xref: /freebsd/sys/kern/subr_rman.c (revision 6af83ee0d2941d18880b6aaa2b4facd1d30c6106)
1 /*-
2  * Copyright 1998 Massachusetts Institute of Technology
3  *
4  * Permission to use, copy, modify, and distribute this software and
5  * its documentation for any purpose and without fee is hereby
6  * granted, provided that both the above copyright notice and this
7  * permission notice appear in all copies, that both the above
8  * copyright notice and this permission notice appear in all
9  * supporting documentation, and that the name of M.I.T. not be used
10  * in advertising or publicity pertaining to distribution of the
11  * software without specific, written prior permission.  M.I.T. makes
12  * no representations about the suitability of this software for any
13  * purpose.  It is provided "as is" without express or implied
14  * warranty.
15  *
16  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
17  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /*
31  * The kernel resource manager.  This code is responsible for keeping track
32  * of hardware resources which are apportioned out to various drivers.
33  * It does not actually assign those resources, and it is not expected
34  * that end-device drivers will call into this code directly.  Rather,
35  * the code which implements the buses that those devices are attached to,
36  * and the code which manages CPU resources, will call this code, and the
37  * end-device drivers will make upcalls to that code to actually perform
38  * the allocation.
39  *
40  * There are two sorts of resources managed by this code.  The first is
41  * the more familiar array (RMAN_ARRAY) type; resources in this class
42  * consist of a sequence of individually-allocatable objects which have
43  * been numbered in some well-defined order.  Most of the resources
44  * are of this type, as it is the most familiar.  The second type is
45  * called a gauge (RMAN_GAUGE), and models fungible resources (i.e.,
46  * resources in which each instance is indistinguishable from every
47  * other instance).  The principal anticipated application of gauges
48  * is in the context of power consumption, where a bus may have a specific
49  * power budget which all attached devices share.  RMAN_GAUGE is not
50  * implemented yet.
51  *
52  * For array resources, we make one simplifying assumption: two clients
53  * sharing the same resource must use the same range of indices.  That
54  * is to say, sharing of overlapping-but-not-identical regions is not
55  * permitted.
56  */
57 
58 #include <sys/cdefs.h>
59 __FBSDID("$FreeBSD$");
60 
61 #define __RMAN_RESOURCE_VISIBLE
62 #include <sys/param.h>
63 #include <sys/systm.h>
64 #include <sys/kernel.h>
65 #include <sys/lock.h>
66 #include <sys/malloc.h>
67 #include <sys/mutex.h>
68 #include <sys/bus.h>		/* XXX debugging */
69 #include <machine/bus.h>
70 #include <sys/rman.h>
71 #include <sys/sysctl.h>
72 
73 int     rman_debug = 0;
74 TUNABLE_INT("debug.rman_debug", &rman_debug);
75 SYSCTL_INT(_debug, OID_AUTO, rman_debug, CTLFLAG_RW,
76     &rman_debug, 0, "rman debug");
77 
78 #define DPRINTF(params) if (rman_debug) printf params
79 
80 static MALLOC_DEFINE(M_RMAN, "rman", "Resource manager");
81 
82 struct	rman_head rman_head;
83 static	struct mtx rman_mtx; /* mutex to protect rman_head */
84 static	int int_rman_activate_resource(struct rman *rm, struct resource *r,
85 				       struct resource **whohas);
86 static	int int_rman_deactivate_resource(struct resource *r);
87 static	int int_rman_release_resource(struct rman *rm, struct resource *r);
88 
89 int
90 rman_init(struct rman *rm)
91 {
92 	static int once;
93 
94 	if (once == 0) {
95 		once = 1;
96 		TAILQ_INIT(&rman_head);
97 		mtx_init(&rman_mtx, "rman head", NULL, MTX_DEF);
98 	}
99 
100 	if (rm->rm_type == RMAN_UNINIT)
101 		panic("rman_init");
102 	if (rm->rm_type == RMAN_GAUGE)
103 		panic("implement RMAN_GAUGE");
104 
105 	TAILQ_INIT(&rm->rm_list);
106 	rm->rm_mtx = malloc(sizeof *rm->rm_mtx, M_RMAN, M_NOWAIT | M_ZERO);
107 	if (rm->rm_mtx == 0)
108 		return ENOMEM;
109 	mtx_init(rm->rm_mtx, "rman", NULL, MTX_DEF);
110 
111 	mtx_lock(&rman_mtx);
112 	TAILQ_INSERT_TAIL(&rman_head, rm, rm_link);
113 	mtx_unlock(&rman_mtx);
114 	return 0;
115 }
116 
117 /*
118  * NB: this interface is not robust against programming errors which
119  * add multiple copies of the same region.
