1 /*- 2 * Copyright 1998 Massachusetts Institute of Technology 3 * 4 * Permission to use, copy, modify, and distribute this software and 5 * its documentation for any purpose and without fee is hereby 6 * granted, provided that both the above copyright notice and this 7 * permission notice appear in all copies, that both the above 8 * copyright notice and this permission notice appear in all 9 * supporting documentation, and that the name of M.I.T. not be used 10 * in advertising or publicity pertaining to distribution of the 11 * software without specific, written prior permission. M.I.T. makes 12 * no representations about the suitability of this software for any 13 * purpose. It is provided "as is" without express or implied 14 * warranty. 15 * 16 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS 17 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE, 18 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT 20 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF 23 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 25 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 26 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 /* 31 * The kernel resource manager. This code is responsible for keeping track 32 * of hardware resources which are apportioned out to various drivers. 33 * It does not actually assign those resources, and it is not expected 34 * that end-device drivers will call into this code directly. Rather, 35 * the code which implements the buses that those devices are attached to, 36 * and the code which manages CPU resources, will call this code, and the 37 * end-device drivers will make upcalls to that code to actually perform 38 * the allocation. 39 * 40 * There are two sorts of resources managed by this code. The first is 41 * the more familiar array (RMAN_ARRAY) type; resources in this class 42 * consist of a sequence of individually-allocatable objects which have 43 * been numbered in some well-defined order. Most of the resources 44 * are of this type, as it is the most familiar. The second type is 45 * called a gauge (RMAN_GAUGE), and models fungible resources (i.e., 46 * resources in which each instance is indistinguishable from every 47 * other instance). The principal anticipated application of gauges 48 * is in the context of power consumption, where a bus may have a specific 49 * power budget which all attached devices share. RMAN_GAUGE is not 50 * implemented yet. 51 * 52 * For array resources, we make one simplifying assumption: two clients 53 * sharing the same resource must use the same range of indices. That 54 * is to say, sharing of overlapping-but-not-identical regions is not 55 * permitted. 56 */ 57 58 #include "opt_ddb.h" 59 60 #include <sys/cdefs.h> 61 __FBSDID("$FreeBSD$"); 62 63 #include <sys/param.h> 64 #include <sys/systm.h> 65 #include <sys/kernel.h> 66 #include <sys/limits.h> 67 #include <sys/lock.h> 68 #include <sys/malloc.h> 69 #include <sys/mutex.h> 70 #include <sys/bus.h> /* XXX debugging */ 71 #include <machine/bus.h> 72 #include <sys/rman.h> 73 #include <sys/sysctl.h> 74 75 #ifdef DDB 76 #include <ddb/ddb.h> 77 #endif 78 79 /* 80 * We use a linked list rather than a bitmap because we need to be able to 81 * represent potentially huge objects (like all of a processor's physical 82 * address space). That is also why the indices are defined to have type 83 * `unsigned long' -- that being the largest integral type in ISO C (1990). 84 * The 1999 version of C allows `long long'; we may need to switch to that 85 * at some point in the future, particularly if we want to support 36-bit 86 * addresses on IA32 hardware. 