1 /*- 2 * Copyright 1998 Massachusetts Institute of Technology 3 * 4 * Permission to use, copy, modify, and distribute this software and 5 * its documentation for any purpose and without fee is hereby 6 * granted, provided that both the above copyright notice and this 7 * permission notice appear in all copies, that both the above 8 * copyright notice and this permission notice appear in all 9 * supporting documentation, and that the name of M.I.T. not be used 10 * in advertising or publicity pertaining to distribution of the 11 * software without specific, written prior permission. M.I.T. makes 12 * no representations about the suitability of this software for any 13 * purpose. It is provided "as is" without express or implied 14 * warranty. 15 * 16 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS 17 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE, 18 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT 20 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF 23 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 25 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 26 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 /* 31 * The kernel resource manager. This code is responsible for keeping track 32 * of hardware resources which are apportioned out to various drivers. 33 * It does not actually assign those resources, and it is not expected 34 * that end-device drivers will call into this code directly. Rather, 35 * the code which implements the buses that those devices are attached to, 36 * and the code which manages CPU resources, will call this code, and the 37 * end-device drivers will make upcalls to that code to actually perform 38 * the allocation. 39 * 40 * There are two sorts of resources managed by this code. The first is 41 * the more familiar array (RMAN_ARRAY) type; resources in this class 42 * consist of a sequence of individually-allocatable objects which have 43 * been numbered in some well-defined order. Most of the resources 44 * are of this type, as it is the most familiar. The second type is 45 * called a gauge (RMAN_GAUGE), and models fungible resources (i.e., 46 * resources in which each instance is indistinguishable from every 47 * other instance). The principal anticipated application of gauges 48 * is in the context of power consumption, where a bus may have a specific 49 * power budget which all attached devices share. RMAN_GAUGE is not 50 * implemented yet. 51 * 52 * For array resources, we make one simplifying assumption: two clients 53 * sharing the same resource must use the same range of indices. That 54 * is to say, sharing of overlapping-but-not-identical regions is not 55 * permitted. 56 */ 57 58 #include "opt_ddb.h" 59 60 #include <sys/cdefs.h> 61 __FBSDID("$FreeBSD$"); 62 63 #include <sys/param.h> 64 #include <sys/systm.h> 65 #include <sys/kernel.h> 66 #include <sys/limits.h> 67 #include <sys/lock.h> 68 #include <sys/malloc.h> 69 #include <sys/mutex.h> 70 #include <sys/bus.h> /* XXX debugging */ 71 #include <machine/bus.h> 72 #include <sys/rman.h> 73 #include <sys/sysctl.h> 74 75 #ifdef DDB 76 #include <ddb/ddb.h> 77 #endif 78 79 /* 80 * We use a linked list rather than a bitmap because we need to be able to 81 * represent potentially huge objects (like all of a processor's physical 82 * address space). That is also why the indices are defined to have type 83 * `unsigned long' -- that being the largest integral type in ISO C (1990). 84 * The 1999 version of C allows `long long'; we may need to switch to that 85 * at some point in the future, particularly if we want to support 36-bit 86 * addresses on IA32 hardware. 