120  */
121 int
122 rman_manage_region(struct rman *rm, u_long start, u_long end)
123 {
124 	struct resource *r, *s;
125 
126 	DPRINTF(("rman_manage_region: <%s> request: start %#lx, end %#lx\n",
127 	    rm->rm_descr, start, end));
128 	r = malloc(sizeof *r, M_RMAN, M_NOWAIT | M_ZERO);
129 	if (r == 0)
130 		return ENOMEM;
131 	r->r_start = start;
132 	r->r_end = end;
133 	r->r_rm = rm;
134 
135 	mtx_lock(rm->rm_mtx);
136 	for (s = TAILQ_FIRST(&rm->rm_list);
137 	     s && s->r_end < r->r_start;
138 	     s = TAILQ_NEXT(s, r_link))
139 		;
140 
141 	if (s == NULL) {
142 		TAILQ_INSERT_TAIL(&rm->rm_list, r, r_link);
143 	} else {
144 		TAILQ_INSERT_BEFORE(s, r, r_link);
145 	}
146 
147 	mtx_unlock(rm->rm_mtx);
148 	return 0;
149 }
150 
151 int
152 rman_fini(struct rman *rm)
153 {
154 	struct resource *r;
155 
156 	mtx_lock(rm->rm_mtx);
157 	TAILQ_FOREACH(r, &rm->rm_list, r_link) {
158 		if (r->r_flags & RF_ALLOCATED) {
159 			mtx_unlock(rm->rm_mtx);
160 			return EBUSY;
161 		}
162 	}
163 
164 	/*
165 	 * There really should only be one of these if we are in this
166 	 * state and the code is working properly, but it can't hurt.
167 	 */
168 	while (!TAILQ_EMPTY(&rm->rm_list)) {
169 		r = TAILQ_FIRST(&rm->rm_list);
170 		TAILQ_REMOVE(&rm->rm_list, r, r_link);
171 		free(r, M_RMAN);
172 	}
173 	mtx_unlock(rm->rm_mtx);
174 	mtx_lock(&rman_mtx);
175 	TAILQ_REMOVE(&rman_head, rm, rm_link);
176 	mtx_unlock(&rman_mtx);
177 	mtx_destroy(rm->rm_mtx);
178 	free(rm->rm_mtx, M_RMAN);
179 
180 	return 0;
181 }
182 
183 struct resource *
184 rman_reserve_resource_bound(struct rman *rm, u_long start, u_long end,
185 		      u_long count, u_long bound,  u_int flags,
186 		      struct device *dev)
187 {
188 	u_int	want_activate;
189 	struct	resource *r, *s, *rv;
190 	u_long	rstart, rend, amask, bmask;
191 
192 	rv = 0;
193 
194 	DPRINTF(("rman_reserve_resource: <%s> request: [%#lx, %#lx], length "
195 	       "%#lx, flags %u, device %s\n", rm->rm_descr, start, end, count,
196 	       flags, dev == NULL ? "<null>" : device_get_nameunit(dev)));
197 	want_activate = (flags & RF_ACTIVE);
198 	flags &= ~RF_ACTIVE;
199 
200 	mtx_lock(rm->rm_mtx);
201 
202 	for (r = TAILQ_FIRST(&rm->rm_list);
203 	     r && r->r_end < start;
204 	     r = TAILQ_NEXT(r, r_link))
205 		;
206 
207 	if (r == NULL) {
208 		DPRINTF(("could not find a region\n"));
209 		goto out;
210 	}
211 
212 	amask = (1ul << RF_ALIGNMENT(flags)) - 1;
213 	/* If bound is 0, bmask will also be 0 */
214 	bmask = ~(bound - 1);
215 	/*
216 	 * First try to find an acceptable totally-unshared region.
