1 /*- 2 * Copyright 1998 Massachusetts Institute of Technology 3 * 4 * Permission to use, copy, modify, and distribute this software and 5 * its documentation for any purpose and without fee is hereby 6 * granted, provided that both the above copyright notice and this 7 * permission notice appear in all copies, that both the above 8 * copyright notice and this permission notice appear in all 9 * supporting documentation, and that the name of M.I.T. not be used 10 * in advertising or publicity pertaining to distribution of the 11 * software without specific, written prior permission. M.I.T. makes 12 * no representations about the suitability of this software for any 13 * purpose. It is provided "as is" without express or implied 14 * warranty. 15 * 16 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS 17 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE, 18 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT 20 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF 23 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 25 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 26 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 /* 31 * The kernel resource manager. This code is responsible for keeping track 32 * of hardware resources which are apportioned out to various drivers. 33 * It does not actually assign those resources, and it is not expected 34 * that end-device drivers will call into this code directly. Rather, 35 * the code which implements the buses that those devices are attached to, 36 * and the code which manages CPU resources, will call this code, and the 37 * end-device drivers will make upcalls to that code to actually perform 38 * the allocation. 39 * 40 * There are two sorts of resources managed by this code. The first is 41 * the more familiar array (RMAN_ARRAY) type; resources in this class 42 * consist of a sequence of individually-allocatable objects which have 43 * been numbered in some well-defined order. Most of the resources 44 * are of this type, as it is the most familiar. The second type is 45 * called a gauge (RMAN_GAUGE), and models fungible resources (i.e., 46 * resources in which each instance is indistinguishable from every 47 * other instance). The principal anticipated application of gauges 48 * is in the context of power consumption, where a bus may have a specific 49 * power budget which all attached devices share. RMAN_GAUGE is not 50 * implemented yet. 51 * 52 * For array resources, we make one simplifying assumption: two clients 53 * sharing the same resource must use the same range of indices. That 54 * is to say, sharing of overlapping-but-not-identical regions is not 55 * permitted. 56 */ 57 58 #include "opt_ddb.h" 59 60 #include <sys/cdefs.h> 61 __FBSDID("$FreeBSD$"); 62 63 #include <sys/param.h> 64 #include <sys/systm.h> 65 #include <sys/kernel.h> 66 #include <sys/limits.h> 67 #include <sys/lock.h> 68 #include <sys/malloc.h> 69 #include <sys/mutex.h> 70 #include <sys/bus.h> /* XXX debugging */ 71 #include <machine/bus.h> 72 #include <sys/rman.h> 73 #include <sys/sysctl.h> 74 75 #ifdef DDB 76 #include <ddb/ddb.h> 77 #endif 78 79 /* 80 * We use a linked list rather than a bitmap because we need to be able to 81 * represent potentially huge objects (like all of a processor's physical 82 * address space). That is also why the indices are defined to have type 83 * `unsigned long' -- that being the largest integral type in ISO C (1990). 84 * The 1999 version of C allows `long long'; we may need to switch to that 85 * at some point in the future, particularly if we want to support 36-bit 86 * addresses on IA32 hardware. 