87 */ 88 struct resource_i { 89 struct resource r_r; 90 TAILQ_ENTRY(resource_i) r_link; 91 LIST_ENTRY(resource_i) r_sharelink; 92 LIST_HEAD(, resource_i) *r_sharehead; 93 u_long r_start; /* index of the first entry in this resource */ 94 u_long r_end; /* index of the last entry (inclusive) */ 95 u_int r_flags; 96 void *r_virtual; /* virtual address of this resource */ 97 struct device *r_dev; /* device which has allocated this resource */ 98 struct rman *r_rm; /* resource manager from whence this came */ 99 int r_rid; /* optional rid for this resource. */ 100 }; 101 102 static int rman_debug = 0; 103 SYSCTL_INT(_debug, OID_AUTO, rman_debug, CTLFLAG_RWTUN, 104 &rman_debug, 0, "rman debug"); 105 106 #define DPRINTF(params) if (rman_debug) printf params 107 108 static MALLOC_DEFINE(M_RMAN, "rman", "Resource manager"); 109 110 struct rman_head rman_head; 111 static struct mtx rman_mtx; /* mutex to protect rman_head */ 112 static int int_rman_release_resource(struct rman *rm, struct resource_i *r); 113 114 static __inline struct resource_i * 115 int_alloc_resource(int malloc_flag) 116 { 117 struct resource_i *r; 118 119 r = malloc(sizeof *r, M_RMAN, malloc_flag | M_ZERO); 120 if (r != NULL) { 121 r->r_r.__r_i = r; 122 } 123 return (r); 124 } 125 126 int 127 rman_init(struct rman *rm) 128 { 129 static int once = 0; 130 131 if (once == 0) { 132 once = 1; 133 TAILQ_INIT(&rman_head); 134 mtx_init(&rman_mtx, "rman head", NULL, MTX_DEF); 135 } 136 137 if (rm->rm_start == 0 && rm->rm_end == 0) 138 rm->rm_end = ~0ul; 139 if (rm->rm_type == RMAN_UNINIT) 140 panic("rman_init"); 141 if (rm->rm_type == RMAN_GAUGE) 142 panic("implement RMAN_GAUGE"); 143 144 TAILQ_INIT(&rm->rm_list); 145 rm->rm_mtx = malloc(sizeof *rm->rm_mtx, M_RMAN, M_NOWAIT | M_ZERO); 146 if (rm->rm_mtx == NULL) 147 return ENOMEM; 148 mtx_init(rm->rm_mtx, "rman", NULL, MTX_DEF); 149 150 mtx_lock(&rman_mtx); 151 TAILQ_INSERT_TAIL(&rman_head, rm, rm_link); 152 mtx_unlock(&rman_mtx); 153 return 0; 154 } 155 156 int 157 rman_manage_region(struct rman *rm, u_long start, u_long end) 158 { 159 struct resource_i *r, *s, *t; 160 int rv = 0; 161 162 DPRINTF(("rman_manage_region: <%s> request: start %#lx, end %#lx\n", 163 rm->rm_descr, start, end)); 164 if (start < rm->rm_start || end > rm->rm_end) 165 return EINVAL; 166 r = int_alloc_resource(M_NOWAIT); 167 if (r == NULL) 168 return ENOMEM; 169 r->r_start = start; 170 r->r_end = end; 171 r->r_rm = rm; 172 173 mtx_lock(rm->rm_mtx); 174 175 /* Skip entries before us. */ 176 TAILQ_FOREACH(s, &rm->rm_list, r_link) { 177 if (s->r_end == ULONG_MAX) 178 break; 179 if (s->r_end + 1 >= r->r_start) 180 break; 181 } 182 183 /* If we ran off the end of the list, insert at the tail. */ 184 if (s == NULL) { 185 TAILQ_INSERT_TAIL(&rm->rm_list, r, r_link); 186 } else { 187 /* Check for any overlap with the current region. */ 188 if (r->r_start <= s->r_end && r->r_end >= s->r_start) { 189 rv = EBUSY; 190 goto out; 191 } 192 193 /* Check for any overlap with the next region. */ 194 t = TAILQ_NEXT(s, r_link); 195 if (t && r->r_start <= t->r_end && r->r_end >= t->r_start) { 196 rv = EBUSY; 197 goto out; 198 } 199 200 /* 201 * See if this region can be merged with the next region. If 202 * not, clear the pointer. 