1 /*- 2 * Copyright 1998 Massachusetts Institute of Technology 3 * 4 * Permission to use, copy, modify, and distribute this software and 5 * its documentation for any purpose and without fee is hereby 6 * granted, provided that both the above copyright notice and this 7 * permission notice appear in all copies, that both the above 8 * copyright notice and this permission notice appear in all 9 * supporting documentation, and that the name of M.I.T. not be used 10 * in advertising or publicity pertaining to distribution of the 11 * software without specific, written prior permission. M.I.T. makes 12 * no representations about the suitability of this software for any 13 * purpose. It is provided "as is" without express or implied 14 * warranty. 15 * 16 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS 17 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE, 18 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT 20 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF 23 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 25 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 26 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 /* 31 * The kernel resource manager. This code is responsible for keeping track 32 * of hardware resources which are apportioned out to various drivers. 33 * It does not actually assign those resources, and it is not expected 34 * that end-device drivers will call into this code directly. Rather, 35 * the code which implements the buses that those devices are attached to, 36 * and the code which manages CPU resources, will call this code, and the 37 * end-device drivers will make upcalls to that code to actually perform 38 * the allocation. 39 * 40 * There are two sorts of resources managed by this code. The first is 41 * the more familiar array (RMAN_ARRAY) type; resources in this class 42 * consist of a sequence of individually-allocatable objects which have 43 * been numbered in some well-defined order. Most of the resources 44 * are of this type, as it is the most familiar. The second type is 45 * called a gauge (RMAN_GAUGE), and models fungible resources (i.e., 46 * resources in which each instance is indistinguishable from every 47 * other instance). The principal anticipated application of gauges 48 * is in the context of power consumption, where a bus may have a specific 49 * power budget which all attached devices share. RMAN_GAUGE is not 50 * implemented yet. 51 * 52 * For array resources, we make one simplifying assumption: two clients 53 * sharing the same resource must use the same range of indices. That 54 * is to say, sharing of overlapping-but-not-identical regions is not 55 * permitted. 56 */ 57 58 #include "opt_ddb.h" 59 60 #include <sys/param.h> 61 #include <sys/systm.h> 62 #include <sys/kernel.h> 63 #include <sys/limits.h> 64 #include <sys/lock.h> 65 #include <sys/malloc.h> 66 #include <sys/mutex.h> 67 #include <sys/bus.h> /* XXX debugging */ 68 #include <machine/bus.h> 69 #include <sys/rman.h> 70 #include <sys/sysctl.h> 71 72 #ifdef DDB 73 #include <ddb/ddb.h> 74 #endif 75 76 /* 77 * We use a linked list rather than a bitmap because we need to be able to 78 * represent potentially huge objects (like all of a processor's physical 79 * address space). 