87 */ 88 struct resource_i { 89 struct resource r_r; 90 TAILQ_ENTRY(resource_i) r_link; 91 LIST_ENTRY(resource_i) r_sharelink; 92 LIST_HEAD(, resource_i) *r_sharehead; 93 u_long r_start; /* index of the first entry in this resource */ 94 u_long r_end; /* index of the last entry (inclusive) */ 95 u_int r_flags; 96 void *r_virtual; /* virtual address of this resource */ 97 struct device *r_dev; /* device which has allocated this resource */ 98 struct rman *r_rm; /* resource manager from whence this came */ 99 int r_rid; /* optional rid for this resource. */ 100 }; 101 102 static int rman_debug = 0; 103 TUNABLE_INT("debug.rman_debug", &rman_debug); 104 SYSCTL_INT(_debug, OID_AUTO, rman_debug, CTLFLAG_RW, 105 &rman_debug, 0, "rman debug"); 106 107 #define DPRINTF(params) if (rman_debug) printf params 108 109 static MALLOC_DEFINE(M_RMAN, "rman", "Resource manager"); 110 111 struct rman_head rman_head; 112 static struct mtx rman_mtx; /* mutex to protect rman_head */ 113 static int int_rman_activate_resource(struct rman *rm, struct resource_i *r, 114 struct resource_i **whohas); 115 static int int_rman_deactivate_resource(struct resource_i *r); 116 static int int_rman_release_resource(struct rman *rm, struct resource_i *r); 117 118 static __inline struct resource_i * 119 int_alloc_resource(int malloc_flag) 120 { 121 struct resource_i *r; 122 123 r = malloc(sizeof *r, M_RMAN, malloc_flag | M_ZERO); 124 if (r != NULL) { 125 r->r_r.__r_i = r; 126 } 127 return (r); 128 } 129 130 int 131 rman_init(struct rman *rm) 132 { 133 static int once = 0; 134 135 if (once == 0) { 136 once = 1; 137 TAILQ_INIT(&rman_head); 138 mtx_init(&rman_mtx, "rman head", NULL, MTX_DEF); 139 } 140 141 if (rm->rm_start == 0 && rm->rm_end == 0) 142 rm->rm_end = ~0ul; 143 if (rm->rm_type == RMAN_UNINIT) 144 panic("rman_init"); 145 if (rm->rm_type == RMAN_GAUGE) 146 panic("implement RMAN_GAUGE"); 147 148 TAILQ_INIT(&rm->rm_list); 149 rm->rm_mtx = malloc(sizeof *rm->rm_mtx, M_RMAN, M_NOWAIT | M_ZERO); 150 if (rm->rm_mtx == NULL) 151 return ENOMEM; 152 mtx_init(rm->rm_mtx, "rman", NULL, MTX_DEF); 153 154 mtx_lock(&rman_mtx); 155 TAILQ_INSERT_TAIL(&rman_head, rm, rm_link); 156 mtx_unlock(&rman_mtx); 157 return 0; 158 } 159 160 int 161 rman_manage_region(struct rman *rm, u_long start, u_long end) 162 { 163 struct resource_i *r, *s, *t; 164 165 DPRINTF(("rman_manage_region: <%s> request: start %#lx, end %#lx\n", 166 rm->rm_descr, start, end)); 167 if (start < rm->rm_start || end > rm->rm_end) 168 return EINVAL; 169 r = int_alloc_resource(M_NOWAIT); 170 if (r == NULL) 171 return ENOMEM; 172 r->r_start = start; 173 r->r_end = end; 174 r->r_rm = rm; 175 176 mtx_lock(rm->rm_mtx); 177 178 /* Skip entries before us. */ 179 TAILQ_FOREACH(s, &rm->rm_list, r_link) { 180 if (s->r_end == ULONG_MAX) 181 break; 182 if (s->r_end + 1 >= r->r_start) 183 break; 184 } 185 186 /* If we ran off the end of the list, insert at the tail. */ 187 if (s == NULL) { 188 TAILQ_INSERT_TAIL(&rm->rm_list, r, r_link); 189 } else { 190 /* Check for any overlap with the current region. */ 191 if (r->r_start <= s->r_end && r->r_end >= s->r_start) 192 return EBUSY; 193 194 /* Check for any overlap with the next region. */ 195 t = TAILQ_NEXT(s, r_link); 196 if (t && r->r_start <= t->r_end && r->r_end >= t->r_start) 197 return EBUSY; 198 199 /* 200 * See if this region can be merged with the next region. If 201 * not, clear the pointer. 202 */ 203 if (t && (r->r_end + 1 != t->r_start || t->r_flags != 0)) 204 t = NULL; 205 206 /* See if we can merge with the current region. */ 207 if (s->r_end + 1 == r->r_start && s->r_flags == 0) { 208 /* Can we merge all 3 regions? */ 209 if (t != NULL) { 210 s->r_end = t->r_end; 211 TAILQ_REMOVE(&rm->rm_list, t, r_link); 212 free(r, M_RMAN); 213 free(t, M_RMAN); 214 } else { 215 s->r_end = r->r_end; 216 free(r, M_RMAN); 217 } 218 } else if (t != NULL) { 219 /* Can we merge with just the next region? */ 220 t->r_start = r->r_start; 221 free(r, M_RMAN); 222 } else if (s->r_end < r->r_start) { 223 TAILQ_INSERT_AFTER(&rm->rm_list, s, r, r_link); 224 } else { 225 TAILQ_INSERT_BEFORE(s, r, r_link); 226 } 227 } 228 229 mtx_unlock(rm->rm_mtx); 230 return 0; 231 } 