217 	 */
218 	for (s = r; s; s = TAILQ_NEXT(s, r_link)) {
219 		DPRINTF(("considering [%#lx, %#lx]\n", s->r_start, s->r_end));
220 		if (s->r_start > end) {
221 			DPRINTF(("s->r_start (%#lx) > end (%#lx)\n", s->r_start, end));
222 			break;
223 		}
224 		if (s->r_flags & RF_ALLOCATED) {
225 			DPRINTF(("region is allocated\n"));
226 			continue;
227 		}
228 		rstart = ulmax(s->r_start, start);
229 		/*
230 		 * Try to find a region by adjusting to boundary and alignment
231 		 * until both conditions are satisfied. This is not an optimal
232 		 * algorithm, but in most cases it isn't really bad, either.
233 		 */
234 		do {
235 			rstart = (rstart + amask) & ~amask;
236 			if (((rstart ^ (rstart + count - 1)) & bmask) != 0)
237 				rstart += bound - (rstart & ~bmask);
238 		} while ((rstart & amask) != 0 && rstart < end &&
239 		    rstart < s->r_end);
240 		rend = ulmin(s->r_end, ulmax(rstart + count - 1, end));
241 		if (rstart > rend) {
242 			DPRINTF(("adjusted start exceeds end\n"));
243 			continue;
244 		}
245 		DPRINTF(("truncated region: [%#lx, %#lx]; size %#lx (requested %#lx)\n",
246 		       rstart, rend, (rend - rstart + 1), count));
247 
248 		if ((rend - rstart + 1) >= count) {
249 			DPRINTF(("candidate region: [%#lx, %#lx], size %#lx\n",
250 			       rend, rstart, (rend - rstart + 1)));
251 			if ((s->r_end - s->r_start + 1) == count) {
252 				DPRINTF(("candidate region is entire chunk\n"));
253 				rv = s;
254 				rv->r_flags |= RF_ALLOCATED | flags;
255 				rv->r_dev = dev;
256 				goto out;
257 			}
258 
259 			/*
260 			 * If s->r_start < rstart and
261 			 *    s->r_end > rstart + count - 1, then
262 			 * we need to split the region into three pieces
263 			 * (the middle one will get returned to the user).
264 			 * Otherwise, we are allocating at either the
265 			 * beginning or the end of s, so we only need to
266 			 * split it in two.  The first case requires
267 			 * two new allocations; the second requires but one.
268 			 */
269 			rv = malloc(sizeof *rv, M_RMAN, M_NOWAIT | M_ZERO);
270 			if (rv == 0)
271 				goto out;
272 			rv->r_start = rstart;
273 			rv->r_end = rstart + count - 1;
274 			rv->r_flags = flags | RF_ALLOCATED;
275 			rv->r_dev = dev;
276 			rv->r_rm = rm;
277 
278 			if (s->r_start < rv->r_start && s->r_end > rv->r_end) {
279 				DPRINTF(("splitting region in three parts: "
280 				       "[%#lx, %#lx]; [%#lx, %#lx]; [%#lx, %#lx]\n",
281 				       s->r_start, rv->r_start - 1,
282 				       rv->r_start, rv->r_end,
283 				       rv->r_end + 1, s->r_end));
284 				/*
285 				 * We are allocating in the middle.
286 				 */
287 				r = malloc(sizeof *r, M_RMAN, M_NOWAIT|M_ZERO);
288 				if (r == 0) {
289 					free(rv, M_RMAN);
290 					rv = 0;
291 					goto out;
292 				}
293 				r->r_start = rv->r_end + 1;
294 				r->r_end = s->r_end;
295 				r->r_flags = s->r_flags;
296 				r->r_rm = rm;
297 				s->r_end = rv->r_start - 1;
298 				TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
299 						     r_link);
300 				TAILQ_INSERT_AFTER(&rm->rm_list, rv, r,
301 						     r_link);
302 			} else if (s->r_start == rv->r_start) {
303 				DPRINTF(("allocating from the beginning\n"));
304 				/*
305 				 * We are allocating at the beginning.
306 				 */
307 				s->r_start = rv->r_end + 1;
308 				TAILQ_INSERT_BEFORE(s, rv, r_link);
309 			} else {
310 				DPRINTF(("allocating at the end\n"));
311 				/*
312 				 * We are allocating at the end.