80 */ 81 struct resource_i { 82 struct resource r_r; 83 TAILQ_ENTRY(resource_i) r_link; 84 LIST_ENTRY(resource_i) r_sharelink; 85 LIST_HEAD(, resource_i) *r_sharehead; 86 rman_res_t r_start; /* index of the first entry in this resource */ 87 rman_res_t r_end; /* index of the last entry (inclusive) */ 88 u_int r_flags; 89 void *r_virtual; /* virtual address of this resource */ 90 void *r_irq_cookie; /* interrupt cookie for this (interrupt) resource */ 91 device_t r_dev; /* device which has allocated this resource */ 92 struct rman *r_rm; /* resource manager from whence this came */ 93 int r_rid; /* optional rid for this resource. */ 94 int r_type; /* optional type for this resource. */ 95 }; 96 97 static int rman_debug = 0; 98 SYSCTL_INT(_debug, OID_AUTO, rman_debug, CTLFLAG_RWTUN, 99 &rman_debug, 0, "rman debug"); 100 101 #define DPRINTF(params) if (rman_debug) printf params 102 103 static MALLOC_DEFINE(M_RMAN, "rman", "Resource manager"); 104 105 struct rman_head rman_head; 106 static struct mtx rman_mtx; /* mutex to protect rman_head */ 107 static int int_rman_release_resource(struct rman *rm, struct resource_i *r); 108 109 static __inline struct resource_i * 110 int_alloc_resource(int malloc_flag) 111 { 112 struct resource_i *r; 113 114 r = malloc(sizeof *r, M_RMAN, malloc_flag | M_ZERO); 115 if (r != NULL) { 116 r->r_r.__r_i = r; 117 } 118 return (r); 119 } 120 121 int 122 rman_init(struct rman *rm) 123 { 124 static int once = 0; 125 126 if (once == 0) { 127 once = 1; 128 TAILQ_INIT(&rman_head); 129 mtx_init(&rman_mtx, "rman head", NULL, MTX_DEF); 130 } 131 132 if (rm->rm_start == 0 && rm->rm_end == 0) 133 rm->rm_end = ~0; 134 if (rm->rm_type == RMAN_UNINIT) 135 panic("rman_init"); 136 if (rm->rm_type == RMAN_GAUGE) 137 panic("implement RMAN_GAUGE"); 138 139 TAILQ_INIT(&rm->rm_list); 140 rm->rm_mtx = malloc(sizeof *rm->rm_mtx, M_RMAN, M_NOWAIT | M_ZERO); 141 if (rm->rm_mtx == NULL) 142 return ENOMEM; 143 mtx_init(rm->rm_mtx, "rman", NULL, MTX_DEF); 144 145 mtx_lock(&rman_mtx); 146 TAILQ_INSERT_TAIL(&rman_head, rm, rm_link); 147 mtx_unlock(&rman_mtx); 148 return 0; 149 } 150 151 int 152 rman_manage_region(struct rman *rm, rman_res_t start, rman_res_t end) 153 { 154 struct resource_i *r, *s, *t; 155 int rv = 0; 156 157 DPRINTF(("rman_manage_region: <%s> request: start %#jx, end %#jx\n", 158 rm->rm_descr, start, end)); 159 if (start < rm->rm_start || end > rm->rm_end) 160 return EINVAL; 161 r = int_alloc_resource(M_NOWAIT); 162 if (r == NULL) 163 return ENOMEM; 164 r->r_start = start; 165 r->r_end = end; 166 r->r_rm = rm; 167 168 mtx_lock(rm->rm_mtx); 169 170 /* Skip entries before us. */ 171 TAILQ_FOREACH(s, &rm->rm_list, r_link) { 172 if (s->r_end == ~0) 173 break; 174 if (s->r_end + 1 >= r->r_start) 175 break; 176 } 177 178 /* If we ran off the end of the list, insert at the tail. */ 179 if (s == NULL) { 180 TAILQ_INSERT_TAIL(&rm->rm_list, r, r_link); 181 } else { 182 /* Check for any overlap with the current region. */ 183 if (r->r_start <= s->r_end && r->r_end >= s->r_start) { 184 rv = EBUSY; 185 goto out; 186 } 187 188 /* Check for any overlap with the next region. */ 189 t = TAILQ_NEXT(s, r_link); 190 if (t && r->r_start <= t->r_end && r->r_end >= t->r_start) { 191 rv = EBUSY; 192 goto out; 193 } 194 195 /* 196 * See if this region can be merged with the next region. If 197 * not, clear the pointer. 198 */ 199 if (t && (r->r_end + 1 != t->r_start || t->r_flags != 0)) 200 t = NULL; 201 202 /* See if we can merge with the current region. */ 203 if (s->r_end + 1 == r->r_start && s->r_flags == 0) { 204 /* Can we merge all 3 regions? */ 205 if (t != NULL) { 206 s->r_end = t->r_end; 207 TAILQ_REMOVE(&rm->rm_list, t, r_link); 208 free(r, M_RMAN); 209 free(t, M_RMAN); 210 } else { 211 s->r_end = r->r_end; 212 free(r, M_RMAN); 213 } 214 } else if (t != NULL) { 215 /* Can we merge with just the next region? */ 216 t->r_start = r->r_start; 217 free(r, M_RMAN); 218 } else if (s->r_end < r->r_start) { 219 TAILQ_INSERT_AFTER(&rm->rm_list, s, r, r_link); 220 } else { 221 TAILQ_INSERT_BEFORE(s, r, r_link); 222 } 223 } 224 out: 225 mtx_unlock(rm->rm_mtx); 226 return rv; 227 } 228 229 int 230 rman_init_from_resource(struct rman *rm, struct resource *r) 231 { 232 int rv; 233 234 if ((rv = rman_init(rm)) != 0) 235 return (rv); 236 return (rman_manage_region(rm, r->__r_i->r_start, r->__r_i->r_end)); 237 } 238 239 int 240 rman_fini(struct rman *rm) 241 { 242 struct resource_i *r; 243 244 mtx_lock(rm->rm_mtx); 245 TAILQ_FOREACH(r, &rm->rm_list, r_link) { 246 if (r->r_flags & RF_ALLOCATED) { 247 mtx_unlock(rm->rm_mtx); 248 return EBUSY; 249 } 250 } 251 252 /* 253 * There really should only be one of these if we are in this 254 * state and the code is working properly, but it can't hurt. 255 */ 256 while (!TAILQ_EMPTY(&rm->rm_list)) { 257 r = TAILQ_FIRST(&rm->rm_list); 258 TAILQ_REMOVE(&rm->rm_list, r, r_link); 259 free(r, M_RMAN); 260 } 261 mtx_unlock(rm->rm_mtx); 262 mtx_lock(&rman_mtx); 263 TAILQ_REMOVE(&rman_head, rm, rm_link); 264 mtx_unlock(&rman_mtx); 265 mtx_destroy(rm->rm_mtx); 266 free(rm->rm_mtx, M_RMAN); 267 268 return 0; 269 } 270 271 int 272 rman_first_free_region(struct rman *rm, rman_res_t *start, rman_res_t *end) 273 { 274 struct resource_i *r; 275 276 mtx_lock(rm->rm_mtx); 277 TAILQ_FOREACH(r, &rm->rm_list, r_link) { 278 if (!(r->r_flags & RF_ALLOCATED)) { 279 *start = r->r_start; 280 *end = r->r_end; 281 mtx_unlock(rm->rm_mtx); 282 return (0); 283 } 284 } 285 mtx_unlock(rm->rm_mtx); 286 return (ENOENT); 287 } 288 289 int 290 rman_last_free_region(struct rman *rm, rman_res_t *start, rman_res_t *end) 291 { 292 struct resource_i *r; 293 294 mtx_lock(rm->rm_mtx); 295 TAILQ_FOREACH_REVERSE(r, &rm->rm_list, resource_head, r_link) { 296 if (!(r->r_flags & RF_ALLOCATED)) { 297 *start = r->r_start; 298 *end = r->r_end; 299 mtx_unlock(rm->rm_mtx); 300 return (0); 301 } 302 } 303 mtx_unlock(rm->rm_mtx); 304 return (ENOENT); 305 } 306 307 /* Shrink or extend one or both ends of an allocated resource. */ 308 int 309 rman_adjust_resource(struct resource *rr, rman_res_t start, rman_res_t end) 310 { 311 struct resource_i *r, *s, *t, *new; 312 struct rman *rm; 313 314 /* Not supported for shared resources. */ 315 r = rr->__r_i; 316 if (r->r_flags & RF_SHAREABLE) 317 return (EINVAL); 318 319 /* 320 * This does not support wholesale moving of a resource. At 321 * least part of the desired new range must overlap with the 322 * existing resource. 323 */ 324 if (end < r->r_start || r->r_end < start) 325 return (EINVAL); 326 327 /* 328 * Find the two resource regions immediately adjacent to the 329 * allocated resource. 330 */ 331 rm = r->r_rm; 332 mtx_lock(rm->rm_mtx); 333 #ifdef INVARIANTS 334 TAILQ_FOREACH(s, &rm->rm_list, r_link) { 335 if (s == r) 336 break; 337 } 338 if (s == NULL) 339 panic("resource not in list"); 340 #endif 341 s = TAILQ_PREV(r, resource_head, r_link); 342 t = TAILQ_NEXT(r, r_link); 343 KASSERT(s == NULL || s->r_end + 1 == r->r_start, 344 ("prev resource mismatch")); 345 KASSERT(t == NULL || r->r_end + 1 == t->r_start, 346 ("next resource mismatch")); 347 348 /* 349 * See if the changes are permitted. Shrinking is always allowed, 350 * but growing requires sufficient room in the adjacent region. 351 */ 352 if (start < r->r_start && (s == NULL || (s->r_flags & RF_ALLOCATED) || 353 s->r_start > start)) { 354 mtx_unlock(rm->rm_mtx); 355 return (EBUSY); 356 } 357 if (end > r->r_end && (t == NULL || (t->r_flags & RF_ALLOCATED) || 358 t->r_end < end)) { 359 mtx_unlock(rm->rm_mtx); 360 return (EBUSY); 361 } 362 363 /* 364 * While holding the lock, grow either end of the resource as 365 * needed and shrink either end if the shrinking does not require 366 * allocating a new resource. We can safely drop the lock and then 367 * insert a new range to handle the shrinking case afterwards. 368 */ 369 if (start < r->r_start || 370 (start > r->r_start && s != NULL && !(s->r_flags & RF_ALLOCATED))) { 371 KASSERT(s->r_flags == 0, ("prev is busy")); 372 r->r_start = start; 373 if (s->r_start == start) { 374 TAILQ_REMOVE(&rm->rm_list, s, r_link); 375 free(s, M_RMAN); 376 } else 377 s->r_end = start - 1; 378 } 379 if (end > r->r_end || 380 (end < r->r_end && t != NULL && !