232 233 int 234 rman_init_from_resource(struct rman *rm, struct resource *r) 235 { 236 int rv; 237 238 if ((rv = rman_init(rm)) != 0) 239 return (rv); 240 return (rman_manage_region(rm, r->__r_i->r_start, r->__r_i->r_end)); 241 } 242 243 int 244 rman_fini(struct rman *rm) 245 { 246 struct resource_i *r; 247 248 mtx_lock(rm->rm_mtx); 249 TAILQ_FOREACH(r, &rm->rm_list, r_link) { 250 if (r->r_flags & RF_ALLOCATED) { 251 mtx_unlock(rm->rm_mtx); 252 return EBUSY; 253 } 254 } 255 256 /* 257 * There really should only be one of these if we are in this 258 * state and the code is working properly, but it can't hurt. 259 */ 260 while (!TAILQ_EMPTY(&rm->rm_list)) { 261 r = TAILQ_FIRST(&rm->rm_list); 262 TAILQ_REMOVE(&rm->rm_list, r, r_link); 263 free(r, M_RMAN); 264 } 265 mtx_unlock(rm->rm_mtx); 266 mtx_lock(&rman_mtx); 267 TAILQ_REMOVE(&rman_head, rm, rm_link); 268 mtx_unlock(&rman_mtx); 269 mtx_destroy(rm->rm_mtx); 270 free(rm->rm_mtx, M_RMAN); 271 272 return 0; 273 } 274 275 int 276 rman_first_free_region(struct rman *rm, u_long *start, u_long *end) 277 { 278 struct resource_i *r; 279 280 mtx_lock(rm->rm_mtx); 281 TAILQ_FOREACH(r, &rm->rm_list, r_link) { 282 if (!(r->r_flags & RF_ALLOCATED)) { 283 *start = r->r_start; 284 *end = r->r_end; 285 mtx_unlock(rm->rm_mtx); 286 return (0); 287 } 288 } 289 mtx_unlock(rm->rm_mtx); 290 return (ENOENT); 291 } 292 293 int 294 rman_last_free_region(struct rman *rm, u_long *start, u_long *end) 295 { 296 struct resource_i *r; 297 298 mtx_lock(rm->rm_mtx); 299 TAILQ_FOREACH_REVERSE(r, &rm->rm_list, resource_head, r_link) { 300 if (!(r->r_flags & RF_ALLOCATED)) { 301 *start = r->r_start; 302 *end = r->r_end; 303 mtx_unlock(rm->rm_mtx); 304 return (0); 305 } 306 } 307 mtx_unlock(rm->rm_mtx); 308 return (ENOENT); 309 } 310 311 /* Shrink or extend one or both ends of an allocated resource. */ 312 int 313 rman_adjust_resource(struct resource *rr, u_long start, u_long end) 314 { 315 struct resource_i *r, *s, *t, *new; 316 struct rman *rm; 317 318 /* Not supported for shared resources. */ 319 r = rr->__r_i; 320 if (r->r_flags & (RF_TIMESHARE | RF_SHAREABLE)) 321 return (EINVAL); 322 323 /* 324 * This does not support wholesale moving of a resource. At 325 * least part of the desired new range must overlap with the 326 * existing resource. 327 */ 328 if (end < r->r_start || r->r_end < start) 329 return (EINVAL); 330 331 /* 332 * Find the two resource regions immediately adjacent to the 333 * allocated resource. 334 */ 335 rm = r->r_rm; 336 mtx_lock(rm->rm_mtx); 337 #ifdef INVARIANTS 338 TAILQ_FOREACH(s, &rm->rm_list, r_link) { 339 if (s == r) 340 break; 341 } 342 if (s == NULL) 343 panic("resource not in list"); 344 #endif 345 s = TAILQ_PREV(r, resource_head, r_link); 346 t = TAILQ_NEXT(r, r_link); 347 KASSERT(s == NULL || s->r_end + 1 == r->r_start, 348 ("prev resource mismatch")); 349 KASSERT(t == NULL || r->r_end + 1 == t->r_start, 350 ("next resource mismatch")); 351 352 /* 353 * See if the changes are permitted. Shrinking is always allowed, 354 * but growing requires sufficient room in the adjacent region. 355 */ 356 if (start < r->r_start && (s == NULL || (s->r_flags & RF_ALLOCATED) || 357 s->r_start > start)) { 358 mtx_unlock(rm->rm_mtx); 359 return (EBUSY); 360 } 361 if (end > r->r_end && (t == NULL || (t->r_flags & RF_ALLOCATED) || 362 t->r_end < end)) { 363 mtx_unlock(rm->rm_mtx); 364 return (EBUSY); 365 } 366 367 /* 368 * While holding the lock, grow either end of the resource as 369 * needed and shrink either end if the shrinking does not require 370 * allocating a new resource. We can safely drop the lock and then 371 * insert a new range to handle the shrinking case afterwards. 372 */ 373 if (start < r->r_start || 374 (start > r->r_start && s != NULL && !(s->r_flags & RF_ALLOCATED))) { 375 KASSERT(s->r_flags == 0, ("prev is busy")); 376 r->r_start = start; 377 if (s->r_start == start) { 378 TAILQ_REMOVE(&rm->rm_list, s, r_link); 379 free(s, M_RMAN); 380 } else 381 s->r_end = start - 1; 382 } 383 if (end > r->r_end || 384 (end < r->r_end && t != NULL && !