
360 				LIST_INSERT_HEAD(s->r_sharehead, s,
361 						 r_sharelink);
362 				s->r_flags |= RF_FIRSTSHARE;
363 			}
364 			rv->r_sharehead = s->r_sharehead;
365 			LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink);
366 			goto out;
367 		}
368 	}
369 
370 	/*
371 	 * We couldn't find anything.
372 	 */
373 out:
374 	/*
375 	 * If the user specified RF_ACTIVE in the initial flags,
376 	 * which is reflected in `want_activate', we attempt to atomically
377 	 * activate the resource.  If this fails, we release the resource
378 	 * and indicate overall failure.  (This behavior probably doesn't
379 	 * make sense for RF_TIMESHARE-type resources.)
380 	 */
381 	if (rv && want_activate) {
382 		struct resource *whohas;
383 		if (int_rman_activate_resource(rm, rv, &whohas)) {
384 			int_rman_release_resource(rm, rv);
385 			rv = 0;
386 		}
387 	}
388 
389 	mtx_unlock(rm->rm_mtx);
390 	return (rv);
391 }
392 
393 struct resource *
394 rman_reserve_resource(struct rman *rm, u_long start, u_long end, u_long count,
395 		      u_int flags, struct device *dev)
396 {
397 
398 	return (rman_reserve_resource_bound(rm, start, end, count, 0, flags,
399 	    dev));
400 }
401 
402 static int
403 int_rman_activate_resource(struct rman *rm, struct resource *r,
404 			   struct resource **whohas)
405 {
406 	struct resource *s;
407 	int ok;
408 
409 	/*
410 	 * If we are not timesharing, then there is nothing much to do.
411 	 * If we already have the resource, then there is nothing at all to do.
412 	 * If we are not on a sharing list with anybody else, then there is
413 	 * little to do.
414 	 */
415 	if ((r->r_flags & RF_TIMESHARE) == 0
416 	    || (r->r_flags & RF_ACTIVE) != 0
417 	    || r->r_sharehead == 0) {
418 		r->r_flags |= RF_ACTIVE;
419 		return 0;
420 	}
421 
422 	ok = 1;
423 	for (s = LIST_FIRST(r->r_sharehead); s && ok;
424 	     s = LIST_NEXT(s, r_sharelink)) {
425 		if ((s->r_flags & RF_ACTIVE) != 0) {
426 			ok = 0;
427 			*whohas = s;
428 		}
429 	}
430 	if (ok) {
431 		r->r_flags |= RF_ACTIVE;
432 		return 0;
433 	}
434 	return EBUSY;
435 }
436 
437 int
438 rman_activate_resource(struct resource *r)
439 {
440 	int rv;
441 	struct resource *whohas;
442 	struct rman *rm;
443 
444 	rm = r->r_rm;
445 	mtx_lock(rm->rm_mtx);
446 	rv = int_rman_activate_resource(rm, r, &whohas);
447 	mtx_unlock(rm->rm_mtx);
448 	return rv;
449 }
450 
451 int
452 rman_await_resource(struct resource *r, int pri, int timo)
453 {
454 	int	rv;
455 	struct	resource *whohas;
456 	struct	rman *rm;
457 
458 	rm = r->r_rm;
459 	mtx_lock(rm->rm_mtx);
460 	for (;;) {
461 		rv = int_rman_activate_resource(rm, r, &whohas);
462 		if (rv != EBUSY)
463 			return (rv);	/* returns with mutex held */
464 
465 		if (r->r_sharehead == 0)
466 			panic("rman_await_resource");
467 		whohas->r_flags |= RF_WANTED;
468 		rv = msleep(r->r_sharehead, rm->rm_mtx, pri, "rmwait", timo);
469 		if (rv) {
470 			mtx_unlock(rm->rm_mtx);
471 			return (rv);
472 		}
473 	}
474 }
475 
476 static int
477 int_rman_deactivate_resource(struct resource *r)
478 {
479 
480 	r->r_flags &= ~RF_ACTIVE;
481 	if (r->r_flags & RF_WANTED) {
482 		r->r_flags &= ~RF_WANTED;
483 		wakeup(r->r_sharehead);
484 	}
485 	return 0;
486 }
487 
488 int
489 rman_deactivate_resource(struct resource *r)
490 {
491 	struct	rman *rm;
492 
493 	rm = r->r_rm;
494 	mtx_lock(rm->rm_mtx);
495 	int_rman_deactivate_resource(r);
496 	mtx_unlock(rm->rm_mtx);
497 	return 0;
498 }
499 
500 static int
501 int_rman_release_resource(struct rman *rm, struct resource *r)
502 {
503 	struct	resource *s, *t;
504 
505 	if (r->r_flags & RF_ACTIVE)
506 		int_rman_deactivate_resource(r);
507 
508 	/*
509 	 * Check for a sharing list first.  If there is one, then we don't
510 	 * have to think as hard.
511 	 */
512 	if (r->r_sharehead) {
513 		/*
514 		 * If a sharing list exists, then we know there are at
515 		 * least two sharers.
516 		 *
517 		 * If we are in the main circleq, appoint someone else.
