xref: /freebsd/sys/kern/subr_rman.c (revision 28f4385e45a2681c14bd04b83fe1796eaefe8265)
1 /*-
2  * Copyright 1998 Massachusetts Institute of Technology
3  *
4  * Permission to use, copy, modify, and distribute this software and
5  * its documentation for any purpose and without fee is hereby
6  * granted, provided that both the above copyright notice and this
7  * permission notice appear in all copies, that both the above
8  * copyright notice and this permission notice appear in all
9  * supporting documentation, and that the name of M.I.T. not be used
10  * in advertising or publicity pertaining to distribution of the
11  * software without specific, written prior permission.  M.I.T. makes
12  * no representations about the suitability of this software for any
13  * purpose.  It is provided "as is" without express or implied
14  * warranty.
15  *
16  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
17  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /*
31  * The kernel resource manager.  This code is responsible for keeping track
32  * of hardware resources which are apportioned out to various drivers.
33  * It does not actually assign those resources, and it is not expected
34  * that end-device drivers will call into this code directly.  Rather,
35  * the code which implements the buses that those devices are attached to,
36  * and the code which manages CPU resources, will call this code, and the
37  * end-device drivers will make upcalls to that code to actually perform
38  * the allocation.
39  *
40  * There are two sorts of resources managed by this code.  The first is
41  * the more familiar array (RMAN_ARRAY) type; resources in this class
42  * consist of a sequence of individually-allocatable objects which have
43  * been numbered in some well-defined order.  Most of the resources
44  * are of this type, as it is the most familiar.  The second type is
45  * called a gauge (RMAN_GAUGE), and models fungible resources (i.e.,
46  * resources in which each instance is indistinguishable from every
47  * other instance).  The principal anticipated application of gauges
48  * is in the context of power consumption, where a bus may have a specific
49  * power budget which all attached devices share.  RMAN_GAUGE is not
50  * implemented yet.
51  *
52  * For array resources, we make one simplifying assumption: two clients
53  * sharing the same resource must use the same range of indices.  That
54  * is to say, sharing of overlapping-but-not-identical regions is not
55  * permitted.
56  */
57 
58 #include "opt_ddb.h"
59 
60 #include <sys/cdefs.h>
61 __FBSDID("$FreeBSD$");
62 
63 #include <sys/param.h>
64 #include <sys/systm.h>
65 #include <sys/kernel.h>
66 #include <sys/limits.h>
67 #include <sys/lock.h>
68 #include <sys/malloc.h>
69 #include <sys/mutex.h>
70 #include <sys/bus.h>		/* XXX debugging */
71 #include <machine/bus.h>
72 #include <sys/rman.h>
73 #include <sys/sysctl.h>
74 
75 #ifdef DDB
76 #include <ddb/ddb.h>
77 #endif
78 
79 /*
80  * We use a linked list rather than a bitmap because we need to be able to
81  * represent potentially huge objects (like all of a processor's physical
82  * address space).  That is also why the indices are defined to have type
83  * `unsigned long' -- that being the largest integral type in ISO C (1990).
84  * The 1999 version of C allows `long long'; we may need to switch to that
85  * at some point in the future, particularly if we want to support 36-bit
86  * addresses on IA32 hardware.