203 */ 204 if (t && (r->r_end + 1 != t->r_start || t->r_flags != 0)) 205 t = NULL; 206 207 /* See if we can merge with the current region. */ 208 if (s->r_end + 1 == r->r_start && s->r_flags == 0) { 209 /* Can we merge all 3 regions? */ 210 if (t != NULL) { 211 s->r_end = t->r_end; 212 TAILQ_REMOVE(&rm->rm_list, t, r_link); 213 free(r, M_RMAN); 214 free(t, M_RMAN); 215 } else { 216 s->r_end = r->r_end; 217 free(r, M_RMAN); 218 } 219 } else if (t != NULL) { 220 /* Can we merge with just the next region? */ 221 t->r_start = r->r_start; 222 free(r, M_RMAN); 223 } else if (s->r_end < r->r_start) { 224 TAILQ_INSERT_AFTER(&rm->rm_list, s, r, r_link); 225 } else { 226 TAILQ_INSERT_BEFORE(s, r, r_link); 227 } 228 } 229 out: 230 mtx_unlock(rm->rm_mtx); 231 return rv; 232 } 233 234 int 235 rman_init_from_resource(struct rman *rm, struct resource *r) 236 { 237 int rv; 238 239 if ((rv = rman_init(rm)) != 0) 240 return (rv); 241 return (rman_manage_region(rm, r->__r_i->r_start, r->__r_i->r_end)); 242 } 243 244 int 245 rman_fini(struct rman *rm) 246 { 247 struct resource_i *r; 248 249 mtx_lock(rm->rm_mtx); 250 TAILQ_FOREACH(r, &rm->rm_list, r_link) { 251 if (r->r_flags & RF_ALLOCATED) { 252 mtx_unlock(rm->rm_mtx); 253 return EBUSY; 254 } 255 } 256 257 /* 258 * There really should only be one of these if we are in this 259 * state and the code is working properly, but it can't hurt. 260 */ 261 while (!TAILQ_EMPTY(&rm->rm_list)) { 262 r = TAILQ_FIRST(&rm->rm_list); 263 TAILQ_REMOVE(&rm->rm_list, r, r_link); 264 free(r, M_RMAN); 265 } 266 mtx_unlock(rm->rm_mtx); 267 mtx_lock(&rman_mtx); 268 TAILQ_REMOVE(&rman_head, rm, rm_link); 269 mtx_unlock(&rman_mtx); 270 mtx_destroy(rm->rm_mtx); 271 free(rm->rm_mtx, M_RMAN); 272 273 return 0; 274 } 275 276 int 277 rman_first_free_region(struct rman *rm, u_long *start, u_long *end) 278 { 279 struct resource_i *r; 280 281 mtx_lock(rm->rm_mtx); 282 TAILQ_FOREACH(r, &rm->rm_list, r_link) { 283 if (!(r->r_flags & RF_ALLOCATED)) { 284 *start = r->r_start; 285 *end = r->r_end; 286 mtx_unlock(rm->rm_mtx); 287 return (0); 288 } 289 } 290 mtx_unlock(rm->rm_mtx); 291 return (ENOENT); 292 } 293 294 int 295 rman_last_free_region(struct rman *rm, u_long *start, u_long *end) 296 { 297 struct resource_i *r; 298 299 mtx_lock(rm->rm_mtx); 300 TAILQ_FOREACH_REVERSE(r, &rm->rm_list, resource_head, r_link) { 301 if (!(r->r_flags & RF_ALLOCATED)) { 302 *start = r->r_start; 303 *end = r->r_end; 304 mtx_unlock(rm->rm_mtx); 305 return (0); 306 } 307 } 308 mtx_unlock(rm->rm_mtx); 309 return (ENOENT); 310 } 311 312 /* Shrink or extend one or both ends of an allocated resource. */ 313 int 314 rman_adjust_resource(struct resource *rr, u_long start, u_long end) 315 { 316 struct resource_i *r, *s, *t, *new; 317 struct rman *rm; 318 319 /* Not supported for shared resources. */ 320 r = rr->__r_i; 321 if (r->r_flags & RF_SHAREABLE) 322 return (EINVAL); 323 324 /* 325 * This does not support wholesale moving of a resource. At 326 * least part of the desired new range must overlap with the 327 * existing resource. 328 */ 329 if (end < r->r_start || r->r_end < start) 330 return (EINVAL); 331 332 /* 333 * Find the two resource regions immediately adjacent to the 334 * allocated resource. 335 */ 336 rm = r->r_rm; 337 mtx_lock(rm->rm_mtx); 338 #ifdef INVARIANTS 339 TAILQ_FOREACH(s, &rm->rm_list, r_link) { 340 if (s == r) 341 break; 342 } 343 if (s == NULL) 344 panic("resource not in list"); 345 #endif 346 s = TAILQ_PREV(r, resource_head, r_link); 347 t = TAILQ_NEXT(r, r_link); 348 KASSERT(s == NULL || s->r_end + 1 == r->r_start, 349 ("prev resource mismatch")); 350 KASSERT(t == NULL || r->r_end + 1 == t->r_start, 351 ("next resource mismatch")); 352 353 /* 354 * See if the changes are permitted. Shrinking is always allowed, 355 * but growing requires sufficient room in the adjacent region. 