87 */ 88 struct resource_i { 89 struct resource r_r; 90 TAILQ_ENTRY(resource_i) r_link; 91 LIST_ENTRY(resource_i) r_sharelink; 92 LIST_HEAD(, resource_i) *r_sharehead; 93 rman_res_t r_start; /* index of the first entry in this resource */ 94 rman_res_t r_end; /* index of the last entry (inclusive) */ 95 u_int r_flags; 96 void *r_virtual; /* virtual address of this resource */ 97 void *r_irq_cookie; /* interrupt cookie for this (interrupt) resource */ 98 device_t r_dev; /* device which has allocated this resource */ 99 struct rman *r_rm; /* resource manager from whence this came */ 100 int r_rid; /* optional rid for this resource. */ 101 }; 102 103 static int rman_debug = 0; 104 SYSCTL_INT(_debug, OID_AUTO, rman_debug, CTLFLAG_RWTUN, 105 &rman_debug, 0, "rman debug"); 106 107 #define DPRINTF(params) if (rman_debug) printf params 108 109 static MALLOC_DEFINE(M_RMAN, "rman", "Resource manager"); 110 111 struct rman_head rman_head; 112 static struct mtx rman_mtx; /* mutex to protect rman_head */ 113 static int int_rman_release_resource(struct rman *rm, struct resource_i *r); 114 115 static __inline struct resource_i * 116 int_alloc_resource(int malloc_flag) 117 { 118 struct resource_i *r; 119 120 r = malloc(sizeof *r, M_RMAN, malloc_flag | M_ZERO); 121 if (r != NULL) { 122 r->r_r.__r_i = r; 123 } 124 return (r); 125 } 126 127 int 128 rman_init(struct rman *rm) 129 { 130 static int once = 0; 131 132 if (once == 0) { 133 once = 1; 134 TAILQ_INIT(&rman_head); 135 mtx_init(&rman_mtx, "rman head", NULL, MTX_DEF); 136 } 137 138 if (rm->rm_start == 0 && rm->rm_end == 0) 139 rm->rm_end = ~0; 140 if (rm->rm_type == RMAN_UNINIT) 141 panic("rman_init"); 142 if (rm->rm_type == RMAN_GAUGE) 143 panic("implement RMAN_GAUGE"); 144 145 TAILQ_INIT(&rm->rm_list); 146 rm->rm_mtx = malloc(sizeof *rm->rm_mtx, M_RMAN, M_NOWAIT | M_ZERO); 147 if (rm->rm_mtx == NULL) 148 return ENOMEM; 149 mtx_init(rm->rm_mtx, "rman", NULL, MTX_DEF); 150 151 mtx_lock(&rman_mtx); 152 TAILQ_INSERT_TAIL(&rman_head, rm, rm_link); 153 mtx_unlock(&rman_mtx); 154 return 0; 155 } 156 157 int 158 rman_manage_region(struct rman *rm, rman_res_t start, rman_res_t end) 159 { 160 struct resource_i *r, *s, *t; 161 int rv = 0; 162 163 DPRINTF(("rman_manage_region: <%s> request: start %#jx, end %#jx\n", 164 rm->rm_descr, start, end)); 165 if (start < rm->rm_start || end > rm->rm_end) 166 return EINVAL; 167 r = int_alloc_resource(M_NOWAIT); 168 if (r == NULL) 169 return ENOMEM; 170 r->r_start = start; 171 r->r_end = end; 172 r->r_rm = rm; 173 174 mtx_lock(rm->rm_mtx); 175 176 /* Skip entries before us. */ 177 TAILQ_FOREACH(s, &rm->rm_list, r_link) { 178 if (s->r_end == ~0) 179 break; 180 if (s->r_end + 1 >= r->r_start) 181 break; 182 } 183 184 /* If we ran off the end of the list, insert at the tail. */ 185 if (s == NULL) { 186 TAILQ_INSERT_TAIL(&rm->rm_list, r, r_link); 187 } else { 188 /* Check for any overlap with the current region. */ 189 if (r->r_start <= s->r_end && r->r_end >= s->r_start) { 190 rv = EBUSY; 191 goto out; 192 } 193 194 /* Check for any overlap with the next region. */ 195 t = TAILQ_NEXT(s, r_link); 196 if (t && r->r_start <= t->r_end && r->r_end >= t->r_start) { 197 rv = EBUSY; 198 goto out; 199 } 200 201 /* 202 * See if this region can be merged with the next region. If 203 * not, clear the pointer. 204 */ 205 if (t && (r->r_end + 1 != t->r_start || t->r_flags != 0)) 206 t = NULL; 207 208 /* See if we can merge with the current region. */ 209 if (s->r_end + 1 == r->r_start && s->r_flags == 0) { 210 /* Can we merge all 3 regions? */ 211 if (t != NULL) { 212 s->r_end = t->r_end; 213 TAILQ_REMOVE(&rm->rm_list, t, r_link); 214 free(r, M_RMAN); 215 free(t, M_RMAN); 216 } else { 217 s->r_end = r->r_end; 218 free(r, M_RMAN); 219 } 220 } else if (t != NULL) { 221 /* Can we merge with just the next region? */ 222 t->r_start = r->r_start; 223 free(r, M_RMAN); 224 } else if (s->r_end < r->r_start) { 225 TAILQ_INSERT_AFTER(&rm->rm_list, s, r, r_link); 226 } else { 