(t->r_flags & RF_ALLOCATED))) { 385 KASSERT(t->r_flags == 0, ("next is busy")); 386 r->r_end = end; 387 if (t->r_end == end) { 388 TAILQ_REMOVE(&rm->rm_list, t, r_link); 389 free(t, M_RMAN); 390 } else 391 t->r_start = end + 1; 392 } 393 mtx_unlock(rm->rm_mtx); 394 395 /* 396 * Handle the shrinking cases that require allocating a new 397 * resource to hold the newly-free region. We have to recheck 398 * if we still need this new region after acquiring the lock. 399 */ 400 if (start > r->r_start) { 401 new = int_alloc_resource(M_WAITOK); 402 new->r_start = r->r_start; 403 new->r_end = start - 1; 404 new->r_rm = rm; 405 mtx_lock(rm->rm_mtx); 406 r->r_start = start; 407 s = TAILQ_PREV(r, resource_head, r_link); 408 if (s != NULL && !(s->r_flags & RF_ALLOCATED)) { 409 s->r_end = start - 1; 410 free(new, M_RMAN); 411 } else 412 TAILQ_INSERT_BEFORE(r, new, r_link); 413 mtx_unlock(rm->rm_mtx); 414 } 415 if (end < r->r_end) { 416 new = int_alloc_resource(M_WAITOK); 417 new->r_start = end + 1; 418 new->r_end = r->r_end; 419 new->r_rm = rm; 420 mtx_lock(rm->rm_mtx); 421 r->r_end = end; 422 t = TAILQ_NEXT(r, r_link); 423 if (t != NULL && !(t->r_flags & RF_ALLOCATED)) { 424 t->r_start = end + 1; 425 free(new, M_RMAN); 426 } else 427 TAILQ_INSERT_AFTER(&rm->rm_list, r, new, r_link); 428 mtx_unlock(rm->rm_mtx); 429 } 430 return (0); 431 } 432 433 struct resource * 434 rman_reserve_resource_bound(struct rman *rm, u_long start, u_long end, 435 u_long count, u_long bound, u_int flags, 436 struct device *dev) 437 { 438 u_int want_activate; 439 struct resource_i *r, *s, *rv; 440 u_long rstart, rend, amask, bmask; 441 442 rv = NULL; 443 444 DPRINTF(("rman_reserve_resource_bound: <%s> request: [%#lx, %#lx], " 445 "length %#lx, flags %u, device %s\n", rm->rm_descr, start, end, 446 count, flags, 447 dev == NULL ? "<null>" : device_get_nameunit(dev))); 448 want_activate = (flags & RF_ACTIVE); 449 flags &= ~RF_ACTIVE; 450 451 mtx_lock(rm->rm_mtx); 452 453 for (r = TAILQ_FIRST(&rm->rm_list); 454 r && r->r_end < start; 455 r = TAILQ_NEXT(r, r_link)) 456 ; 457 458 if (r == NULL) { 459 DPRINTF(("could not find a region\n")); 460 goto out; 461 } 462 463 amask = (1ul << RF_ALIGNMENT(flags)) - 1; 464 /* If bound is 0, bmask will also be 0 */ 465 bmask = ~(bound - 1); 466 /* 467 * First try to find an acceptable totally-unshared region. 468 */ 469 for (s = r; s; s = TAILQ_NEXT(s, r_link)) { 470 DPRINTF(("considering [%#lx, %#lx]\n", s->r_start, s->r_end)); 471 if (s->r_start + count - 1 > end) { 472 DPRINTF(("s->r_start (%#lx) + count - 1> end (%#lx)\n", 473 s->r_start, end)); 474 break; 475 } 476 if (s->r_flags & RF_ALLOCATED) { 477 DPRINTF(("region is allocated\n")); 478 continue; 479 } 480 rstart = ulmax(s->r_start, start); 481 /* 482 * Try to find a region by adjusting to boundary and alignment 483 * until both conditions are satisfied. This is not an optimal 484 * algorithm, but in most cases it isn't really bad, either. 485 */ 486 do { 487 rstart = (rstart + amask) & ~amask; 488 if (((rstart ^ (rstart + count - 1)) & bmask) != 0) 489 rstart += bound - (rstart & ~bmask); 490 } while ((rstart & amask) != 0 && rstart < end && 491 rstart < s->r_end); 492 rend = ulmin(s->r_end, ulmax(rstart + count - 1, end)); 493 if (rstart > rend) { 494 DPRINTF(("adjusted start exceeds end\n")); 495 continue; 496 } 497 DPRINTF(("truncated region: [%#lx, %#lx]; size %#lx (requested %#lx)\n", 498 rstart, rend, (rend - rstart + 1), count)); 499 500 if ((rend - rstart + 1) >= count) { 501 DPRINTF(("candidate region: [%#lx, %#lx], size %#lx\n", 502 rstart, rend, (rend - rstart + 1))); 503 if ((s->r_end - s->r_start + 1) == count) { 504 DPRINTF(("candidate region is entire chunk\n")); 505 rv = s; 506 rv->r_flags |= RF_ALLOCATED | flags; 507 rv->r_dev = dev; 508 goto out; 509 } 510 511 /* 512 * If s->r_start < rstart and 513 * s->r_end > rstart + count - 1, then 514 * we need to split the region into three pieces 515 * (the middle one will get returned to the user). 