356 */ 357 if (start < r->r_start && (s == NULL || (s->r_flags & RF_ALLOCATED) || 358 s->r_start > start)) { 359 mtx_unlock(rm->rm_mtx); 360 return (EBUSY); 361 } 362 if (end > r->r_end && (t == NULL || (t->r_flags & RF_ALLOCATED) || 363 t->r_end < end)) { 364 mtx_unlock(rm->rm_mtx); 365 return (EBUSY); 366 } 367 368 /* 369 * While holding the lock, grow either end of the resource as 370 * needed and shrink either end if the shrinking does not require 371 * allocating a new resource. We can safely drop the lock and then 372 * insert a new range to handle the shrinking case afterwards. 373 */ 374 if (start < r->r_start || 375 (start > r->r_start && s != NULL && !(s->r_flags & RF_ALLOCATED))) { 376 KASSERT(s->r_flags == 0, ("prev is busy")); 377 r->r_start = start; 378 if (s->r_start == start) { 379 TAILQ_REMOVE(&rm->rm_list, s, r_link); 380 free(s, M_RMAN); 381 } else 382 s->r_end = start - 1; 383 } 384 if (end > r->r_end || 385 (end < r->r_end && t != NULL && !(t->r_flags & RF_ALLOCATED))) { 386 KASSERT(t->r_flags == 0, ("next is busy")); 387 r->r_end = end; 388 if (t->r_end == end) { 389 TAILQ_REMOVE(&rm->rm_list, t, r_link); 390 free(t, M_RMAN); 391 } else 392 t->r_start = end + 1; 393 } 394 mtx_unlock(rm->rm_mtx); 395 396 /* 397 * Handle the shrinking cases that require allocating a new 398 * resource to hold the newly-free region. We have to recheck 399 * if we still need this new region after acquiring the lock. 400 */ 401 if (start > r->r_start) { 402 new = int_alloc_resource(M_WAITOK); 403 new->r_start = r->r_start; 404 new->r_end = start - 1; 405 new->r_rm = rm; 406 mtx_lock(rm->rm_mtx); 407 r->r_start = start; 408 s = TAILQ_PREV(r, resource_head, r_link); 409 if (s != NULL && !(s->r_flags & RF_ALLOCATED)) { 410 s->r_end = start - 1; 411 free(new, M_RMAN); 412 } else 413 TAILQ_INSERT_BEFORE(r, new, r_link); 414 mtx_unlock(rm->rm_mtx); 415 } 416 if (end < r->r_end) { 417 new = int_alloc_resource(M_WAITOK); 418 new->r_start = end + 1; 419 new->r_end = r->r_end; 420 new->r_rm = rm; 421 mtx_lock(rm->rm_mtx); 422 r->r_end = end; 423 t = TAILQ_NEXT(r, r_link); 424 if (t != NULL && !(t->r_flags & RF_ALLOCATED)) { 425 t->r_start = end + 1; 426 free(new, M_RMAN); 427 } else 428 TAILQ_INSERT_AFTER(&rm->rm_list, r, new, r_link); 429 mtx_unlock(rm->rm_mtx); 430 } 431 return (0); 432 } 433 434 #define SHARE_TYPE(f) (f & (RF_SHAREABLE | RF_PREFETCHABLE)) 435 436 struct resource * 437 rman_reserve_resource_bound(struct rman *rm, u_long start, u_long end, 438 u_long count, u_long bound, u_int flags, 439 struct device *dev) 440 { 441 u_int new_rflags; 442 struct resource_i *r, *s, *rv; 443 u_long rstart, rend, amask, bmask; 444 445 rv = NULL; 446 447 DPRINTF(("rman_reserve_resource_bound: <%s> request: [%#lx, %#lx], " 448 "length %#lx, flags %u, device %s\n", rm->rm_descr, start, end, 449 count, flags, 450 dev == NULL ? "<null>" : device_get_nameunit(dev))); 451 KASSERT((flags & RF_FIRSTSHARE) == 0, 452 ("invalid flags %#x", flags)); 453 new_rflags = (flags & ~RF_FIRSTSHARE) | RF_ALLOCATED; 454 455 mtx_lock(rm->rm_mtx); 456 457 for (r = TAILQ_FIRST(&rm->rm_list); 458 r && r->r_end < start + count - 1; 459 r = TAILQ_NEXT(r, r_link)) 460 ; 461 462 if (r == NULL) { 463 DPRINTF(("could not find a region\n")); 464 goto out; 465 } 466 467 amask = (1ul << RF_ALIGNMENT(flags)) - 1; 468 KASSERT(start <= ULONG_MAX - amask, 469 ("start (%#lx) + amask (%#lx) would wrap around", start, amask)); 470 471 /* If bound is 0, bmask will also be 0 */ 472 bmask = ~(bound - 1); 473 /* 474 * First try to find an acceptable totally-unshared region. 475 */ 476 for (s = r; s; s = TAILQ_NEXT(s, r_link)) { 477 DPRINTF(("considering [%#lx, %#lx]\n", s->r_start, s->r_end)); 478 /* 479 * The resource list is sorted, so there is no point in 480 * searching further once r_start is too large. 