227 TAILQ_INSERT_BEFORE(s, r, r_link); 228 } 229 } 230 out: 231 mtx_unlock(rm->rm_mtx); 232 return rv; 233 } 234 235 int 236 rman_init_from_resource(struct rman *rm, struct resource *r) 237 { 238 int rv; 239 240 if ((rv = rman_init(rm)) != 0) 241 return (rv); 242 return (rman_manage_region(rm, r->__r_i->r_start, r->__r_i->r_end)); 243 } 244 245 int 246 rman_fini(struct rman *rm) 247 { 248 struct resource_i *r; 249 250 mtx_lock(rm->rm_mtx); 251 TAILQ_FOREACH(r, &rm->rm_list, r_link) { 252 if (r->r_flags & RF_ALLOCATED) { 253 mtx_unlock(rm->rm_mtx); 254 return EBUSY; 255 } 256 } 257 258 /* 259 * There really should only be one of these if we are in this 260 * state and the code is working properly, but it can't hurt. 261 */ 262 while (!TAILQ_EMPTY(&rm->rm_list)) { 263 r = TAILQ_FIRST(&rm->rm_list); 264 TAILQ_REMOVE(&rm->rm_list, r, r_link); 265 free(r, M_RMAN); 266 } 267 mtx_unlock(rm->rm_mtx); 268 mtx_lock(&rman_mtx); 269 TAILQ_REMOVE(&rman_head, rm, rm_link); 270 mtx_unlock(&rman_mtx); 271 mtx_destroy(rm->rm_mtx); 272 free(rm->rm_mtx, M_RMAN); 273 274 return 0; 275 } 276 277 int 278 rman_first_free_region(struct rman *rm, rman_res_t *start, rman_res_t *end) 279 { 280 struct resource_i *r; 281 282 mtx_lock(rm->rm_mtx); 283 TAILQ_FOREACH(r, &rm->rm_list, r_link) { 284 if (!(r->r_flags & RF_ALLOCATED)) { 285 *start = r->r_start; 286 *end = r->r_end; 287 mtx_unlock(rm->rm_mtx); 288 return (0); 289 } 290 } 291 mtx_unlock(rm->rm_mtx); 292 return (ENOENT); 293 } 294 295 int 296 rman_last_free_region(struct rman *rm, rman_res_t *start, rman_res_t *end) 297 { 298 struct resource_i *r; 299 300 mtx_lock(rm->rm_mtx); 301 TAILQ_FOREACH_REVERSE(r, &rm->rm_list, resource_head, r_link) { 302 if (!(r->r_flags & RF_ALLOCATED)) { 303 *start = r->r_start; 304 *end = r->r_end; 305 mtx_unlock(rm->rm_mtx); 306 return (0); 307 } 308 } 309 mtx_unlock(rm->rm_mtx); 310 return (ENOENT); 311 } 312 313 /* Shrink or extend one or both ends of an allocated resource. */ 314 int 315 rman_adjust_resource(struct resource *rr, rman_res_t start, rman_res_t end) 316 { 317 struct resource_i *r, *s, *t, *new; 318 struct rman *rm; 319 320 /* Not supported for shared resources. */ 321 r = rr->__r_i; 322 if (r->r_flags & RF_SHAREABLE) 323 return (EINVAL); 324 325 /* 326 * This does not support wholesale moving of a resource. At 327 * least part of the desired new range must overlap with the 328 * existing resource. 329 */ 330 if (end < r->r_start || r->r_end < start) 331 return (EINVAL); 332 333 /* 334 * Find the two resource regions immediately adjacent to the 335 * allocated resource. 336 */ 337 rm = r->r_rm; 338 mtx_lock(rm->rm_mtx); 339 #ifdef INVARIANTS 340 TAILQ_FOREACH(s, &rm->rm_list, r_link) { 341 if (s == r) 342 break; 343 } 344 if (s == NULL) 345 panic("resource not in list"); 346 #endif 347 s = TAILQ_PREV(r, resource_head, r_link); 348 t = TAILQ_NEXT(r, r_link); 349 KASSERT(s == NULL || s->r_end + 1 == r->r_start, 350 ("prev resource mismatch")); 351 KASSERT(t == NULL || r->r_end + 1 == t->r_start, 352 ("next resource mismatch")); 353 354 /* 355 * See if the changes are permitted. Shrinking is always allowed, 356 * but growing requires sufficient room in the adjacent region. 357 */ 358 if (start < r->r_start && (s == NULL || (s->r_flags & RF_ALLOCATED) || 359 s->r_start > start)) { 360 mtx_unlock(rm->rm_mtx); 361 return (EBUSY); 362 } 363 if (end > r->r_end && (t == NULL || (t->r_flags & RF_ALLOCATED) || 364 t->r_end < end)) { 365 mtx_unlock(rm->rm_mtx); 366 return (EBUSY); 367 } 368 369 /* 370 * While holding the lock, grow either end of the resource as 371 * needed and shrink either end if the shrinking does not require 372 * allocating a new resource. We can safely drop the lock and then 373 * insert a new range to handle the shrinking case afterwards. 