(t->r_flags & RF_ALLOCATED))) { 381 KASSERT(t->r_flags == 0, ("next is busy")); 382 r->r_end = end; 383 if (t->r_end == end) { 384 TAILQ_REMOVE(&rm->rm_list, t, r_link); 385 free(t, M_RMAN); 386 } else 387 t->r_start = end + 1; 388 } 389 mtx_unlock(rm->rm_mtx); 390 391 /* 392 * Handle the shrinking cases that require allocating a new 393 * resource to hold the newly-free region. We have to recheck 394 * if we still need this new region after acquiring the lock. 395 */ 396 if (start > r->r_start) { 397 new = int_alloc_resource(M_WAITOK); 398 new->r_start = r->r_start; 399 new->r_end = start - 1; 400 new->r_rm = rm; 401 mtx_lock(rm->rm_mtx); 402 r->r_start = start; 403 s = TAILQ_PREV(r, resource_head, r_link); 404 if (s != NULL && !(s->r_flags & RF_ALLOCATED)) { 405 s->r_end = start - 1; 406 free(new, M_RMAN); 407 } else 408 TAILQ_INSERT_BEFORE(r, new, r_link); 409 mtx_unlock(rm->rm_mtx); 410 } 411 if (end < r->r_end) { 412 new = int_alloc_resource(M_WAITOK); 413 new->r_start = end + 1; 414 new->r_end = r->r_end; 415 new->r_rm = rm; 416 mtx_lock(rm->rm_mtx); 417 r->r_end = end; 418 t = TAILQ_NEXT(r, r_link); 419 if (t != NULL && !(t->r_flags & RF_ALLOCATED)) { 420 t->r_start = end + 1; 421 free(new, M_RMAN); 422 } else 423 TAILQ_INSERT_AFTER(&rm->rm_list, r, new, r_link); 424 mtx_unlock(rm->rm_mtx); 425 } 426 return (0); 427 } 428 429 #define SHARE_TYPE(f) (f & (RF_SHAREABLE | RF_PREFETCHABLE)) 430 431 struct resource * 432 rman_reserve_resource_bound(struct rman *rm, rman_res_t start, rman_res_t end, 433 rman_res_t count, rman_res_t bound, u_int flags, 434 device_t dev) 435 { 436 u_int new_rflags; 437 struct resource_i *r, *s, *rv; 438 rman_res_t rstart, rend, amask, bmask; 439 440 rv = NULL; 441 442 DPRINTF(("rman_reserve_resource_bound: <%s> request: [%#jx, %#jx], " 443 "length %#jx, flags %x, device %s\n", rm->rm_descr, start, end, 444 count, flags, 445 dev == NULL ? "<null>" : device_get_nameunit(dev))); 446 KASSERT(count != 0, ("%s: attempted to allocate an empty range", 447 __func__)); 448 KASSERT((flags & RF_FIRSTSHARE) == 0, 449 ("invalid flags %#x", flags)); 450 new_rflags = (flags & ~RF_FIRSTSHARE) | RF_ALLOCATED; 451 452 mtx_lock(rm->rm_mtx); 453 454 r = TAILQ_FIRST(&rm->rm_list); 455 if (r == NULL) { 456 DPRINTF(("NULL list head\n")); 457 } else { 458 DPRINTF(("rman_reserve_resource_bound: trying %#jx <%#jx,%#jx>\n", 459 r->r_end, start, count-1)); 460 } 461 for (r = TAILQ_FIRST(&rm->rm_list); 462 r && r->r_end < start + count - 1; 463 r = TAILQ_NEXT(r, r_link)) { 464 ; 465 DPRINTF(("rman_reserve_resource_bound: tried %#jx <%#jx,%#jx>\n", 466 r->r_end, start, count-1)); 467 } 468 469 if (r == NULL) { 470 DPRINTF(("could not find a region\n")); 471 goto out; 472 } 473 474 amask = (1ull << RF_ALIGNMENT(flags)) - 1; 475 KASSERT(start <= RM_MAX_END - amask, 476 ("start (%#jx) + amask (%#jx) would wrap around", start, amask)); 477 478 /* If bound is 0, bmask will also be 0 */ 479 bmask = ~(bound - 1); 480 /* 481 * First try to find an acceptable totally-unshared region. 482 */ 483 for (s = r; s; s = TAILQ_NEXT(s, r_link)) { 484 DPRINTF(("considering [%#jx, %#jx]\n", s->r_start, s->r_end)); 485 /* 486 * The resource list is sorted, so there is no point in 487 * searching further once r_start is too large. 488 */ 489 if (s->r_start > end - (count - 1)) { 490 DPRINTF(("s->r_start (%#jx) + count - 1> end (%#jx)\n", 491 s->r_start, end)); 492 break; 493 } 494 if (s->r_start > RM_MAX_END - amask) { 495 DPRINTF(("s->r_start (%#jx) + amask (%#jx) too large\n", 496 s->r_start, amask)); 497 break; 498 } 499 if (s->r_flags & RF_ALLOCATED) { 500 DPRINTF(("region is allocated\n")); 501 continue; 502 } 503 rstart = ummax(s->r_start, start); 504 /* 505 * Try to find a region by adjusting to boundary and alignment 506 * until both conditions are satisfied. This is not an optimal 507 * algorithm, but in most cases it isn't really bad, either. 