481 */ 482 if (s->r_start > end - (count - 1)) { 483 DPRINTF(("s->r_start (%#lx) + count - 1> end (%#lx)\n", 484 s->r_start, end)); 485 break; 486 } 487 if (s->r_start > ULONG_MAX - amask) { 488 DPRINTF(("s->r_start (%#lx) + amask (%#lx) too large\n", 489 s->r_start, amask)); 490 break; 491 } 492 if (s->r_flags & RF_ALLOCATED) { 493 DPRINTF(("region is allocated\n")); 494 continue; 495 } 496 rstart = ulmax(s->r_start, start); 497 /* 498 * Try to find a region by adjusting to boundary and alignment 499 * until both conditions are satisfied. This is not an optimal 500 * algorithm, but in most cases it isn't really bad, either. 501 */ 502 do { 503 rstart = (rstart + amask) & ~amask; 504 if (((rstart ^ (rstart + count - 1)) & bmask) != 0) 505 rstart += bound - (rstart & ~bmask); 506 } while ((rstart & amask) != 0 && rstart < end && 507 rstart < s->r_end); 508 rend = ulmin(s->r_end, ulmax(rstart + count - 1, end)); 509 if (rstart > rend) { 510 DPRINTF(("adjusted start exceeds end\n")); 511 continue; 512 } 513 DPRINTF(("truncated region: [%#lx, %#lx]; size %#lx (requested %#lx)\n", 514 rstart, rend, (rend - rstart + 1), count)); 515 516 if ((rend - rstart + 1) >= count) { 517 DPRINTF(("candidate region: [%#lx, %#lx], size %#lx\n", 518 rstart, rend, (rend - rstart + 1))); 519 if ((s->r_end - s->r_start + 1) == count) { 520 DPRINTF(("candidate region is entire chunk\n")); 521 rv = s; 522 rv->r_flags = new_rflags; 523 rv->r_dev = dev; 524 goto out; 525 } 526 527 /* 528 * If s->r_start < rstart and 529 * s->r_end > rstart + count - 1, then 530 * we need to split the region into three pieces 531 * (the middle one will get returned to the user). 532 * Otherwise, we are allocating at either the 533 * beginning or the end of s, so we only need to 534 * split it in two. The first case requires 535 * two new allocations; the second requires but one. 536 */ 537 rv = int_alloc_resource(M_NOWAIT); 538 if (rv == NULL) 539 goto out; 540 rv->r_start = rstart; 541 rv->r_end = rstart + count - 1; 542 rv->r_flags = new_rflags; 543 rv->r_dev = dev; 544 rv->r_rm = rm; 545 546 if (s->r_start < rv->r_start && s->r_end > rv->r_end) { 547 DPRINTF(("splitting region in three parts: " 548 "[%#lx, %#lx]; [%#lx, %#lx]; [%#lx, %#lx]\n", 549 s->r_start, rv->r_start - 1, 550 rv->r_start, rv->r_end, 551 rv->r_end + 1, s->r_end)); 552 /* 553 * We are allocating in the middle. 554 */ 555 r = int_alloc_resource(M_NOWAIT); 556 if (r == NULL) { 557 free(rv, M_RMAN); 558 rv = NULL; 559 goto out; 560 } 561 r->r_start = rv->r_end + 1; 562 r->r_end = s->r_end; 563 r->r_flags = s->r_flags; 564 r->r_rm = rm; 565 s->r_end = rv->r_start - 1; 566 TAILQ_INSERT_AFTER(&rm->rm_list, s, rv, 567 r_link); 568 TAILQ_INSERT_AFTER(&rm->rm_list, rv, r, 569 r_link); 570 } else if (s->r_start == rv->r_start) { 571 DPRINTF(("allocating from the beginning\n")); 572 /* 573 * We are allocating at the beginning. 574 */ 575 s->r_start = rv->r_end + 1; 576 TAILQ_INSERT_BEFORE(s, rv, r_link); 577 } else { 578 DPRINTF(("allocating at the end\n")); 579 /* 580 * We are allocating at the end. 581 */ 582 s->r_end = rv->r_start - 1; 583 TAILQ_INSERT_AFTER(&rm->rm_list, s, rv, 584 r_link); 585 } 586 goto out; 587 } 588 } 589 590 /* 591 * Now find an acceptable shared region, if the client's requirements 592 * allow sharing. By our implementation restriction, a candidate 593 * region must match exactly by both size and sharing type in order 594 * to be considered compatible with the client's request. (The 595 * former restriction could probably be lifted without too much 596 * additional work, but this does not seem warranted.) 