374 */ 375 if (start < r->r_start || 376 (start > r->r_start && s != NULL && !(s->r_flags & RF_ALLOCATED))) { 377 KASSERT(s->r_flags == 0, ("prev is busy")); 378 r->r_start = start; 379 if (s->r_start == start) { 380 TAILQ_REMOVE(&rm->rm_list, s, r_link); 381 free(s, M_RMAN); 382 } else 383 s->r_end = start - 1; 384 } 385 if (end > r->r_end || 386 (end < r->r_end && t != NULL && !(t->r_flags & RF_ALLOCATED))) { 387 KASSERT(t->r_flags == 0, ("next is busy")); 388 r->r_end = end; 389 if (t->r_end == end) { 390 TAILQ_REMOVE(&rm->rm_list, t, r_link); 391 free(t, M_RMAN); 392 } else 393 t->r_start = end + 1; 394 } 395 mtx_unlock(rm->rm_mtx); 396 397 /* 398 * Handle the shrinking cases that require allocating a new 399 * resource to hold the newly-free region. We have to recheck 400 * if we still need this new region after acquiring the lock. 401 */ 402 if (start > r->r_start) { 403 new = int_alloc_resource(M_WAITOK); 404 new->r_start = r->r_start; 405 new->r_end = start - 1; 406 new->r_rm = rm; 407 mtx_lock(rm->rm_mtx); 408 r->r_start = start; 409 s = TAILQ_PREV(r, resource_head, r_link); 410 if (s != NULL && !(s->r_flags & RF_ALLOCATED)) { 411 s->r_end = start - 1; 412 free(new, M_RMAN); 413 } else 414 TAILQ_INSERT_BEFORE(r, new, r_link); 415 mtx_unlock(rm->rm_mtx); 416 } 417 if (end < r->r_end) { 418 new = int_alloc_resource(M_WAITOK); 419 new->r_start = end + 1; 420 new->r_end = r->r_end; 421 new->r_rm = rm; 422 mtx_lock(rm->rm_mtx); 423 r->r_end = end; 424 t = TAILQ_NEXT(r, r_link); 425 if (t != NULL && !(t->r_flags & RF_ALLOCATED)) { 426 t->r_start = end + 1; 427 free(new, M_RMAN); 428 } else 429 TAILQ_INSERT_AFTER(&rm->rm_list, r, new, r_link); 430 mtx_unlock(rm->rm_mtx); 431 } 432 return (0); 433 } 434 435 #define SHARE_TYPE(f) (f & (RF_SHAREABLE | RF_PREFETCHABLE)) 436 437 struct resource * 438 rman_reserve_resource_bound(struct rman *rm, rman_res_t start, rman_res_t end, 439 rman_res_t count, rman_res_t bound, u_int flags, 440 device_t dev) 441 { 442 u_int new_rflags; 443 struct resource_i *r, *s, *rv; 444 rman_res_t rstart, rend, amask, bmask; 445 446 rv = NULL; 447 448 DPRINTF(("rman_reserve_resource_bound: <%s> request: [%#jx, %#jx], " 449 "length %#jx, flags %x, device %s\n", rm->rm_descr, start, end, 450 count, flags, 451 dev == NULL ? "<null>" : device_get_nameunit(dev))); 452 KASSERT((flags & RF_FIRSTSHARE) == 0, 453 ("invalid flags %#x", flags)); 454 new_rflags = (flags & ~RF_FIRSTSHARE) | RF_ALLOCATED; 455 456 mtx_lock(rm->rm_mtx); 457 458 r = TAILQ_FIRST(&rm->rm_list); 459 if (r == NULL) { 460 DPRINTF(("NULL list head\n")); 461 } else { 462 DPRINTF(("rman_reserve_resource_bound: trying %#jx <%#jx,%#jx>\n", 463 r->r_end, start, count-1)); 464 } 465 for (r = TAILQ_FIRST(&rm->rm_list); 466 r && r->r_end < start + count - 1; 467 r = TAILQ_NEXT(r, r_link)) { 468 ; 469 DPRINTF(("rman_reserve_resource_bound: tried %#jx <%#jx,%#jx>\n", 470 r->r_end, start, count-1)); 471 } 472 473 if (r == NULL) { 474 DPRINTF(("could not find a region\n")); 475 goto out; 476 } 477 478 amask = (1ull << RF_ALIGNMENT(flags)) - 1; 479 KASSERT(start <= RM_MAX_END - amask, 480 ("start (%#jx) + amask (%#jx) would wrap around", start, amask)); 481 482 /* If bound is 0, bmask will also be 0 */ 483 bmask = ~(bound - 1); 484 /* 485 * First try to find an acceptable totally-unshared region. 486 */ 487 for (s = r; s; s = TAILQ_NEXT(s, r_link)) { 488 DPRINTF(("considering [%#jx, %#jx]\n", s->r_start, s->r_end)); 489 /* 490 * The resource list is sorted, so there is no point in 491 * searching further once r_start is too large. 