508 */ 509 do { 510 rstart = (rstart + amask) & ~amask; 511 if (((rstart ^ (rstart + count - 1)) & bmask) != 0) 512 rstart += bound - (rstart & ~bmask); 513 } while ((rstart & amask) != 0 && rstart < end && 514 rstart < s->r_end); 515 rend = ummin(s->r_end, ummax(rstart + count - 1, end)); 516 if (rstart > rend) { 517 DPRINTF(("adjusted start exceeds end\n")); 518 continue; 519 } 520 DPRINTF(("truncated region: [%#jx, %#jx]; size %#jx (requested %#jx)\n", 521 rstart, rend, (rend - rstart + 1), count)); 522 523 if ((rend - rstart) >= (count - 1)) { 524 DPRINTF(("candidate region: [%#jx, %#jx], size %#jx\n", 525 rstart, rend, (rend - rstart + 1))); 526 if ((s->r_end - s->r_start + 1) == count) { 527 DPRINTF(("candidate region is entire chunk\n")); 528 rv = s; 529 rv->r_flags = new_rflags; 530 rv->r_dev = dev; 531 goto out; 532 } 533 534 /* 535 * If s->r_start < rstart and 536 * s->r_end > rstart + count - 1, then 537 * we need to split the region into three pieces 538 * (the middle one will get returned to the user). 539 * Otherwise, we are allocating at either the 540 * beginning or the end of s, so we only need to 541 * split it in two. The first case requires 542 * two new allocations; the second requires but one. 543 */ 544 rv = int_alloc_resource(M_NOWAIT); 545 if (rv == NULL) 546 goto out; 547 rv->r_start = rstart; 548 rv->r_end = rstart + count - 1; 549 rv->r_flags = new_rflags; 550 rv->r_dev = dev; 551 rv->r_rm = rm; 552 553 if (s->r_start < rv->r_start && s->r_end > rv->r_end) { 554 DPRINTF(("splitting region in three parts: " 555 "[%#jx, %#jx]; [%#jx, %#jx]; [%#jx, %#jx]\n", 556 s->r_start, rv->r_start - 1, 557 rv->r_start, rv->r_end, 558 rv->r_end + 1, s->r_end)); 559 /* 560 * We are allocating in the middle. 561 */ 562 r = int_alloc_resource(M_NOWAIT); 563 if (r == NULL) { 564 free(rv, M_RMAN); 565 rv = NULL; 566 goto out; 567 } 568 r->r_start = rv->r_end + 1; 569 r->r_end = s->r_end; 570 r->r_flags = s->r_flags; 571 r->r_rm = rm; 572 s->r_end = rv->r_start - 1; 573 TAILQ_INSERT_AFTER(&rm->rm_list, s, rv, 574 r_link); 575 TAILQ_INSERT_AFTER(&rm->rm_list, rv, r, 576 r_link); 577 } else if (s->r_start == rv->r_start) { 578 DPRINTF(("allocating from the beginning\n")); 579 /* 580 * We are allocating at the beginning. 581 */ 582 s->r_start = rv->r_end + 1; 583 TAILQ_INSERT_BEFORE(s, rv, r_link); 584 } else { 585 DPRINTF(("allocating at the end\n")); 586 /* 587 * We are allocating at the end. 588 */ 589 s->r_end = rv->r_start - 1; 590 TAILQ_INSERT_AFTER(&rm->rm_list, s, rv, 591 r_link); 592 } 593 goto out; 594 } 595 } 596 597 /* 598 * Now find an acceptable shared region, if the client's requirements 599 * allow sharing. By our implementation restriction, a candidate 600 * region must match exactly by both size and sharing type in order 601 * to be considered compatible with the client's request. (The 602 * former restriction could probably be lifted without too much 603 * additional work, but this does not seem warranted.) 604 */ 605 DPRINTF(("no unshared regions found\n")); 606 if ((flags & RF_SHAREABLE) == 0) 607 goto out; 608 609 for (s = r; s && s->r_end <= end; s = TAILQ_NEXT(s, r_link)) { 610 if (SHARE_TYPE(s->r_flags) == SHARE_TYPE(flags) && 611 s->r_start >= start && 612 (s->r_end - s->r_start + 1) == count && 613 (s->r_start & amask) == 0 && 614 ((s->r_start ^ s->r_end) & bmask) == 0) { 615 rv = int_alloc_resource(M_NOWAIT); 616 if (rv == NULL) 617 goto out; 618 rv->r_start = s->r_start; 619 rv->r_end = s->r_end; 620 rv->r_flags = new_rflags; 621 rv->r_dev = dev; 622 rv->r_rm = rm; 623 if (s->r_sharehead == NULL) { 624 s->r_sharehead = malloc(sizeof *s->r_sharehead, 625 M_RMAN, M_NOWAIT | M_ZERO); 626 if (s->r_sharehead == NULL) { 627 free(rv, M_RMAN); 628 rv = NULL; 629 goto out; 630 } 631 LIST_INIT(s->r_sharehead); 632 LIST_INSERT_HEAD(s->r_sharehead, s, 633 r_sharelink); 634 s->r_flags |= RF_FIRSTSHARE; 635 } 636 rv->r_sharehead = s->r_sharehead; 637 LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink); 638 goto out; 639 } 640 } 641 /* 642 * We couldn't find anything. 