597 */ 598 DPRINTF(("no unshared regions found\n")); 599 if ((flags & RF_SHAREABLE) == 0) 600 goto out; 601 602 for (s = r; s && s->r_end <= end; s = TAILQ_NEXT(s, r_link)) { 603 if (SHARE_TYPE(s->r_flags) == SHARE_TYPE(flags) && 604 s->r_start >= start && 605 (s->r_end - s->r_start + 1) == count && 606 (s->r_start & amask) == 0 && 607 ((s->r_start ^ s->r_end) & bmask) == 0) { 608 rv = int_alloc_resource(M_NOWAIT); 609 if (rv == NULL) 610 goto out; 611 rv->r_start = s->r_start; 612 rv->r_end = s->r_end; 613 rv->r_flags = new_rflags; 614 rv->r_dev = dev; 615 rv->r_rm = rm; 616 if (s->r_sharehead == NULL) { 617 s->r_sharehead = malloc(sizeof *s->r_sharehead, 618 M_RMAN, M_NOWAIT | M_ZERO); 619 if (s->r_sharehead == NULL) { 620 free(rv, M_RMAN); 621 rv = NULL; 622 goto out; 623 } 624 LIST_INIT(s->r_sharehead); 625 LIST_INSERT_HEAD(s->r_sharehead, s, 626 r_sharelink); 627 s->r_flags |= RF_FIRSTSHARE; 628 } 629 rv->r_sharehead = s->r_sharehead; 630 LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink); 631 goto out; 632 } 633 } 634 /* 635 * We couldn't find anything. 636 */ 637 638 out: 639 mtx_unlock(rm->rm_mtx); 640 return (rv == NULL ? NULL : &rv->r_r); 641 } 642 643 struct resource * 644 rman_reserve_resource(struct rman *rm, u_long start, u_long end, u_long count, 645 u_int flags, struct device *dev) 646 { 647 648 return (rman_reserve_resource_bound(rm, start, end, count, 0, flags, 649 dev)); 650 } 651 652 int 653 rman_activate_resource(struct resource *re) 654 { 655 struct resource_i *r; 656 struct rman *rm; 657 658 r = re->__r_i; 659 rm = r->r_rm; 660 mtx_lock(rm->rm_mtx); 661 r->r_flags |= RF_ACTIVE; 662 mtx_unlock(rm->rm_mtx); 663 return 0; 664 } 665 666 int 667 rman_deactivate_resource(struct resource *r) 668 { 669 struct rman *rm; 670 671 rm = r->__r_i->r_rm; 672 mtx_lock(rm->rm_mtx); 673 r->__r_i->r_flags &= ~RF_ACTIVE; 674 mtx_unlock(rm->rm_mtx); 675 return 0; 676 } 677 678 static int 679 int_rman_release_resource(struct rman *rm, struct resource_i *r) 680 { 681 struct resource_i *s, *t; 682 683 if (r->r_flags & RF_ACTIVE) 684 r->r_flags &= ~RF_ACTIVE; 685 686 /* 687 * Check for a sharing list first. If there is one, then we don't 688 * have to think as hard. 689 */ 690 if (r->r_sharehead) { 691 /* 692 * If a sharing list exists, then we know there are at 693 * least two sharers. 694 * 695 * If we are in the main circleq, appoint someone else. 696 */ 697 LIST_REMOVE(r, r_sharelink); 698 s = LIST_FIRST(r->r_sharehead); 699 if (r->r_flags & RF_FIRSTSHARE) { 700 s->r_flags |= RF_FIRSTSHARE; 701 TAILQ_INSERT_BEFORE(r, s, r_link); 702 TAILQ_REMOVE(&rm->rm_list, r, r_link); 703 } 704 705 /* 706 * Make sure that the sharing list goes away completely 707 * if the resource is no longer being shared at all. 708 */ 709 if (LIST_NEXT(s, r_sharelink) == NULL) { 710 free(s->r_sharehead, M_RMAN); 711 s->r_sharehead = NULL; 712 s->r_flags &= ~RF_FIRSTSHARE; 713 } 714 goto out; 715 } 716 717 /* 718 * Look at the adjacent resources in the list and see if our 719 * segment can be merged with any of them. If either of the 720 * resources is allocated or is not exactly adjacent then they 721 * cannot be merged with our segment. 722 */ 723 s = TAILQ_PREV(r, resource_head, r_link); 724 if (s != NULL && ((s->r_flags & RF_ALLOCATED) != 0 || 725 s->r_end + 1 != r->r_start)) 726 s = NULL; 727 t = TAILQ_NEXT(r, r_link); 728 if (t != NULL && ((t->r_flags & RF_ALLOCATED) != 0 || 729 r->r_end + 1 != t->r_start)) 730 t = NULL; 731 732 if (s != NULL && t != NULL) { 733 /* 734 * Merge all three segments. 