492 */ 493 if (s->r_start > end - (count - 1)) { 494 DPRINTF(("s->r_start (%#jx) + count - 1> end (%#jx)\n", 495 s->r_start, end)); 496 break; 497 } 498 if (s->r_start > RM_MAX_END - amask) { 499 DPRINTF(("s->r_start (%#jx) + amask (%#jx) too large\n", 500 s->r_start, amask)); 501 break; 502 } 503 if (s->r_flags & RF_ALLOCATED) { 504 DPRINTF(("region is allocated\n")); 505 continue; 506 } 507 rstart = ummax(s->r_start, start); 508 /* 509 * Try to find a region by adjusting to boundary and alignment 510 * until both conditions are satisfied. This is not an optimal 511 * algorithm, but in most cases it isn't really bad, either. 512 */ 513 do { 514 rstart = (rstart + amask) & ~amask; 515 if (((rstart ^ (rstart + count - 1)) & bmask) != 0) 516 rstart += bound - (rstart & ~bmask); 517 } while ((rstart & amask) != 0 && rstart < end && 518 rstart < s->r_end); 519 rend = ummin(s->r_end, ummax(rstart + count - 1, end)); 520 if (rstart > rend) { 521 DPRINTF(("adjusted start exceeds end\n")); 522 continue; 523 } 524 DPRINTF(("truncated region: [%#jx, %#jx]; size %#jx (requested %#jx)\n", 525 rstart, rend, (rend - rstart + 1), count)); 526 527 if ((rend - rstart + 1) >= count) { 528 DPRINTF(("candidate region: [%#jx, %#jx], size %#jx\n", 529 rstart, rend, (rend - rstart + 1))); 530 if ((s->r_end - s->r_start + 1) == count) { 531 DPRINTF(("candidate region is entire chunk\n")); 532 rv = s; 533 rv->r_flags = new_rflags; 534 rv->r_dev = dev; 535 goto out; 536 } 537 538 /* 539 * If s->r_start < rstart and 540 * s->r_end > rstart + count - 1, then 541 * we need to split the region into three pieces 542 * (the middle one will get returned to the user). 543 * Otherwise, we are allocating at either the 544 * beginning or the end of s, so we only need to 545 * split it in two. The first case requires 546 * two new allocations; the second requires but one. 547 */ 548 rv = int_alloc_resource(M_NOWAIT); 549 if (rv == NULL) 550 goto out; 551 rv->r_start = rstart; 552 rv->r_end = rstart + count - 1; 553 rv->r_flags = new_rflags; 554 rv->r_dev = dev; 555 rv->r_rm = rm; 556 557 if (s->r_start < rv->r_start && s->r_end > rv->r_end) { 558 DPRINTF(("splitting region in three parts: " 559 "[%#jx, %#jx]; [%#jx, %#jx]; [%#jx, %#jx]\n", 560 s->r_start, rv->r_start - 1, 561 rv->r_start, rv->r_end, 562 rv->r_end + 1, s->r_end)); 563 /* 564 * We are allocating in the middle. 565 */ 566 r = int_alloc_resource(M_NOWAIT); 567 if (r == NULL) { 568 free(rv, M_RMAN); 569 rv = NULL; 570 goto out; 571 } 572 r->r_start = rv->r_end + 1; 573 r->r_end = s->r_end; 574 r->r_flags = s->r_flags; 575 r->r_rm = rm; 576 s->r_end = rv->r_start - 1; 577 TAILQ_INSERT_AFTER(&rm->rm_list, s, rv, 578 r_link); 579 TAILQ_INSERT_AFTER(&rm->rm_list, rv, r, 580 r_link); 581 } else if (s->r_start == rv->r_start) { 582 DPRINTF(("allocating from the beginning\n")); 583 /* 584 * We are allocating at the beginning. 585 */ 586 s->r_start = rv->r_end + 1; 587 TAILQ_INSERT_BEFORE(s, rv, r_link); 588 } else { 589 DPRINTF(("allocating at the end\n")); 590 /* 591 * We are allocating at the end. 592 */ 593 s->r_end = rv->r_start - 1; 594 TAILQ_INSERT_AFTER(&rm->rm_list, s, rv, 595 r_link); 596 } 597 goto out; 598 } 599 } 600 601 /* 602 * Now find an acceptable shared region, if the client's requirements 603 * allow sharing. By our implementation restriction, a candidate 604 * region must match exactly by both size and sharing type in order 605 * to be considered compatible with the client's request. (The 606 * former restriction could probably be lifted without too much 607 * additional work, but this does not seem warranted.) 