643 */ 644 645 out: 646 mtx_unlock(rm->rm_mtx); 647 return (rv == NULL ? NULL : &rv->r_r); 648 } 649 650 struct resource * 651 rman_reserve_resource(struct rman *rm, rman_res_t start, rman_res_t end, 652 rman_res_t count, u_int flags, device_t dev) 653 { 654 655 return (rman_reserve_resource_bound(rm, start, end, count, 0, flags, 656 dev)); 657 } 658 659 int 660 rman_activate_resource(struct resource *re) 661 { 662 struct resource_i *r; 663 struct rman *rm; 664 665 r = re->__r_i; 666 rm = r->r_rm; 667 mtx_lock(rm->rm_mtx); 668 r->r_flags |= RF_ACTIVE; 669 mtx_unlock(rm->rm_mtx); 670 return 0; 671 } 672 673 int 674 rman_deactivate_resource(struct resource *r) 675 { 676 struct rman *rm; 677 678 rm = r->__r_i->r_rm; 679 mtx_lock(rm->rm_mtx); 680 r->__r_i->r_flags &= ~RF_ACTIVE; 681 mtx_unlock(rm->rm_mtx); 682 return 0; 683 } 684 685 static int 686 int_rman_release_resource(struct rman *rm, struct resource_i *r) 687 { 688 struct resource_i *s, *t; 689 690 if (r->r_flags & RF_ACTIVE) 691 r->r_flags &= ~RF_ACTIVE; 692 693 /* 694 * Check for a sharing list first. If there is one, then we don't 695 * have to think as hard. 696 */ 697 if (r->r_sharehead) { 698 /* 699 * If a sharing list exists, then we know there are at 700 * least two sharers. 701 * 702 * If we are in the main circleq, appoint someone else. 703 */ 704 LIST_REMOVE(r, r_sharelink); 705 s = LIST_FIRST(r->r_sharehead); 706 if (r->r_flags & RF_FIRSTSHARE) { 707 s->r_flags |= RF_FIRSTSHARE; 708 TAILQ_INSERT_BEFORE(r, s, r_link); 709 TAILQ_REMOVE(&rm->rm_list, r, r_link); 710 } 711 712 /* 713 * Make sure that the sharing list goes away completely 714 * if the resource is no longer being shared at all. 715 */ 716 if (LIST_NEXT(s, r_sharelink) == NULL) { 717 free(s->r_sharehead, M_RMAN); 718 s->r_sharehead = NULL; 719 s->r_flags &= ~RF_FIRSTSHARE; 720 } 721 goto out; 722 } 723 724 /* 725 * Look at the adjacent resources in the list and see if our 726 * segment can be merged with any of them. If either of the 727 * resources is allocated or is not exactly adjacent then they 728 * cannot be merged with our segment. 729 */ 730 s = TAILQ_PREV(r, resource_head, r_link); 731 if (s != NULL && ((s->r_flags & RF_ALLOCATED) != 0 || 732 s->r_end + 1 != r->r_start)) 733 s = NULL; 734 t = TAILQ_NEXT(r, r_link); 735 if (t != NULL && ((t->r_flags & RF_ALLOCATED) != 0 || 736 r->r_end + 1 != t->r_start)) 737 t = NULL; 738 739 if (s != NULL && t != NULL) { 740 /* 741 * Merge all three segments. 742 */ 743 s->r_end = t->r_end; 744 TAILQ_REMOVE(&rm->rm_list, r, r_link); 745 TAILQ_REMOVE(&rm->rm_list, t, r_link); 746 free(t, M_RMAN); 747 } else if (s != NULL) { 748 /* 749 * Merge previous segment with ours. 750 */ 751 s->r_end = r->r_end; 752 TAILQ_REMOVE(&rm->rm_list, r, r_link); 753 } else if (t != NULL) { 754 /* 755 * Merge next segment with ours. 756 */ 757 t->r_start = r->r_start; 758 TAILQ_REMOVE(&rm->rm_list, r, r_link); 759 } else { 760 /* 761 * At this point, we know there is nothing we 762 * can potentially merge with, because on each 763 * side, there is either nothing there or what is 764 * there is still allocated. In that case, we don't 765 * want to remove r from the list; we simply want to 766 * change it to an unallocated region and return 767 * without freeing anything. 