313 				 */
314 				s->r_end = rv->r_start - 1;
315 				TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
316 						     r_link);
317 			}
318 			goto out;
319 		}
320 	}
321 
322 	/*
323 	 * Now find an acceptable shared region, if the client's requirements
324 	 * allow sharing.  By our implementation restriction, a candidate
325 	 * region must match exactly by both size and sharing type in order
326 	 * to be considered compatible with the client's request.  (The
327 	 * former restriction could probably be lifted without too much
328 	 * additional work, but this does not seem warranted.)
329 	 */
330 	DPRINTF(("no unshared regions found\n"));
331 	if ((flags & (RF_SHAREABLE | RF_TIMESHARE)) == 0)
332 		goto out;
333 
334 	for (s = r; s; s = TAILQ_NEXT(s, r_link)) {
335 		if (s->r_start > end)
336 			break;
337 		if ((s->r_flags & flags) != flags)
338 			continue;
339 		rstart = ulmax(s->r_start, start);
340 		rend = ulmin(s->r_end, ulmax(start + count - 1, end));
341 		if (s->r_start >= start && s->r_end <= end
342 		    && (s->r_end - s->r_start + 1) == count &&
343 		    (s->r_start & amask) == 0 &&
344 		    ((s->r_start ^ s->r_end) & bmask) == 0) {
345 			rv = malloc(sizeof *rv, M_RMAN, M_NOWAIT | M_ZERO);
346 			if (rv == 0)
347 				goto out;
348 			rv->r_start = s->r_start;
349 			rv->r_end = s->r_end;
350 			rv->r_flags = s->r_flags &
351 				(RF_ALLOCATED | RF_SHAREABLE | RF_TIMESHARE);
352 			rv->r_dev = dev;
353 			rv->r_rm = rm;
354 			if (s->r_sharehead == 0) {
355 				s->r_sharehead = malloc(sizeof *s->r_sharehead,
356 						M_RMAN, M_NOWAIT | M_ZERO);
357 				if (s->r_sharehead == 0) {
358 					free(rv, M_RMAN);
359 					rv = 0;
360 					goto out;
361 				}
362 				LIST_INIT(s->r_sharehead);
363 				LIST_INSERT_HEAD(s->r_sharehead, s,
364 						 r_sharelink);
365 				s->r_flags |= RF_FIRSTSHARE;
366 			}
367 			rv->r_sharehead = s->r_sharehead;
368 			LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink);
369 			goto out;
370 		}
371 	}
372 
373 	/*
374 	 * We couldn't find anything.
375 	 */
376 out:
377 	/*
378 	 * If the user specified RF_ACTIVE in the initial flags,
379 	 * which is reflected in `want_activate', we attempt to atomically
380 	 * activate the resource.  If this fails, we release the resource
381 	 * and indicate overall failure.  (This behavior probably doesn't
382 	 * make sense for RF_TIMESHARE-type resources.)
383 	 */
384 	if (rv && want_activate) {
385 		struct resource *whohas;
386 		if (int_rman_activate_resource(rm, rv, &whohas)) {
387 			int_rman_release_resource(rm, rv);
388 			rv = 0;
389 		}
390 	}
391 
392 	mtx_unlock(rm->rm_mtx);
393 	return (rv);
394 }
395 
396 struct resource *
397 rman_reserve_resource(struct rman *rm, u_long start, u_long end, u_long count,
398 		      u_int flags, struct device *dev)
399 {
400 
401 	return (rman_reserve_resource_bound(rm, start, end, count, 0, flags,
402 	    dev));
403 }
404 
405 static int
406 int_rman_activate_resource(struct rman *rm, struct resource *r,
407 			   struct resource **whohas)
408 {
409 	struct resource *s;
410 	int ok;
411 
412 	/*
413 	 * If we are not timesharing, then there is nothing much to do.
414 	 * If we already have the resource, then there is nothing at all to do.
415 	 * If we are not on a sharing list with anybody else, then there is
416 	 * little to do.