608 */ 609 DPRINTF(("no unshared regions found\n")); 610 if ((flags & RF_SHAREABLE) == 0) 611 goto out; 612 613 for (s = r; s && s->r_end <= end; s = TAILQ_NEXT(s, r_link)) { 614 if (SHARE_TYPE(s->r_flags) == SHARE_TYPE(flags) && 615 s->r_start >= start && 616 (s->r_end - s->r_start + 1) == count && 617 (s->r_start & amask) == 0 && 618 ((s->r_start ^ s->r_end) & bmask) == 0) { 619 rv = int_alloc_resource(M_NOWAIT); 620 if (rv == NULL) 621 goto out; 622 rv->r_start = s->r_start; 623 rv->r_end = s->r_end; 624 rv->r_flags = new_rflags; 625 rv->r_dev = dev; 626 rv->r_rm = rm; 627 if (s->r_sharehead == NULL) { 628 s->r_sharehead = malloc(sizeof *s->r_sharehead, 629 M_RMAN, M_NOWAIT | M_ZERO); 630 if (s->r_sharehead == NULL) { 631 free(rv, M_RMAN); 632 rv = NULL; 633 goto out; 634 } 635 LIST_INIT(s->r_sharehead); 636 LIST_INSERT_HEAD(s->r_sharehead, s, 637 r_sharelink); 638 s->r_flags |= RF_FIRSTSHARE; 639 } 640 rv->r_sharehead = s->r_sharehead; 641 LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink); 642 goto out; 643 } 644 } 645 /* 646 * We couldn't find anything. 647 */ 648 649 out: 650 mtx_unlock(rm->rm_mtx); 651 return (rv == NULL ? NULL : &rv->r_r); 652 } 653 654 struct resource * 655 rman_reserve_resource(struct rman *rm, rman_res_t start, rman_res_t end, 656 rman_res_t count, u_int flags, device_t dev) 657 { 658 659 return (rman_reserve_resource_bound(rm, start, end, count, 0, flags, 660 dev)); 661 } 662 663 int 664 rman_activate_resource(struct resource *re) 665 { 666 struct resource_i *r; 667 struct rman *rm; 668 669 r = re->__r_i; 670 rm = r->r_rm; 671 mtx_lock(rm->rm_mtx); 672 r->r_flags |= RF_ACTIVE; 673 mtx_unlock(rm->rm_mtx); 674 return 0; 675 } 676 677 int 678 rman_deactivate_resource(struct resource *r) 679 { 680 struct rman *rm; 681 682 rm = r->__r_i->r_rm; 683 mtx_lock(rm->rm_mtx); 684 r->__r_i->r_flags &= ~RF_ACTIVE; 685 mtx_unlock(rm->rm_mtx); 686 return 0; 687 } 688 689 static int 690 int_rman_release_resource(struct rman *rm, struct resource_i *r) 691 { 692 struct resource_i *s, *t; 693 694 if (r->r_flags & RF_ACTIVE) 695 r->r_flags &= ~RF_ACTIVE; 696 697 /* 698 * Check for a sharing list first. If there is one, then we don't 699 * have to think as hard. 700 */ 701 if (r->r_sharehead) { 702 /* 703 * If a sharing list exists, then we know there are at 704 * least two sharers. 705 * 706 * If we are in the main circleq, appoint someone else. 707 */ 708 LIST_REMOVE(r, r_sharelink); 709 s = LIST_FIRST(r->r_sharehead); 710 if (r->r_flags & RF_FIRSTSHARE) { 711 s->r_flags |= RF_FIRSTSHARE; 712 TAILQ_INSERT_BEFORE(r, s, r_link); 713 TAILQ_REMOVE(&rm->rm_list, r, r_link); 714 } 715 716 /* 717 * Make sure that the sharing list goes away completely 718 * if the resource is no longer being shared at all. 719 */ 720 if (LIST_NEXT(s, r_sharelink) == NULL) { 721 free(s->r_sharehead, M_RMAN); 722 s->r_sharehead = NULL; 723 s->r_flags &= ~RF_FIRSTSHARE; 724 } 725 goto out; 726 } 727 728 /* 729 * Look at the adjacent resources in the list and see if our 730 * segment can be merged with any of them. If either of the 731 * resources is allocated or is not exactly adjacent then they 732 * cannot be merged with our segment. 733 */ 734 s = TAILQ_PREV(r, resource_head, r_link); 735 if (s != NULL && ((s->r_flags & RF_ALLOCATED) != 0 || 736 s->r_end + 1 != r->r_start)) 737 s = NULL; 738 t = TAILQ_NEXT(r, r_link); 739 if (t != NULL && ((t->r_flags & RF_ALLOCATED) != 0 || 740 r->r_end + 1 != t->r_start)) 741 t = NULL; 742 743 if (s != NULL && t != NULL) { 744 /* 745 * Merge all three segments. 746 */ 747 s->r_end = t->r_end; 748 TAILQ_REMOVE(&rm->rm_list, r, r_link); 749 TAILQ_REMOVE(&rm->rm_list, t, r_link); 750 free(t, M_RMAN); 751 } else if (s != NULL) { 752 /* 753 * Merge previous segment with ours. 754 */ 755 s->r_end = r->r_end; 756 TAILQ_REMOVE(&rm->rm_list, r, r_link); 757 } else if (t != NULL) { 758 /* 759 * Merge next segment with ours. 760 */ 761 t->r_start = r->r_start; 762 TAILQ_REMOVE(&rm->rm_list, r, r_link); 763 } else { 764 /* 765 * At this point, we know there is nothing we 766 * can potentially merge with, because on each 767 * side, there is either nothing there or what is 768 * there is still allocated. In that case, we don't 769 * want to remove r from the list; we simply want to 770 * change it to an unallocated region and return 771 * without freeing anything. 