768 */ 769 r->r_flags &= ~RF_ALLOCATED; 770 r->r_dev = NULL; 771 return 0; 772 } 773 774 out: 775 free(r, M_RMAN); 776 return 0; 777 } 778 779 int 780 rman_release_resource(struct resource *re) 781 { 782 int rv; 783 struct resource_i *r; 784 struct rman *rm; 785 786 r = re->__r_i; 787 rm = r->r_rm; 788 mtx_lock(rm->rm_mtx); 789 rv = int_rman_release_resource(rm, r); 790 mtx_unlock(rm->rm_mtx); 791 return (rv); 792 } 793 794 uint32_t 795 rman_make_alignment_flags(uint32_t size) 796 { 797 int i; 798 799 /* 800 * Find the hightest bit set, and add one if more than one bit 801 * set. We're effectively computing the ceil(log2(size)) here. 802 */ 803 for (i = 31; i > 0; i--) 804 if ((1 << i) & size) 805 break; 806 if (~(1 << i) & size) 807 i++; 808 809 return(RF_ALIGNMENT_LOG2(i)); 810 } 811 812 rman_res_t 813 rman_get_start(struct resource *r) 814 { 815 816 return (r->__r_i->r_start); 817 } 818 819 rman_res_t 820 rman_get_end(struct resource *r) 821 { 822 823 return (r->__r_i->r_end); 824 } 825 826 rman_res_t 827 rman_get_size(struct resource *r) 828 { 829 830 return (r->__r_i->r_end - r->__r_i->r_start + 1); 831 } 832 833 u_int 834 rman_get_flags(struct resource *r) 835 { 836 837 return (r->__r_i->r_flags); 838 } 839 840 void 841 rman_set_virtual(struct resource *r, void *v) 842 { 843 844 r->__r_i->r_virtual = v; 845 } 846 847 void * 848 rman_get_virtual(struct resource *r) 849 { 850 851 return (r->__r_i->r_virtual); 852 } 853 854 void 855 rman_set_irq_cookie(struct resource *r, void *c) 856 { 857 858 r->__r_i->r_irq_cookie = c; 859 } 860 861 void * 862 rman_get_irq_cookie(struct resource *r) 863 { 864 865 return (r->__r_i->r_irq_cookie); 866 } 867 868 void 869 rman_set_bustag(struct resource *r, bus_space_tag_t t) 870 { 871 872 r->r_bustag = t; 873 } 874 875 bus_space_tag_t 876 rman_get_bustag(struct resource *r) 877 { 878 879 return (r->r_bustag); 880 } 881 882 void 883 rman_set_bushandle(struct resource *r, bus_space_handle_t h) 884 { 885 886 r->r_bushandle = h; 887 } 888 889 bus_space_handle_t 890 rman_get_bushandle(struct resource *r) 891 { 892 893 return (r->r_bushandle); 894 } 895 896 void 897 rman_set_mapping(struct resource *r, struct resource_map *map) 898 { 899 900 KASSERT(rman_get_size(r) == map->r_size, 901 ("rman_set_mapping: size mismatch")); 902 rman_set_bustag(r, map->r_bustag); 903 rman_set_bushandle(r, map->r_bushandle); 904 rman_set_virtual(r, map->r_vaddr); 905 } 906 907 void 908 rman_get_mapping(struct resource *r, struct resource_map *map) 909 { 910 911 map->r_bustag = rman_get_bustag(r); 912 map->r_bushandle = rman_get_bushandle(r); 913 map->r_size = rman_get_size(r); 914 map->r_vaddr = rman_get_virtual(r); 915 } 916 917 void 918 rman_set_rid(struct resource *r, int rid) 919 { 920 921 r->__r_i->r_rid = rid; 922 } 923 924 int 925 rman_get_rid(struct resource *r) 926 { 927 928 return (r->__r_i->r_rid); 929 } 930 931 void 932 rman_set_type(struct resource *r, int type) 933 { 934 r->__r_i->r_type = type; 935 } 936 937 int 938 rman_get_type(struct resource *r) 939 { 940 return (r->__r_i->r_type); 941 } 942 943 void 944 rman_set_device(struct resource *r, device_t dev) 945 { 946 947 r->__r_i->r_dev = dev; 948 } 949 950 device_t 951 rman_get_device(struct resource *r) 952 { 953 954 return (r->__r_i->r_dev); 955 } 956 957 int 958 rman_is_region_manager(struct resource *r, struct rman *rm) 959 { 960 961 return (r->__r_i->r_rm == rm); 962 } 963 964 /* 965 * Sysctl interface for scanning the resource lists. 