516 * Otherwise, we are allocating at either the 517 * beginning or the end of s, so we only need to 518 * split it in two. The first case requires 519 * two new allocations; the second requires but one. 520 */ 521 rv = int_alloc_resource(M_NOWAIT); 522 if (rv == NULL) 523 goto out; 524 rv->r_start = rstart; 525 rv->r_end = rstart + count - 1; 526 rv->r_flags = flags | RF_ALLOCATED; 527 rv->r_dev = dev; 528 rv->r_rm = rm; 529 530 if (s->r_start < rv->r_start && s->r_end > rv->r_end) { 531 DPRINTF(("splitting region in three parts: " 532 "[%#lx, %#lx]; [%#lx, %#lx]; [%#lx, %#lx]\n", 533 s->r_start, rv->r_start - 1, 534 rv->r_start, rv->r_end, 535 rv->r_end + 1, s->r_end)); 536 /* 537 * We are allocating in the middle. 538 */ 539 r = int_alloc_resource(M_NOWAIT); 540 if (r == NULL) { 541 free(rv, M_RMAN); 542 rv = NULL; 543 goto out; 544 } 545 r->r_start = rv->r_end + 1; 546 r->r_end = s->r_end; 547 r->r_flags = s->r_flags; 548 r->r_rm = rm; 549 s->r_end = rv->r_start - 1; 550 TAILQ_INSERT_AFTER(&rm->rm_list, s, rv, 551 r_link); 552 TAILQ_INSERT_AFTER(&rm->rm_list, rv, r, 553 r_link); 554 } else if (s->r_start == rv->r_start) { 555 DPRINTF(("allocating from the beginning\n")); 556 /* 557 * We are allocating at the beginning. 558 */ 559 s->r_start = rv->r_end + 1; 560 TAILQ_INSERT_BEFORE(s, rv, r_link); 561 } else { 562 DPRINTF(("allocating at the end\n")); 563 /* 564 * We are allocating at the end. 565 */ 566 s->r_end = rv->r_start - 1; 567 TAILQ_INSERT_AFTER(&rm->rm_list, s, rv, 568 r_link); 569 } 570 goto out; 571 } 572 } 573 574 /* 575 * Now find an acceptable shared region, if the client's requirements 576 * allow sharing. By our implementation restriction, a candidate 577 * region must match exactly by both size and sharing type in order 578 * to be considered compatible with the client's request. (The 579 * former restriction could probably be lifted without too much 580 * additional work, but this does not seem warranted.) 581 */ 582 DPRINTF(("no unshared regions found\n")); 583 if ((flags & (RF_SHAREABLE | RF_TIMESHARE)) == 0) 584 goto out; 585 586 for (s = r; s; s = TAILQ_NEXT(s, r_link)) { 587 if (s->r_start > end) 588 break; 589 if ((s->r_flags & flags) != flags) 590 continue; 591 rstart = ulmax(s->r_start, start); 592 rend = ulmin(s->r_end, ulmax(start + count - 1, end)); 593 if (s->r_start >= start && s->r_end <= end 594 && (s->r_end - s->r_start + 1) == count && 595 (s->r_start & amask) == 0 && 596 ((s->r_start ^ s->r_end) & bmask) == 0) { 597 rv = int_alloc_resource(M_NOWAIT); 598 if (rv == NULL) 599 goto out; 600 rv->r_start = s->r_start; 601 rv->r_end = s->r_end; 602 rv->r_flags = s->r_flags & 603 (RF_ALLOCATED | RF_SHAREABLE | RF_TIMESHARE); 604 rv->r_dev = dev; 605 rv->r_rm = rm; 606 if (s->r_sharehead == NULL) { 607 s->r_sharehead = malloc(sizeof *s->r_sharehead, 608 M_RMAN, M_NOWAIT | M_ZERO); 609 if (s->r_sharehead == NULL) { 610 free(rv, M_RMAN); 611 rv = NULL; 612 goto out; 613 } 614 LIST_INIT(s->r_sharehead); 615 LIST_INSERT_HEAD(s->r_sharehead, s, 616 r_sharelink); 617 s->r_flags |= RF_FIRSTSHARE; 618 } 619 rv->r_sharehead = s->r_sharehead; 620 LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink); 621 goto out; 622 } 623 } 624 625 /* 626 * We couldn't find anything. 627 */ 628 out: 629 /* 630 * If the user specified RF_ACTIVE in the initial flags, 631 * which is reflected in `want_activate', we attempt to atomically 632 * activate the resource. If this fails, we release the resource 633 * and indicate overall failure. (This behavior probably doesn't 634 * make sense for RF_TIMESHARE-type resources.) 