772 */ 773 r->r_flags &= ~RF_ALLOCATED; 774 r->r_dev = NULL; 775 return 0; 776 } 777 778 out: 779 free(r, M_RMAN); 780 return 0; 781 } 782 783 int 784 rman_release_resource(struct resource *re) 785 { 786 int rv; 787 struct resource_i *r; 788 struct rman *rm; 789 790 r = re->__r_i; 791 rm = r->r_rm; 792 mtx_lock(rm->rm_mtx); 793 rv = int_rman_release_resource(rm, r); 794 mtx_unlock(rm->rm_mtx); 795 return (rv); 796 } 797 798 uint32_t 799 rman_make_alignment_flags(uint32_t size) 800 { 801 int i; 802 803 /* 804 * Find the hightest bit set, and add one if more than one bit 805 * set. We're effectively computing the ceil(log2(size)) here. 806 */ 807 for (i = 31; i > 0; i--) 808 if ((1 << i) & size) 809 break; 810 if (~(1 << i) & size) 811 i++; 812 813 return(RF_ALIGNMENT_LOG2(i)); 814 } 815 816 void 817 rman_set_start(struct resource *r, rman_res_t start) 818 { 819 820 r->__r_i->r_start = start; 821 } 822 823 rman_res_t 824 rman_get_start(struct resource *r) 825 { 826 827 return (r->__r_i->r_start); 828 } 829 830 void 831 rman_set_end(struct resource *r, rman_res_t end) 832 { 833 834 r->__r_i->r_end = end; 835 } 836 837 rman_res_t 838 rman_get_end(struct resource *r) 839 { 840 841 return (r->__r_i->r_end); 842 } 843 844 rman_res_t 845 rman_get_size(struct resource *r) 846 { 847 848 return (r->__r_i->r_end - r->__r_i->r_start + 1); 849 } 850 851 u_int 852 rman_get_flags(struct resource *r) 853 { 854 855 return (r->__r_i->r_flags); 856 } 857 858 void 859 rman_set_virtual(struct resource *r, void *v) 860 { 861 862 r->__r_i->r_virtual = v; 863 } 864 865 void * 866 rman_get_virtual(struct resource *r) 867 { 868 869 return (r->__r_i->r_virtual); 870 } 871 872 void 873 rman_set_irq_cookie(struct resource *r, void *c) 874 { 875 876 r->__r_i->r_irq_cookie = c; 877 } 878 879 void * 880 rman_get_irq_cookie(struct resource *r) 881 { 882 883 return (r->__r_i->r_irq_cookie); 884 } 885 886 void 887 rman_set_bustag(struct resource *r, bus_space_tag_t t) 888 { 889 890 r->r_bustag = t; 891 } 892 893 bus_space_tag_t 894 rman_get_bustag(struct resource *r) 895 { 896 897 return (r->r_bustag); 898 } 899 900 void 901 rman_set_bushandle(struct resource *r, bus_space_handle_t h) 902 { 903 904 r->r_bushandle = h; 905 } 906 907 bus_space_handle_t 908 rman_get_bushandle(struct resource *r) 909 { 910 911 return (r->r_bushandle); 912 } 913 914 void 915 rman_set_mapping(struct resource *r, struct resource_map *map) 916 { 917 918 KASSERT(rman_get_size(r) == map->r_size, 919 ("rman_set_mapping: size mismatch")); 920 rman_set_bustag(r, map->r_bustag); 921 rman_set_bushandle(r, map->r_bushandle); 922 rman_set_virtual(r, map->r_vaddr); 923 } 924 925 void 926 rman_get_mapping(struct resource *r, struct resource_map *map) 927 { 928 929 map->r_bustag = rman_get_bustag(r); 930 map->r_bushandle = rman_get_bushandle(r); 931 map->r_size = rman_get_size(r); 932 map->r_vaddr = rman_get_virtual(r); 933 } 934 935 void 936 rman_set_rid(struct resource *r, int rid) 937 { 938 939 r->__r_i->r_rid = rid; 940 } 941 942 int 943 rman_get_rid(struct resource *r) 944 { 945 946 return (r->__r_i->r_rid); 947 } 948 949 void 950 rman_set_device(struct resource *r, device_t dev) 951 { 952 953 r->__r_i->r_dev = dev; 954 } 955 956 device_t 957 rman_get_device(struct resource *r) 958 { 959 960 return (r->__r_i->r_dev); 961 } 962 963 int 964 rman_is_region_manager(struct resource *r, struct rman *rm) 965 { 966 967 return (r->__r_i->r_rm == rm); 968 } 969 970 /* 971 * Sysctl interface for scanning the resource lists. 