966 * 967 * We take two input parameters; the index into the list of resource 968 * managers, and the resource offset into the list. 969 */ 970 static int 971 sysctl_rman(SYSCTL_HANDLER_ARGS) 972 { 973 int *name = (int *)arg1; 974 u_int namelen = arg2; 975 int rman_idx, res_idx; 976 struct rman *rm; 977 struct resource_i *res; 978 struct resource_i *sres; 979 struct u_rman urm; 980 struct u_resource ures; 981 int error; 982 983 if (namelen != 3) 984 return (EINVAL); 985 986 if (bus_data_generation_check(name[0])) 987 return (EINVAL); 988 rman_idx = name[1]; 989 res_idx = name[2]; 990 991 /* 992 * Find the indexed resource manager 993 */ 994 mtx_lock(&rman_mtx); 995 TAILQ_FOREACH(rm, &rman_head, rm_link) { 996 if (rman_idx-- == 0) 997 break; 998 } 999 mtx_unlock(&rman_mtx); 1000 if (rm == NULL) 1001 return (ENOENT); 1002 1003 /* 1004 * If the resource index is -1, we want details on the 1005 * resource manager. 1006 */ 1007 if (res_idx == -1) { 1008 bzero(&urm, sizeof(urm)); 1009 urm.rm_handle = (uintptr_t)rm; 1010 if (rm->rm_descr != NULL) 1011 strlcpy(urm.rm_descr, rm->rm_descr, RM_TEXTLEN); 1012 urm.rm_start = rm->rm_start; 1013 urm.rm_size = rm->rm_end - rm->rm_start + 1; 1014 urm.rm_type = rm->rm_type; 1015 1016 error = SYSCTL_OUT(req, &urm, sizeof(urm)); 1017 return (error); 1018 } 1019 1020 /* 1021 * Find the indexed resource and return it. 1022 */ 1023 mtx_lock(rm->rm_mtx); 1024 TAILQ_FOREACH(res, &rm->rm_list, r_link) { 1025 if (res->r_sharehead != NULL) { 1026 LIST_FOREACH(sres, res->r_sharehead, r_sharelink) 1027 if (res_idx-- == 0) { 1028 res = sres; 1029 goto found; 1030 } 1031 } 1032 else if (res_idx-- == 0) 1033 goto found; 1034 } 1035 mtx_unlock(rm->rm_mtx); 1036 return (ENOENT); 1037 1038 found: 1039 bzero(&ures, sizeof(ures)); 1040 ures.r_handle = (uintptr_t)res; 1041 ures.r_parent = (uintptr_t)res->r_rm; 1042 ures.r_device = (uintptr_t)res->r_dev; 1043 if (res->r_dev != NULL) { 1044 if (device_get_name(res->r_dev) != NULL) { 1045 snprintf(ures.r_devname, RM_TEXTLEN, 1046 "%s%d", 1047 device_get_name(res->r_dev), 1048 device_get_unit(res->r_dev)); 1049 } else { 1050 strlcpy(ures.r_devname, "nomatch", 1051 RM_TEXTLEN); 1052 } 1053 } else { 1054 ures.r_devname[0] = '\0'; 1055 } 1056 ures.r_start = res->r_start; 1057 ures.r_size = res->r_end - res->r_start + 1; 1058 ures.r_flags = res->r_flags; 1059 1060 mtx_unlock(rm->rm_mtx); 1061 error = SYSCTL_OUT(req, &ures, sizeof(ures)); 1062 return (error); 1063 } 1064 1065 static SYSCTL_NODE(_hw_bus, OID_AUTO, rman, CTLFLAG_RD | CTLFLAG_MPSAFE, 1066 sysctl_rman, 1067 "kernel resource manager"); 1068 1069 #ifdef DDB 1070 static void 1071 dump_rman_header(struct rman *rm) 1072 { 1073 1074 if (db_pager_quit) 1075 return; 1076 db_printf("rman %p: %s (0x%jx-0x%jx full range)\n", 1077 rm, rm->rm_descr, (rman_res_t)rm->rm_start, (rman_res_t)rm->rm_end); 1078 } 1079 1080 static void 1081 dump_rman(struct rman *rm) 1082 { 1083 struct resource_i *r; 1084 const char *devname; 1085 1086 if (db_pager_quit) 1087 return; 1088 TAILQ_FOREACH(r, &rm->rm_list, r_link) { 1089 if (r->r_dev != NULL) { 1090 devname = device_get_nameunit(r->r_dev); 1091 if (devname == NULL) 1092 devname = "nomatch"; 1093 } else 1094 devname = NULL; 1095 db_printf(" 0x%jx-0x%jx (RID=%d) ", 1096 r->r_start, r->r_end, r->r_rid); 1097 if (devname != NULL) 1098 db_printf("(%s)\n", devname); 1099 else 1100 db_printf("----\n"); 1101 if (db_pager_quit) 1102 return; 1103 } 1104 } 1105 1106 DB_SHOW_COMMAND(rman, db_show_rman) 1107 { 1108 1109 if (have_addr) { 1110 dump_rman_header((struct rman *)addr); 1111 dump_rman((struct rman *)addr); 1112 } 1113 } 1114 1115 DB_SHOW_COMMAND_FLAGS(rmans, db_show_rmans, DB_CMD_MEMSAFE) 1116 { 1117 struct rman *rm; 1118 1119 TAILQ_FOREACH(rm, &rman_head, rm_link) { 1120 dump_rman_header(rm); 1121 } 1122 } 1123 1124 DB_SHOW_ALL_COMMAND(rman, db_show_all_rman) 1125 { 1126 struct rman *rm; 1127 1128 TAILQ_FOREACH(rm, &rman_head, rm_link) { 1129 dump_rman_header(rm); 1130 dump_rman(rm); 1131 } 1132 } 1133 DB_SHOW_ALIAS_FLAGS(allrman, db_show_all_rman, DB_CMD_MEMSAFE); 1134 #endif 1135