735 */ 736 s->r_end = t->r_end; 737 TAILQ_REMOVE(&rm->rm_list, r, r_link); 738 TAILQ_REMOVE(&rm->rm_list, t, r_link); 739 free(t, M_RMAN); 740 } else if (s != NULL) { 741 /* 742 * Merge previous segment with ours. 743 */ 744 s->r_end = r->r_end; 745 TAILQ_REMOVE(&rm->rm_list, r, r_link); 746 } else if (t != NULL) { 747 /* 748 * Merge next segment with ours. 749 */ 750 t->r_start = r->r_start; 751 TAILQ_REMOVE(&rm->rm_list, r, r_link); 752 } else { 753 /* 754 * At this point, we know there is nothing we 755 * can potentially merge with, because on each 756 * side, there is either nothing there or what is 757 * there is still allocated. In that case, we don't 758 * want to remove r from the list; we simply want to 759 * change it to an unallocated region and return 760 * without freeing anything. 761 */ 762 r->r_flags &= ~RF_ALLOCATED; 763 r->r_dev = NULL; 764 return 0; 765 } 766 767 out: 768 free(r, M_RMAN); 769 return 0; 770 } 771 772 int 773 rman_release_resource(struct resource *re) 774 { 775 int rv; 776 struct resource_i *r; 777 struct rman *rm; 778 779 r = re->__r_i; 780 rm = r->r_rm; 781 mtx_lock(rm->rm_mtx); 782 rv = int_rman_release_resource(rm, r); 783 mtx_unlock(rm->rm_mtx); 784 return (rv); 785 } 786 787 uint32_t 788 rman_make_alignment_flags(uint32_t size) 789 { 790 int i; 791 792 /* 793 * Find the hightest bit set, and add one if more than one bit 794 * set. We're effectively computing the ceil(log2(size)) here. 795 */ 796 for (i = 31; i > 0; i--) 797 if ((1 << i) & size) 798 break; 799 if (~(1 << i) & size) 800 i++; 801 802 return(RF_ALIGNMENT_LOG2(i)); 803 } 804 805 void 806 rman_set_start(struct resource *r, u_long start) 807 { 808 809 r->__r_i->r_start = start; 810 } 811 812 u_long 813 rman_get_start(struct resource *r) 814 { 815 816 return (r->__r_i->r_start); 817 } 818 819 void 820 rman_set_end(struct resource *r, u_long end) 821 { 822 823 r->__r_i->r_end = end; 824 } 825 826 u_long 827 rman_get_end(struct resource *r) 828 { 829 830 return (r->__r_i->r_end); 831 } 832 833 u_long 834 rman_get_size(struct resource *r) 835 { 836 837 return (r->__r_i->r_end - r->__r_i->r_start + 1); 838 } 839 840 u_int 841 rman_get_flags(struct resource *r) 842 { 843 844 return (r->__r_i->r_flags); 845 } 846 847 void 848 rman_set_virtual(struct resource *r, void *v) 849 { 850 851 r->__r_i->r_virtual = v; 852 } 853 854 void * 855 rman_get_virtual(struct resource *r) 856 { 857 858 return (r->__r_i->r_virtual); 859 } 860 861 void 862 rman_set_bustag(struct resource *r, bus_space_tag_t t) 863 { 864 865 r->r_bustag = t; 866 } 867 868 bus_space_tag_t 869 rman_get_bustag(struct resource *r) 870 { 871 872 return (r->r_bustag); 873 } 874 875 void 876 rman_set_bushandle(struct resource *r, bus_space_handle_t h) 877 { 878 879 r->r_bushandle = h; 880 } 881 882 bus_space_handle_t 883 rman_get_bushandle(struct resource *r) 884 { 885 886 return (r->r_bushandle); 887 } 888 889 void 890 rman_set_rid(struct resource *r, int rid) 891 { 892 893 r->__r_i->r_rid = rid; 894 } 895 896 int 897 rman_get_rid(struct resource *r) 898 { 899 900 return (r->__r_i->r_rid); 901 } 902 903 void 904 rman_set_device(struct resource *r, struct device *dev) 905 { 906 907 r->__r_i->r_dev = dev; 908 } 909 910 struct device * 911 rman_get_device(struct resource *r) 912 { 913 914 return (r->__r_i->r_dev); 915 } 916 917 int 918 rman_is_region_manager(struct resource *r, struct rman *rm) 919 { 920 921 return (r->__r_i->r_rm == rm); 922 } 923 924 /* 925 * Sysctl interface for scanning the resource lists. 