972 * 973 * We take two input parameters; the index into the list of resource 974 * managers, and the resource offset into the list. 975 */ 976 static int 977 sysctl_rman(SYSCTL_HANDLER_ARGS) 978 { 979 int *name = (int *)arg1; 980 u_int namelen = arg2; 981 int rman_idx, res_idx; 982 struct rman *rm; 983 struct resource_i *res; 984 struct resource_i *sres; 985 struct u_rman urm; 986 struct u_resource ures; 987 int error; 988 989 if (namelen != 3) 990 return (EINVAL); 991 992 if (bus_data_generation_check(name[0])) 993 return (EINVAL); 994 rman_idx = name[1]; 995 res_idx = name[2]; 996 997 /* 998 * Find the indexed resource manager 999 */ 1000 mtx_lock(&rman_mtx); 1001 TAILQ_FOREACH(rm, &rman_head, rm_link) { 1002 if (rman_idx-- == 0) 1003 break; 1004 } 1005 mtx_unlock(&rman_mtx); 1006 if (rm == NULL) 1007 return (ENOENT); 1008 1009 /* 1010 * If the resource index is -1, we want details on the 1011 * resource manager. 1012 */ 1013 if (res_idx == -1) { 1014 bzero(&urm, sizeof(urm)); 1015 urm.rm_handle = (uintptr_t)rm; 1016 if (rm->rm_descr != NULL) 1017 strlcpy(urm.rm_descr, rm->rm_descr, RM_TEXTLEN); 1018 urm.rm_start = rm->rm_start; 1019 urm.rm_size = rm->rm_end - rm->rm_start + 1; 1020 urm.rm_type = rm->rm_type; 1021 1022 error = SYSCTL_OUT(req, &urm, sizeof(urm)); 1023 return (error); 1024 } 1025 1026 /* 1027 * Find the indexed resource and return it. 1028 */ 1029 mtx_lock(rm->rm_mtx); 1030 TAILQ_FOREACH(res, &rm->rm_list, r_link) { 1031 if (res->r_sharehead != NULL) { 1032 LIST_FOREACH(sres, res->r_sharehead, r_sharelink) 1033 if (res_idx-- == 0) { 1034 res = sres; 1035 goto found; 1036 } 1037 } 1038 else if (res_idx-- == 0) 1039 goto found; 1040 } 1041 mtx_unlock(rm->rm_mtx); 1042 return (ENOENT); 1043 1044 found: 1045 bzero(&ures, sizeof(ures)); 1046 ures.r_handle = (uintptr_t)res; 1047 ures.r_parent = (uintptr_t)res->r_rm; 1048 ures.r_device = (uintptr_t)res->r_dev; 1049 if (res->r_dev != NULL) { 1050 if (device_get_name(res->r_dev) != NULL) { 1051 snprintf(ures.r_devname, RM_TEXTLEN, 1052 "%s%d", 1053 device_get_name(res->r_dev), 1054 device_get_unit(res->r_dev)); 1055 } else { 1056 strlcpy(ures.r_devname, "nomatch", 1057 RM_TEXTLEN); 1058 } 1059 } else { 1060 ures.r_devname[0] = '\0'; 1061 } 1062 ures.r_start = res->r_start; 1063 ures.r_size = res->r_end - res->r_start + 1; 1064 ures.r_flags = res->r_flags; 1065 1066 mtx_unlock(rm->rm_mtx); 1067 error = SYSCTL_OUT(req, &ures, sizeof(ures)); 1068 return (error); 1069 } 1070 1071 static SYSCTL_NODE(_hw_bus, OID_AUTO, rman, CTLFLAG_RD, sysctl_rman, 1072 "kernel resource manager"); 1073 1074 #ifdef DDB 1075 static void 1076 dump_rman_header(struct rman *rm) 1077 { 1078 1079 if (db_pager_quit) 1080 return; 1081 db_printf("rman %p: %s (0x%jx-0x%jx full range)\n", 1082 rm, rm->rm_descr, (rman_res_t)rm->rm_start, (rman_res_t)rm->rm_end); 1083 } 1084 1085 static void 1086 dump_rman(struct rman *rm) 1087 { 1088 struct resource_i *r; 1089 const char *devname; 1090 1091 if (db_pager_quit) 1092 return; 1093 TAILQ_FOREACH(r, &rm->rm_list, r_link) { 1094 if (r->r_dev != NULL) { 1095 devname = device_get_nameunit(r->r_dev); 1096 if (devname == NULL) 1097 devname = "nomatch"; 1098 } else 1099 devname = NULL; 1100 db_printf(" 0x%jx-0x%jx (RID=%d) ", 1101 r->r_start, r->r_end, r->r_rid); 1102 if (devname != NULL) 1103 db_printf("(%s)\n", devname); 1104 else 1105 db_printf("----\n"); 1106 if (db_pager_quit) 1107 return; 1108 } 1109 } 1110 1111 DB_SHOW_COMMAND(rman, db_show_rman) 1112 { 1113 1114 if (have_addr) { 1115 dump_rman_header((struct rman *)addr); 1116 dump_rman((struct rman *)addr); 1117 } 1118 } 1119 1120 DB_SHOW_COMMAND(rmans, db_show_rmans) 1121 { 1122 struct rman *rm; 1123 1124 TAILQ_FOREACH(rm, &rman_head, rm_link) { 1125 dump_rman_header(rm); 1126 } 1127 } 1128 1129 DB_SHOW_ALL_COMMAND(rman, db_show_all_rman) 1130 { 1131 struct rman *rm; 1132 1133 TAILQ_FOREACH(rm, &rman_head, rm_link) { 1134 dump_rman_header(rm); 1135 dump_rman(rm); 1136 } 1137 } 1138 DB_SHOW_ALIAS(allrman, db_show_all_rman); 1139 #endif 1140