635 */ 636 if (rv && want_activate) { 637 struct resource_i *whohas; 638 if (int_rman_activate_resource(rm, rv, &whohas)) { 639 int_rman_release_resource(rm, rv); 640 rv = NULL; 641 } 642 } 643 644 mtx_unlock(rm->rm_mtx); 645 return (rv == NULL ? NULL : &rv->r_r); 646 } 647 648 struct resource * 649 rman_reserve_resource(struct rman *rm, u_long start, u_long end, u_long count, 650 u_int flags, struct device *dev) 651 { 652 653 return (rman_reserve_resource_bound(rm, start, end, count, 0, flags, 654 dev)); 655 } 656 657 static int 658 int_rman_activate_resource(struct rman *rm, struct resource_i *r, 659 struct resource_i **whohas) 660 { 661 struct resource_i *s; 662 int ok; 663 664 /* 665 * If we are not timesharing, then there is nothing much to do. 666 * If we already have the resource, then there is nothing at all to do. 667 * If we are not on a sharing list with anybody else, then there is 668 * little to do. 669 */ 670 if ((r->r_flags & RF_TIMESHARE) == 0 671 || (r->r_flags & RF_ACTIVE) != 0 672 || r->r_sharehead == NULL) { 673 r->r_flags |= RF_ACTIVE; 674 return 0; 675 } 676 677 ok = 1; 678 for (s = LIST_FIRST(r->r_sharehead); s && ok; 679 s = LIST_NEXT(s, r_sharelink)) { 680 if ((s->r_flags & RF_ACTIVE) != 0) { 681 ok = 0; 682 *whohas = s; 683 } 684 } 685 if (ok) { 686 r->r_flags |= RF_ACTIVE; 687 return 0; 688 } 689 return EBUSY; 690 } 691 692 int 693 rman_activate_resource(struct resource *re) 694 { 695 int rv; 696 struct resource_i *r, *whohas; 697 struct rman *rm; 698 699 r = re->__r_i; 700 rm = r->r_rm; 701 mtx_lock(rm->rm_mtx); 702 rv = int_rman_activate_resource(rm, r, &whohas); 703 mtx_unlock(rm->rm_mtx); 704 return rv; 705 } 706 707 int 708 rman_await_resource(struct resource *re, int pri, int timo) 709 { 710 int rv; 711 struct resource_i *r, *whohas; 712 struct rman *rm; 713 714 r = re->__r_i; 715 rm = r->r_rm; 716 mtx_lock(rm->rm_mtx); 717 for (;;) { 718 rv = int_rman_activate_resource(rm, r, &whohas); 719 if (rv != EBUSY) 720 return (rv); /* returns with mutex held */ 721 722 if (r->r_sharehead == NULL) 723 panic("rman_await_resource"); 724 whohas->r_flags |= RF_WANTED; 725 rv = msleep(r->r_sharehead, rm->rm_mtx, pri, "rmwait", timo); 726 if (rv) { 727 mtx_unlock(rm->rm_mtx); 728 return (rv); 729 } 730 } 731 } 732 733 static int 734 int_rman_deactivate_resource(struct resource_i *r) 735 { 736 737 r->r_flags &= ~RF_ACTIVE; 738 if (r->r_flags & RF_WANTED) { 739 r->r_flags &= ~RF_WANTED; 740 wakeup(r->r_sharehead); 741 } 742 return 0; 743 } 744 745 int 746 rman_deactivate_resource(struct resource *r) 747 { 748 struct rman *rm; 749 750 rm = r->__r_i->r_rm; 751 mtx_lock(rm->rm_mtx); 752 int_rman_deactivate_resource(r->__r_i); 753 mtx_unlock(rm->rm_mtx); 754 return 0; 755 } 756 757 static int 758 int_rman_release_resource(struct rman *rm, struct resource_i *r) 759 { 760 struct resource_i *s, *t; 761 762 if (r->r_flags & RF_ACTIVE) 763 int_rman_deactivate_resource(r); 764 765 /* 766 * Check for a sharing list first. If there is one, then we don't 767 * have to think as hard. 768 */ 769 if (r->r_sharehead) { 770 /* 771 * If a sharing list exists, then we know there are at 772 * least two sharers. 773 * 774 * If we are in the main circleq, appoint someone else. 775 */ 776 LIST_REMOVE(r, r_sharelink); 777 s = LIST_FIRST(r->r_sharehead); 778 if (r->r_flags & RF_FIRSTSHARE) { 779 s->r_flags |= RF_FIRSTSHARE; 780 TAILQ_INSERT_BEFORE(r, s, r_link); 781 TAILQ_REMOVE(&rm->rm_list, r, r_link); 782 } 783 784 /* 785 * Make sure that the sharing list goes away completely 786 * if the resource is no longer being shared at all. 787 */ 788 if (LIST_NEXT(s, r_sharelink) == NULL) { 789 free(s->r_sharehead, M_RMAN); 790 s->r_sharehead = NULL; 791 s->r_flags &= ~RF_FIRSTSHARE; 792 } 793 goto out; 794 } 795 796 /* 797 * Look at the adjacent resources in the list and see if our 798 * segment can be merged with any of them. If either of the 799 * resources is allocated or is not exactly adjacent then they 800 * cannot be merged with our segment. 