87  */
88 struct resource_i {
89 	struct resource		r_r;
90 	TAILQ_ENTRY(resource_i)	r_link;
91 	LIST_ENTRY(resource_i)	r_sharelink;
92 	LIST_HEAD(, resource_i)	*r_sharehead;
93 	rman_res_t	r_start;	/* index of the first entry in this resource */
94 	rman_res_t	r_end;		/* index of the last entry (inclusive) */
95 	u_int	r_flags;
96 	void	*r_virtual;	/* virtual address of this resource */
97 	void	*r_irq_cookie;	/* interrupt cookie for this (interrupt) resource */
98 	device_t r_dev;	/* device which has allocated this resource */
99 	struct rman *r_rm;	/* resource manager from whence this came */
100 	int	r_rid;		/* optional rid for this resource. */
101 };
102 
103 static int rman_debug = 0;
104 SYSCTL_INT(_debug, OID_AUTO, rman_debug, CTLFLAG_RWTUN,
105     &rman_debug, 0, "rman debug");
106 
107 #define DPRINTF(params) if (rman_debug) printf params
108 
109 static MALLOC_DEFINE(M_RMAN, "rman", "Resource manager");
110 
111 struct rman_head rman_head;
112 static struct mtx rman_mtx; /* mutex to protect rman_head */
113 static int int_rman_release_resource(struct rman *rm, struct resource_i *r);
114 
115 static __inline struct resource_i *
116 int_alloc_resource(int malloc_flag)
117 {
118 	struct resource_i *r;
119 
120 	r = malloc(sizeof *r, M_RMAN, malloc_flag | M_ZERO);
121 	if (r != NULL) {
122 		r->r_r.__r_i = r;
123 	}
124 	return (r);
125 }
126 
127 int
128 rman_init(struct rman *rm)
129 {
130 	static int once = 0;
131 
132 	if (once == 0) {
133 		once = 1;
134 		TAILQ_INIT(&rman_head);
135 		mtx_init(&rman_mtx, "rman head", NULL, MTX_DEF);
136 	}
137 
138 	if (rm->rm_start == 0 && rm->rm_end == 0)
139 		rm->rm_end = ~0;
140 	if (rm->rm_type == RMAN_UNINIT)
141 		panic("rman_init");
142 	if (rm->rm_type == RMAN_GAUGE)
143 		panic("implement RMAN_GAUGE");
144 
145 	TAILQ_INIT(&rm->rm_list);
146 	rm->rm_mtx = malloc(sizeof *rm->rm_mtx, M_RMAN, M_NOWAIT | M_ZERO);
147 	if (rm->rm_mtx == NULL)
148 		return ENOMEM;
149 	mtx_init(rm->rm_mtx, "rman", NULL, MTX_DEF);
150 
151 	mtx_lock(&rman_mtx);
152 	TAILQ_INSERT_TAIL(&rman_head, rm, rm_link);
153 	mtx_unlock(&rman_mtx);
154 	return 0;
155 }
156 
157 int
158 rman_manage_region(struct rman *rm, rman_res_t start, rman_res_t end)
159 {
160 	struct resource_i *r, *s, *t;
161 	int rv = 0;
162 
163 	DPRINTF(("rman_manage_region: <%s> request: start %#jx, end %#jx\n",
164 	    rm->rm_descr, start, end));
165 	if (start < rm->rm_start || end > rm->rm_end)
166 		return EINVAL;
167 	r = int_alloc_resource(M_NOWAIT);
168 	if (r == NULL)
169 		return ENOMEM;
170 	r->r_start = start;
171 	r->r_end = end;
172 	r->r_rm = rm;
173 
174 	mtx_lock(rm->rm_mtx);
175 
176 	/* Skip entries before us. */
177 	TAILQ_FOREACH(s, &rm->rm_list, r_link) {
178 		if (s->r_end == ~0)
179 			break;
180 		if (s->r_end + 1 >= r->r_start)
181 			break;
182 	}
183 
184 	/* If we ran off the end of the list, insert at the tail. */
185 	if (s == NULL) {
186 		TAILQ_INSERT_TAIL(&rm->rm_list, r, r_link);
187 	} else {
188 		/* Check for any overlap with the current region. */
189 		if (r->r_start <= s->r_end && r->r_end >= s->r_start) {
190 			rv = EBUSY;
191 			goto out;
192 		}
193 
194 		/* Check for any overlap with the next region. */
195 		t = TAILQ_NEXT(s, r_link);
196 		if (t && r->r_start <= t->r_end && r->r_end >= t->r_start) {
197 			rv = EBUSY;
198 			goto out;
199 		}
200 
201 		/*
202 		 * See if this region can be merged with the next region.  If
203 		 * not, clear the pointer.