518 		 */
519 		LIST_REMOVE(r, r_sharelink);
520 		s = LIST_FIRST(r->r_sharehead);
521 		if (r->r_flags & RF_FIRSTSHARE) {
522 			s->r_flags |= RF_FIRSTSHARE;
523 			TAILQ_INSERT_BEFORE(r, s, r_link);
524 			TAILQ_REMOVE(&rm->rm_list, r, r_link);
525 		}
526 
527 		/*
528 		 * Make sure that the sharing list goes away completely
529 		 * if the resource is no longer being shared at all.
530 		 */
531 		if (LIST_NEXT(s, r_sharelink) == 0) {
532 			free(s->r_sharehead, M_RMAN);
533 			s->r_sharehead = 0;
534 			s->r_flags &= ~RF_FIRSTSHARE;
535 		}
536 		goto out;
537 	}
538 
539 	/*
540 	 * Look at the adjacent resources in the list and see if our
541 	 * segment can be merged with any of them.
542 	 */
543 	s = TAILQ_PREV(r, resource_head, r_link);
544 	t = TAILQ_NEXT(r, r_link);
545 
546 	if (s != NULL && (s->r_flags & RF_ALLOCATED) == 0
547 	    && t != NULL && (t->r_flags & RF_ALLOCATED) == 0) {
548 		/*
549 		 * Merge all three segments.
550 		 */
551 		s->r_end = t->r_end;
552 		TAILQ_REMOVE(&rm->rm_list, r, r_link);
553 		TAILQ_REMOVE(&rm->rm_list, t, r_link);
554 		free(t, M_RMAN);
555 	} else if (s != NULL && (s->r_flags & RF_ALLOCATED) == 0) {
556 		/*
557 		 * Merge previous segment with ours.
558 		 */
559 		s->r_end = r->r_end;
560 		TAILQ_REMOVE(&rm->rm_list, r, r_link);
561 	} else if (t != NULL && (t->r_flags & RF_ALLOCATED) == 0) {
562 		/*
563 		 * Merge next segment with ours.
564 		 */
565 		t->r_start = r->r_start;
566 		TAILQ_REMOVE(&rm->rm_list, r, r_link);
567 	} else {
568 		/*
569 		 * At this point, we know there is nothing we
570 		 * can potentially merge with, because on each
571 		 * side, there is either nothing there or what is
572 		 * there is still allocated.  In that case, we don't
573 		 * want to remove r from the list; we simply want to
574 		 * change it to an unallocated region and return
575 		 * without freeing anything.
576 		 */
577 		r->r_flags &= ~RF_ALLOCATED;
578 		return 0;
579 	}
580 
581 out:
582 	free(r, M_RMAN);
583 	return 0;
584 }
585 
586 int
587 rman_release_resource(struct resource *r)
588 {
589 	int	rv;
590 	struct	rman *rm = r->r_rm;
591 
592 	mtx_lock(rm->rm_mtx);
593 	rv = int_rman_release_resource(rm, r);
594 	mtx_unlock(rm->rm_mtx);
595 	return (rv);
596 }
597 
598 uint32_t
599 rman_make_alignment_flags(uint32_t size)
600 {
601 	int	i;
602 
603 	/*
604 	 * Find the hightest bit set, and add one if more than one bit
605 	 * set.  We're effectively computing the ceil(log2(size)) here.
606 	 */
607 	for (i = 31; i > 0; i--)
608 		if ((1 << i) & size)
609 			break;
610 	if (~(1 << i) & size)
611 		i++;
612 
613 	return(RF_ALIGNMENT_LOG2(i));
614 }
615 
616 u_long
617 rman_get_start(struct resource *r)
618 {
619 	return (r->r_start);
620 }
621 
622 u_long
623 rman_get_end(struct resource *r)
624 {
625 	return (r->r_end);
626 }
627 
628 u_long
629 rman_get_size(struct resource *r)
630 {
631 	return (r->r_end - r->r_start + 1);
632 }
633 
634 u_int
635 rman_get_flags(struct resource *r)
636 {
637 	return (r->r_flags);
638 }
639 
640 void
641 rman_set_virtual(struct resource *r, void *v)
642 {
643 	r->r_virtual = v;
644 }
645 
646 void *
647 rman_get_virtual(struct resource *r)
648 {
649 	return (r->r_virtual);
650 }
651 
652 void
653 rman_set_bustag(struct resource *r, bus_space_tag_t t)
654 {
655 	r->r_bustag = t;
656 }
657 
658 bus_space_tag_t
659 rman_get_bustag(struct resource *r)
660 {
661 	return (r->r_bustag);
662 }
663 
664 void
665 rman_set_bushandle(struct resource *r, bus_space_handle_t h)
666 {
667 	r->r_bushandle = h;
668 }
669 
670 bus_space_handle_t
671 rman_get_bushandle(struct resource *r)
672 {
673 	return (r->r_bushandle);
674 }
675 
676 void
677 rman_set_rid(struct resource *r, int rid)
678 {
679 	r->r_rid = rid;
680 }
681 
682 int
683 rman_get_rid(struct resource *r)
684 {
685 	return (r->r_rid);
686 }
687 
688 struct device *
689 rman_get_device(struct resource *r)
690 {
691 	return (r->r_dev);
692 }
693