801 */ 802 s = TAILQ_PREV(r, resource_head, r_link); 803 if (s != NULL && ((s->r_flags & RF_ALLOCATED) != 0 || 804 s->r_end + 1 != r->r_start)) 805 s = NULL; 806 t = TAILQ_NEXT(r, r_link); 807 if (t != NULL && ((t->r_flags & RF_ALLOCATED) != 0 || 808 r->r_end + 1 != t->r_start)) 809 t = NULL; 810 811 if (s != NULL && t != NULL) { 812 /* 813 * Merge all three segments. 814 */ 815 s->r_end = t->r_end; 816 TAILQ_REMOVE(&rm->rm_list, r, r_link); 817 TAILQ_REMOVE(&rm->rm_list, t, r_link); 818 free(t, M_RMAN); 819 } else if (s != NULL) { 820 /* 821 * Merge previous segment with ours. 822 */ 823 s->r_end = r->r_end; 824 TAILQ_REMOVE(&rm->rm_list, r, r_link); 825 } else if (t != NULL) { 826 /* 827 * Merge next segment with ours. 828 */ 829 t->r_start = r->r_start; 830 TAILQ_REMOVE(&rm->rm_list, r, r_link); 831 } else { 832 /* 833 * At this point, we know there is nothing we 834 * can potentially merge with, because on each 835 * side, there is either nothing there or what is 836 * there is still allocated. In that case, we don't 837 * want to remove r from the list; we simply want to 838 * change it to an unallocated region and return 839 * without freeing anything. 840 */ 841 r->r_flags &= ~RF_ALLOCATED; 842 r->r_dev = NULL; 843 return 0; 844 } 845 846 out: 847 free(r, M_RMAN); 848 return 0; 849 } 850 851 int 852 rman_release_resource(struct resource *re) 853 { 854 int rv; 855 struct resource_i *r; 856 struct rman *rm; 857 858 r = re->__r_i; 859 rm = r->r_rm; 860 mtx_lock(rm->rm_mtx); 861 rv = int_rman_release_resource(rm, r); 862 mtx_unlock(rm->rm_mtx); 863 return (rv); 864 } 865 866 uint32_t 867 rman_make_alignment_flags(uint32_t size) 868 { 869 int i; 870 871 /* 872 * Find the hightest bit set, and add one if more than one bit 873 * set. We're effectively computing the ceil(log2(size)) here. 874 */ 875 for (i = 31; i > 0; i--) 876 if ((1 << i) & size) 877 break; 878 if (~(1 << i) & size) 879 i++; 880 881 return(RF_ALIGNMENT_LOG2(i)); 882 } 883 884 void 885 rman_set_start(struct resource *r, u_long start) 886 { 887 r->__r_i->r_start = start; 888 } 889 890 u_long 891 rman_get_start(struct resource *r) 892 { 893 return (r->__r_i->r_start); 894 } 895 896 void 897 rman_set_end(struct resource *r, u_long end) 898 { 899 r->__r_i->r_end = end; 900 } 901 902 u_long 903 rman_get_end(struct resource *r) 904 { 905 return (r->__r_i->r_end); 906 } 907 908 u_long 909 rman_get_size(struct resource *r) 910 { 911 return (r->__r_i->r_end - r->__r_i->r_start + 1); 912 } 913 914 u_int 915 rman_get_flags(struct resource *r) 916 { 917 return (r->__r_i->r_flags); 918 } 919 920 void 921 rman_set_virtual(struct resource *r, void *v) 922 { 923 r->__r_i->r_virtual = v; 924 } 925 926 void * 927 rman_get_virtual(struct resource *r) 928 { 929 return (r->__r_i->r_virtual); 930 } 931 932 void 933 rman_set_bustag(struct resource *r, bus_space_tag_t t) 934 { 935 r->r_bustag = t; 936 } 937 938 bus_space_tag_t 939 rman_get_bustag(struct resource *r) 940 { 941 return (r->r_bustag); 942 } 943 944 void 945 rman_set_bushandle(struct resource *r, bus_space_handle_t h) 946 { 947 r->r_bushandle = h; 948 } 949 950 bus_space_handle_t 951 rman_get_bushandle(struct resource *r) 952 { 953 return (r->r_bushandle); 954 } 955 956 void 957 rman_set_rid(struct resource *r, int rid) 958 { 959 r->__r_i->r_rid = rid; 960 } 961 962 int 963 rman_get_rid(struct resource *r) 964 { 965 return (r->__r_i->r_rid); 966 } 967 968 void 969 rman_set_device(struct resource *r, struct device *dev) 970 { 971 r->__r_i->r_dev = dev; 972 } 973 974 struct device * 975 rman_get_device(struct resource *r) 976 { 977 return (r->__r_i->r_dev); 978 } 979 980 int 981 rman_is_region_manager(struct resource *r, struct rman *rm) 982 { 983 984 return (r->__r_i->r_rm == rm); 985 } 986 987 /* 988 * Sysctl interface for scanning the resource lists. 