417 	 */
418 	if ((r->r_flags & RF_TIMESHARE) == 0
419 	    || (r->r_flags & RF_ACTIVE) != 0
420 	    || r->r_sharehead == 0) {
421 		r->r_flags |= RF_ACTIVE;
422 		return 0;
423 	}
424 
425 	ok = 1;
426 	for (s = LIST_FIRST(r->r_sharehead); s && ok;
427 	     s = LIST_NEXT(s, r_sharelink)) {
428 		if ((s->r_flags & RF_ACTIVE) != 0) {
429 			ok = 0;
430 			*whohas = s;
431 		}
432 	}
433 	if (ok) {
434 		r->r_flags |= RF_ACTIVE;
435 		return 0;
436 	}
437 	return EBUSY;
438 }
439 
440 int
441 rman_activate_resource(struct resource *r)
442 {
443 	int rv;
444 	struct resource *whohas;
445 	struct rman *rm;
446 
447 	rm = r->r_rm;
448 	mtx_lock(rm->rm_mtx);
449 	rv = int_rman_activate_resource(rm, r, &whohas);
450 	mtx_unlock(rm->rm_mtx);
451 	return rv;
452 }
453 
454 int
455 rman_await_resource(struct resource *r, int pri, int timo)
456 {
457 	int	rv;
458 	struct	resource *whohas;
459 	struct	rman *rm;
460 
461 	rm = r->r_rm;
462 	mtx_lock(rm->rm_mtx);
463 	for (;;) {
464 		rv = int_rman_activate_resource(rm, r, &whohas);
465 		if (rv != EBUSY)
466 			return (rv);	/* returns with mutex held */
467 
468 		if (r->r_sharehead == 0)
469 			panic("rman_await_resource");
470 		whohas->r_flags |= RF_WANTED;
471 		rv = msleep(r->r_sharehead, rm->rm_mtx, pri, "rmwait", timo);
472 		if (rv) {
473 			mtx_unlock(rm->rm_mtx);
474 			return (rv);
475 		}
476 	}
477 }
478 
479 static int
480 int_rman_deactivate_resource(struct resource *r)
481 {
482 
483 	r->r_flags &= ~RF_ACTIVE;
484 	if (r->r_flags & RF_WANTED) {
485 		r->r_flags &= ~RF_WANTED;
486 		wakeup(r->r_sharehead);
487 	}
488 	return 0;
489 }
490 
491 int
492 rman_deactivate_resource(struct resource *r)
493 {
494 	struct	rman *rm;
495 
496 	rm = r->r_rm;
497 	mtx_lock(rm->rm_mtx);
498 	int_rman_deactivate_resource(r);
499 	mtx_unlock(rm->rm_mtx);
500 	return 0;
501 }
502 
503 static int
504 int_rman_release_resource(struct rman *rm, struct resource *r)
505 {
506 	struct	resource *s, *t;
507 
508 	if (r->r_flags & RF_ACTIVE)
509 		int_rman_deactivate_resource(r);
510 
511 	/*
512 	 * Check for a sharing list first.  If there is one, then we don't
513 	 * have to think as hard.
514 	 */
515 	if (r->r_sharehead) {
516 		/*
517 		 * If a sharing list exists, then we know there are at
518 		 * least two sharers.
519 		 *
520 		 * If we are in the main circleq, appoint someone else.
521 		 */
522 		LIST_REMOVE(r, r_sharelink);
523 		s = LIST_FIRST(r->r_sharehead);
524 		if (r->r_flags & RF_FIRSTSHARE) {
525 			s->r_flags |= RF_FIRSTSHARE;
526 			TAILQ_INSERT_BEFORE(r, s, r_link);
527 			TAILQ_REMOVE(&rm->rm_list, r, r_link);
528 		}
529 
530 		/*
531 		 * Make sure that the sharing list goes away completely
532 		 * if the resource is no longer being shared at all.
533 		 */
534 		if (LIST_NEXT(s, r_sharelink) == 0) {
535 			free(s->r_sharehead, M_RMAN);
536 			s->r_sharehead = 0;
537 			s->r_flags &= ~RF_FIRSTSHARE;
538 		}
539 		goto out;
540 	}
541 
542 	/*
543 	 * Look at the adjacent resources in the list and see if our
544 	 * segment can be merged with any of them.  If either of the
545 	 * resources is allocated or is not exactly adjacent then they
546 	 * cannot be merged with our segment.
547 	 */
548 	s = TAILQ_PREV(r, resource_head, r_link);
549 	if (s != NULL && ((s->r_flags & RF_ALLOCATED) != 0 ||
550 	    s->r_end + 1 != r->r_start))
551 		s = NULL;
552 	t = TAILQ_NEXT(r, r_link);
553 	if (t != NULL && ((t->r_flags & RF_ALLOCATED) != 0 ||
554 	    r->r_end + 1 != t->r_start))
555 		t = NULL;
556 
557 	if (s != NULL && t != NULL) {
558 		/*
559 		 * Merge all three segments.