204 		 */
205 		if (t && (r->r_end + 1 != t->r_start || t->r_flags != 0))
206 			t = NULL;
207 
208 		/* See if we can merge with the current region. */
209 		if (s->r_end + 1 == r->r_start && s->r_flags == 0) {
210 			/* Can we merge all 3 regions? */
211 			if (t != NULL) {
212 				s->r_end = t->r_end;
213 				TAILQ_REMOVE(&rm->rm_list, t, r_link);
214 				free(r, M_RMAN);
215 				free(t, M_RMAN);
216 			} else {
217 				s->r_end = r->r_end;
218 				free(r, M_RMAN);
219 			}
220 		} else if (t != NULL) {
221 			/* Can we merge with just the next region? */
222 			t->r_start = r->r_start;
223 			free(r, M_RMAN);
224 		} else if (s->r_end < r->r_start) {
225 			TAILQ_INSERT_AFTER(&rm->rm_list, s, r, r_link);
226 		} else {
227 			TAILQ_INSERT_BEFORE(s, r, r_link);
228 		}
229 	}
230 out:
231 	mtx_unlock(rm->rm_mtx);
232 	return rv;
233 }
234 
235 int
236 rman_init_from_resource(struct rman *rm, struct resource *r)
237 {
238 	int rv;
239 
240 	if ((rv = rman_init(rm)) != 0)
241 		return (rv);
242 	return (rman_manage_region(rm, r->__r_i->r_start, r->__r_i->r_end));
243 }
244 
245 int
246 rman_fini(struct rman *rm)
247 {
248 	struct resource_i *r;
249 
250 	mtx_lock(rm->rm_mtx);
251 	TAILQ_FOREACH(r, &rm->rm_list, r_link) {
252 		if (r->r_flags & RF_ALLOCATED) {
253 			mtx_unlock(rm->rm_mtx);
254 			return EBUSY;
255 		}
256 	}
257 
258 	/*
259 	 * There really should only be one of these if we are in this
260 	 * state and the code is working properly, but it can't hurt.
261 	 */
262 	while (!TAILQ_EMPTY(&rm->rm_list)) {
263 		r = TAILQ_FIRST(&rm->rm_list);
264 		TAILQ_REMOVE(&rm->rm_list, r, r_link);
265 		free(r, M_RMAN);
266 	}
267 	mtx_unlock(rm->rm_mtx);
268 	mtx_lock(&rman_mtx);
269 	TAILQ_REMOVE(&rman_head, rm, rm_link);
270 	mtx_unlock(&rman_mtx);
271 	mtx_destroy(rm->rm_mtx);
272 	free(rm->rm_mtx, M_RMAN);
273 
274 	return 0;
275 }
276 
277 int
278 rman_first_free_region(struct rman *rm, rman_res_t *start, rman_res_t *end)
279 {
280 	struct resource_i *r;
281 
282 	mtx_lock(rm->rm_mtx);
283 	TAILQ_FOREACH(r, &rm->rm_list, r_link) {
284 		if (!(r->r_flags & RF_ALLOCATED)) {
285 			*start = r->r_start;
286 			*end = r->r_end;
287 			mtx_unlock(rm->rm_mtx);
288 			return (0);
289 		}
290 	}
291 	mtx_unlock(rm->rm_mtx);
292 	return (ENOENT);
293 }
294 
295 int
296 rman_last_free_region(struct rman *rm, rman_res_t *start, rman_res_t *end)
297 {
298 	struct resource_i *r;
299 
300 	mtx_lock(rm->rm_mtx);
301 	TAILQ_FOREACH_REVERSE(r, &rm->rm_list, resource_head, r_link) {
302 		if (!(r->r_flags & RF_ALLOCATED)) {
303 			*start = r->r_start;
304 			*end = r->r_end;
305 			mtx_unlock(rm->rm_mtx);
306 			return (0);
307 		}
308 	}
309 	mtx_unlock(rm->rm_mtx);
310 	return (ENOENT);
311 }
312 
313 /* Shrink or extend one or both ends of an allocated resource. */
314 int
315 rman_adjust_resource(struct resource *rr, rman_res_t start, rman_res_t end)
316 {
317 	struct resource_i *r, *s, *t, *new;
318 	struct rman *rm;
319 
320 	/* Not supported for shared resources. */
321 	r = rr->__r_i;
322 	if (r->r_flags & RF_SHAREABLE)
323 		return (EINVAL);
324 
325 	/*
326 	 * This does not support wholesale moving of a resource.  At
327 	 * least part of the desired new range must overlap with the
328 	 * existing resource.