989 * 990 * We take two input parameters; the index into the list of resource 991 * managers, and the resource offset into the list. 992 */ 993 static int 994 sysctl_rman(SYSCTL_HANDLER_ARGS) 995 { 996 int *name = (int *)arg1; 997 u_int namelen = arg2; 998 int rman_idx, res_idx; 999 struct rman *rm; 1000 struct resource_i *res; 1001 struct resource_i *sres; 1002 struct u_rman urm; 1003 struct u_resource ures; 1004 int error; 1005 1006 if (namelen != 3) 1007 return (EINVAL); 1008 1009 if (bus_data_generation_check(name[0])) 1010 return (EINVAL); 1011 rman_idx = name[1]; 1012 res_idx = name[2]; 1013 1014 /* 1015 * Find the indexed resource manager 1016 */ 1017 mtx_lock(&rman_mtx); 1018 TAILQ_FOREACH(rm, &rman_head, rm_link) { 1019 if (rman_idx-- == 0) 1020 break; 1021 } 1022 mtx_unlock(&rman_mtx); 1023 if (rm == NULL) 1024 return (ENOENT); 1025 1026 /* 1027 * If the resource index is -1, we want details on the 1028 * resource manager. 1029 */ 1030 if (res_idx == -1) { 1031 bzero(&urm, sizeof(urm)); 1032 urm.rm_handle = (uintptr_t)rm; 1033 if (rm->rm_descr != NULL) 1034 strlcpy(urm.rm_descr, rm->rm_descr, RM_TEXTLEN); 1035 urm.rm_start = rm->rm_start; 1036 urm.rm_size = rm->rm_end - rm->rm_start + 1; 1037 urm.rm_type = rm->rm_type; 1038 1039 error = SYSCTL_OUT(req, &urm, sizeof(urm)); 1040 return (error); 1041 } 1042 1043 /* 1044 * Find the indexed resource and return it. 1045 */ 1046 mtx_lock(rm->rm_mtx); 1047 TAILQ_FOREACH(res, &rm->rm_list, r_link) { 1048 if (res->r_sharehead != NULL) { 1049 LIST_FOREACH(sres, res->r_sharehead, r_sharelink) 1050 if (res_idx-- == 0) { 1051 res = sres; 1052 goto found; 1053 } 1054 } 1055 else if (res_idx-- == 0) 1056 goto found; 1057 } 1058 mtx_unlock(rm->rm_mtx); 1059 return (ENOENT); 1060 1061 found: 1062 bzero(&ures, sizeof(ures)); 1063 ures.r_handle = (uintptr_t)res; 1064 ures.r_parent = (uintptr_t)res->r_rm; 1065 ures.r_device = (uintptr_t)res->r_dev; 1066 if (res->r_dev != NULL) { 1067 if (device_get_name(res->r_dev) != NULL) { 1068 snprintf(ures.r_devname, RM_TEXTLEN, 1069 "%s%d", 1070 device_get_name(res->r_dev), 1071 device_get_unit(res->r_dev)); 1072 } else { 1073 strlcpy(ures.r_devname, "nomatch", 1074 RM_TEXTLEN); 1075 } 1076 } else { 1077 ures.r_devname[0] = '\0'; 1078 } 1079 ures.r_start = res->r_start; 1080 ures.r_size = res->r_end - res->r_start + 1; 1081 ures.r_flags = res->r_flags; 1082 1083 mtx_unlock(rm->rm_mtx); 1084 error = SYSCTL_OUT(req, &ures, sizeof(ures)); 1085 return (error); 1086 } 1087 1088 SYSCTL_NODE(_hw_bus, OID_AUTO, rman, CTLFLAG_RD, sysctl_rman, 1089 "kernel resource manager"); 1090 1091 #ifdef DDB 1092 static void 1093 dump_rman_header(struct rman *rm) 1094 { 1095 1096 if (db_pager_quit) 1097 return; 1098 db_printf("rman %p: %s (0x%lx-0x%lx full range)\n", 1099 rm, rm->rm_descr, rm->rm_start, rm->rm_end); 1100 } 1101 1102 static void 1103 dump_rman(struct rman *rm) 1104 { 1105 struct resource_i *r; 1106 const char *devname; 1107 1108 if (db_pager_quit) 1109 return; 1110 TAILQ_FOREACH(r, &rm->rm_list, r_link) { 1111 if (r->r_dev != NULL) { 1112 devname = device_get_nameunit(r->r_dev); 1113 if (devname == NULL) 1114 devname = "nomatch"; 1115 } else 1116 devname = NULL; 1117 db_printf(" 0x%lx-0x%lx ", r->r_start, r->r_end); 1118 if (devname != NULL) 1119 db_printf("(%s)\n", devname); 1120 else 1121 db_printf("----\n"); 1122 if (db_pager_quit) 1123 return; 1124 } 1125 } 1126 1127 DB_SHOW_COMMAND(rman, db_show_rman) 1128 { 1129 1130 if (have_addr) { 1131 dump_rman_header((struct rman *)addr); 1132 dump_rman((struct rman *)addr); 1133 } 1134 } 1135 1136 DB_SHOW_COMMAND(rmans, db_show_rmans) 1137 { 1138 struct rman *rm; 1139 1140 TAILQ_FOREACH(rm, &rman_head, rm_link) { 1141 dump_rman_header(rm); 1142 } 1143 } 1144 1145 DB_SHOW_ALL_COMMAND(rman, db_show_all_rman) 1146 { 1147 struct rman *rm; 1148 1149 TAILQ_FOREACH(rm, &rman_head, rm_link) { 1150 dump_rman_header(rm); 1151 dump_rman(rm); 1152 } 1153 } 1154 DB_SHOW_ALIAS(allrman, db_show_all_rman); 1155 #endif 1156