560 		 */
561 		s->r_end = t->r_end;
562 		TAILQ_REMOVE(&rm->rm_list, r, r_link);
563 		TAILQ_REMOVE(&rm->rm_list, t, r_link);
564 		free(t, M_RMAN);
565 	} else if (s != NULL) {
566 		/*
567 		 * Merge previous segment with ours.
568 		 */
569 		s->r_end = r->r_end;
570 		TAILQ_REMOVE(&rm->rm_list, r, r_link);
571 	} else if (t != NULL) {
572 		/*
573 		 * Merge next segment with ours.
574 		 */
575 		t->r_start = r->r_start;
576 		TAILQ_REMOVE(&rm->rm_list, r, r_link);
577 	} else {
578 		/*
579 		 * At this point, we know there is nothing we
580 		 * can potentially merge with, because on each
581 		 * side, there is either nothing there or what is
582 		 * there is still allocated.  In that case, we don't
583 		 * want to remove r from the list; we simply want to
584 		 * change it to an unallocated region and return
585 		 * without freeing anything.
586 		 */
587 		r->r_flags &= ~RF_ALLOCATED;
588 		return 0;
589 	}
590 
591 out:
592 	free(r, M_RMAN);
593 	return 0;
594 }
595 
596 int
597 rman_release_resource(struct resource *r)
598 {
599 	int	rv;
600 	struct	rman *rm = r->r_rm;
601 
602 	mtx_lock(rm->rm_mtx);
603 	rv = int_rman_release_resource(rm, r);
604 	mtx_unlock(rm->rm_mtx);
605 	return (rv);
606 }
607 
608 uint32_t
609 rman_make_alignment_flags(uint32_t size)
610 {
611 	int	i;
612 
613 	/*
614 	 * Find the hightest bit set, and add one if more than one bit
615 	 * set.  We're effectively computing the ceil(log2(size)) here.
616 	 */
617 	for (i = 31; i > 0; i--)
618 		if ((1 << i) & size)
619 			break;
620 	if (~(1 << i) & size)
621 		i++;
622 
623 	return(RF_ALIGNMENT_LOG2(i));
624 }
625 
626 u_long
627 rman_get_start(struct resource *r)
628 {
629 	return (r->r_start);
630 }
631 
632 u_long
633 rman_get_end(struct resource *r)
634 {
635 	return (r->r_end);
636 }
637 
638 u_long
639 rman_get_size(struct resource *r)
640 {
641 	return (r->r_end - r->r_start + 1);
642 }
643 
644 u_int
645 rman_get_flags(struct resource *r)
646 {
647 	return (r->r_flags);
648 }
649 
650 void
651 rman_set_virtual(struct resource *r, void *v)
652 {
653 	r->r_virtual = v;
654 }
655 
656 void *
657 rman_get_virtual(struct resource *r)
658 {
659 	return (r->r_virtual);
660 }
661 
662 void
663 rman_set_bustag(struct resource *r, bus_space_tag_t t)
664 {
665 	r->r_bustag = t;
666 }
667 
668 bus_space_tag_t
669 rman_get_bustag(struct resource *r)
670 {
671 	return (r->r_bustag);
672 }
673 
674 void
675 rman_set_bushandle(struct resource *r, bus_space_handle_t h)
676 {
677 	r->r_bushandle = h;
678 }
679 
680 bus_space_handle_t
681 rman_get_bushandle(struct resource *r)
682 {
683 	return (r->r_bushandle);
684 }
685 
686 void
687 rman_set_rid(struct resource *r, int rid)
688 {
689 	r->r_rid = rid;
690 }
691 
692 void
693 rman_set_start(struct resource *r, u_long start)
694 {
695 	r->r_start = start;
696 }
697 
698 void
699 rman_set_end(struct resource *r, u_long end)
700 {
701 	r->r_end = end;
702 }
703 
704 int
705 rman_get_rid(struct resource *r)
706 {
707 	return (r->r_rid);
708 }
709 
710 struct device *
711 rman_get_device(struct resource *r)
712 {
713 	return (r->r_dev);
714 }
715