329 	 */
330 	if (end < r->r_start || r->r_end < start)
331 		return (EINVAL);
332 
333 	/*
334 	 * Find the two resource regions immediately adjacent to the
335 	 * allocated resource.
336 	 */
337 	rm = r->r_rm;
338 	mtx_lock(rm->rm_mtx);
339 #ifdef INVARIANTS
340 	TAILQ_FOREACH(s, &rm->rm_list, r_link) {
341 		if (s == r)
342 			break;
343 	}
344 	if (s == NULL)
345 		panic("resource not in list");
346 #endif
347 	s = TAILQ_PREV(r, resource_head, r_link);
348 	t = TAILQ_NEXT(r, r_link);
349 	KASSERT(s == NULL || s->r_end + 1 == r->r_start,
350 	    ("prev resource mismatch"));
351 	KASSERT(t == NULL || r->r_end + 1 == t->r_start,
352 	    ("next resource mismatch"));
353 
354 	/*
355 	 * See if the changes are permitted.  Shrinking is always allowed,
356 	 * but growing requires sufficient room in the adjacent region.
357 	 */
358 	if (start < r->r_start && (s == NULL || (s->r_flags & RF_ALLOCATED) ||
359 	    s->r_start > start)) {
360 		mtx_unlock(rm->rm_mtx);
361 		return (EBUSY);
362 	}
363 	if (end > r->r_end && (t == NULL || (t->r_flags & RF_ALLOCATED) ||
364 	    t->r_end < end)) {
365 		mtx_unlock(rm->rm_mtx);
366 		return (EBUSY);
367 	}
368 
369 	/*
370 	 * While holding the lock, grow either end of the resource as
371 	 * needed and shrink either end if the shrinking does not require
372 	 * allocating a new resource.  We can safely drop the lock and then
373 	 * insert a new range to handle the shrinking case afterwards.
374 	 */
375 	if (start < r->r_start ||
376 	    (start > r->r_start && s != NULL && !(s->r_flags & RF_ALLOCATED))) {
377 		KASSERT(s->r_flags == 0, ("prev is busy"));
378 		r->r_start = start;
379 		if (s->r_start == start) {
380 			TAILQ_REMOVE(&rm->rm_list, s, r_link);
381 			free(s, M_RMAN);
382 		} else
383 			s->r_end = start - 1;
384 	}
385 	if (end > r->r_end ||
386 	    (end < r->r_end && t != NULL && !(t->r_flags & RF_ALLOCATED))) {
387 		KASSERT(t->r_flags == 0, ("next is busy"));
388 		r->r_end = end;
389 		if (t->r_end == end) {
390 			TAILQ_REMOVE(&rm->rm_list, t, r_link);
391 			free(t, M_RMAN);
392 		} else
393 			t->r_start = end + 1;
394 	}
395 	mtx_unlock(rm->rm_mtx);
396 
397 	/*
398 	 * Handle the shrinking cases that require allocating a new
399 	 * resource to hold the newly-free region.  We have to recheck
400 	 * if we still need this new region after acquiring the lock.