926 * 927 * We take two input parameters; the index into the list of resource 928 * managers, and the resource offset into the list. 929 */ 930 static int 931 sysctl_rman(SYSCTL_HANDLER_ARGS) 932 { 933 int *name = (int *)arg1; 934 u_int namelen = arg2; 935 int rman_idx, res_idx; 936 struct rman *rm; 937 struct resource_i *res; 938 struct resource_i *sres; 939 struct u_rman urm; 940 struct u_resource ures; 941 int error; 942 943 if (namelen != 3) 944 return (EINVAL); 945 946 if (bus_data_generation_check(name[0])) 947 return (EINVAL); 948 rman_idx = name[1]; 949 res_idx = name[2]; 950 951 /* 952 * Find the indexed resource manager 953 */ 954 mtx_lock(&rman_mtx); 955 TAILQ_FOREACH(rm, &rman_head, rm_link) { 956 if (rman_idx-- == 0) 957 break; 958 } 959 mtx_unlock(&rman_mtx); 960 if (rm == NULL) 961 return (ENOENT); 962 963 /* 964 * If the resource index is -1, we want details on the 965 * resource manager. 966 */ 967 if (res_idx == -1) { 968 bzero(&urm, sizeof(urm)); 969 urm.rm_handle = (uintptr_t)rm; 970 if (rm->rm_descr != NULL) 971 strlcpy(urm.rm_descr, rm->rm_descr, RM_TEXTLEN); 972 urm.rm_start = rm->rm_start; 973 urm.rm_size = rm->rm_end - rm->rm_start + 1; 974 urm.rm_type = rm->rm_type; 975 976 error = SYSCTL_OUT(req, &urm, sizeof(urm)); 977 return (error); 978 } 979 980 /* 981 * Find the indexed resource and return it. 982 */ 983 mtx_lock(rm->rm_mtx); 984 TAILQ_FOREACH(res, &rm->rm_list, r_link) { 985 if (res->r_sharehead != NULL) { 986 LIST_FOREACH(sres, res->r_sharehead, r_sharelink) 987 if (res_idx-- == 0) { 988 res = sres; 989 goto found; 990 } 991 } 992 else if (res_idx-- == 0) 993 goto found; 994 } 995 mtx_unlock(rm->rm_mtx); 996 return (ENOENT); 997 998 found: 999 bzero(&ures, sizeof(ures)); 1000 ures.r_handle = (uintptr_t)res; 1001 ures.r_parent = (uintptr_t)res->r_rm; 1002 ures.r_device = (uintptr_t)res->r_dev; 1003 if (res->r_dev != NULL) { 1004 if (device_get_name(res->r_dev) != NULL) { 1005 snprintf(ures.r_devname, RM_TEXTLEN, 1006 "%s%d", 1007 device_get_name(res->r_dev), 1008 device_get_unit(res->r_dev)); 1009 } else { 1010 strlcpy(ures.r_devname, "nomatch", 1011 RM_TEXTLEN); 1012 } 1013 } else { 1014 ures.r_devname[0] = '\0'; 1015 } 1016 ures.r_start = res->r_start; 1017 ures.r_size = res->r_end - res->r_start + 1; 1018 ures.r_flags = res->r_flags; 1019 1020 mtx_unlock(rm->rm_mtx); 1021 error = SYSCTL_OUT(req, &ures, sizeof(ures)); 1022 return (error); 1023 } 1024 1025 static SYSCTL_NODE(_hw_bus, OID_AUTO, rman, CTLFLAG_RD, sysctl_rman, 1026 "kernel resource manager"); 1027 1028 #ifdef DDB 1029 static void 1030 dump_rman_header(struct rman *rm) 1031 { 1032 1033 if (db_pager_quit) 1034 return; 1035 db_printf("rman %p: %s (0x%lx-0x%lx full range)\n", 1036 rm, rm->rm_descr, rm->rm_start, rm->rm_end); 1037 } 1038 1039 static void 1040 dump_rman(struct rman *rm) 1041 { 1042 struct resource_i *r; 1043 const char *devname; 1044 1045 if (db_pager_quit) 1046 return; 1047 TAILQ_FOREACH(r, &rm->rm_list, r_link) { 1048 if (r->r_dev != NULL) { 1049 devname = device_get_nameunit(r->r_dev); 1050 if (devname == NULL) 1051 devname = "nomatch"; 1052 } else 1053 devname = NULL; 1054 db_printf(" 0x%lx-0x%lx ", r->r_start, r->r_end); 1055 if (devname != NULL) 1056 db_printf("(%s)\n", devname); 1057 else 1058 db_printf("----\n"); 1059 if (db_pager_quit) 1060 return; 1061 } 1062 } 1063 1064 DB_SHOW_COMMAND(rman, db_show_rman) 1065 { 1066 1067 if (have_addr) { 1068 dump_rman_header((struct rman *)addr); 1069 dump_rman((struct rman *)addr); 1070 } 1071 } 1072 1073 DB_SHOW_COMMAND(rmans, db_show_rmans) 1074 { 1075 struct rman *rm; 1076 1077 TAILQ_FOREACH(rm, &rman_head, rm_link) { 1078 dump_rman_header(rm); 1079 } 1080 } 1081 1082 DB_SHOW_ALL_COMMAND(rman, db_show_all_rman) 1083 { 1084 struct rman *rm; 1085 1086 TAILQ_FOREACH(rm, &rman_head, rm_link) { 1087 dump_rman_header(rm); 1088 dump_rman(rm); 1089 } 1090 } 1091 DB_SHOW_ALIAS(allrman, db_show_all_rman); 1092 #endif 1093