401 	 */
402 	if (start > r->r_start) {
403 		new = int_alloc_resource(M_WAITOK);
404 		new->r_start = r->r_start;
405 		new->r_end = start - 1;
406 		new->r_rm = rm;
407 		mtx_lock(rm->rm_mtx);
408 		r->r_start = start;
409 		s = TAILQ_PREV(r, resource_head, r_link);
410 		if (s != NULL && !(s->r_flags & RF_ALLOCATED)) {
411 			s->r_end = start - 1;
412 			free(new, M_RMAN);
413 		} else
414 			TAILQ_INSERT_BEFORE(r, new, r_link);
415 		mtx_unlock(rm->rm_mtx);
416 	}
417 	if (end < r->r_end) {
418 		new = int_alloc_resource(M_WAITOK);
419 		new->r_start = end + 1;
420 		new->r_end = r->r_end;
421 		new->r_rm = rm;
422 		mtx_lock(rm->rm_mtx);
423 		r->r_end = end;
424 		t = TAILQ_NEXT(r, r_link);
425 		if (t != NULL && !(t->r_flags & RF_ALLOCATED)) {
426 			t->r_start = end + 1;
427 			free(new, M_RMAN);
428 		} else
429 			TAILQ_INSERT_AFTER(&rm->rm_list, r, new, r_link);
430 		mtx_unlock(rm->rm_mtx);
431 	}
432 	return (0);
433 }
434 
435 #define	SHARE_TYPE(f)	(f & (RF_SHAREABLE | RF_PREFETCHABLE))
436 
437 struct resource *
438 rman_reserve_resource_bound(struct rman *rm, rman_res_t start, rman_res_t end,
439 			    rman_res_t count, rman_res_t bound, u_int flags,
440 			    device_t dev)
441 {
442 	u_int new_rflags;
443 	struct resource_i *r, *s, *rv;
444 	rman_res_t rstart, rend, amask, bmask;
445 
446 	rv = NULL;
447 
448 	DPRINTF(("rman_reserve_resource_bound: <%s> request: [%#jx, %#jx], "
449 	       "length %#jx, flags %x, device %s\n", rm->rm_descr, start, end,
450 	       count, flags,
451 	       dev == NULL ? "<null>" : device_get_nameunit(dev)));
452 	KASSERT((flags & RF_FIRSTSHARE) == 0,
453 	    ("invalid flags %#x", flags));
454 	new_rflags = (flags & ~RF_FIRSTSHARE) | RF_ALLOCATED;
455 
456 	mtx_lock(rm->rm_mtx);
457 
458 	r = TAILQ_FIRST(&rm->rm_list);
459 	if (r == NULL) {
460 	    DPRINTF(("NULL list head\n"));
461 	} else {
462 	    DPRINTF(("rman_reserve_resource_bound: trying %#jx <%#jx,%#jx>\n",
463 		    r->r_end, start, count-1));
464 	}
465 	for (r = TAILQ_FIRST(&rm->rm_list);
466 	     r && r->r_end < start + count - 1;
467 	     r = TAILQ_NEXT(r, r_link)) {
468 		;
469 		DPRINTF(("rman_reserve_resource_bound: tried %#jx <%#jx,%#jx>\n",
470 			r->r_end, start, count-1));
471 	}
472 
473 	if (r == NULL) {
474 		DPRINTF(("could not find a region\n"));
475 		goto out;
476 	}
477 
478 	amask = (1ull << RF_ALIGNMENT(flags)) - 1;
479 	KASSERT(start <= RM_MAX_END - amask,
480 	    ("start (%#jx) + amask (%#jx) would wrap around", start, amask));
481 
482 	/* If bound is 0, bmask will also be 0 */
483 	bmask = ~(bound - 1);
484 	/*
485 	 * First try to find an acceptable totally-unshared region.
486 	 */
487 	for (s = r; s; s = TAILQ_NEXT(s, r_link)) {
488 		DPRINTF(("considering [%#jx, %#jx]\n", s->r_start, s->r_end));
489 		/*
490 		 * The resource list is sorted, so there is no point in
491 		 * searching further once r_start is too large.
492 		 */
493 		if (s->r_start > end - (count - 1)) {
494 			DPRINTF(("s->r_start (%#jx) + count - 1> end (%#jx)\n",
495 			    s->r_start, end));
496 			break;
497 		}
498 		if (s->r_start > RM_MAX_END - amask) {
499 			DPRINTF(("s->r_start (%#jx) + amask (%#jx) too large\n",
500 			    s->r_start, amask));
501 			break;
502 		}
503 		if (s->r_flags & RF_ALLOCATED) {
504 			DPRINTF(("region is allocated\n"));
505 			continue;
506 		}
507 		rstart = ummax(s->r_start, start);
508 		/*
509 		 * Try to find a region by adjusting to boundary and alignment
510 		 * until both conditions are satisfied. This is not an optimal
511 		 * algorithm, but in most cases it isn't really bad, either.
512 		 */
513 		do {
514 			rstart = (rstart + amask) & ~amask;
515 			if (((rstart ^ (rstart + count - 1)) & bmask) != 0)
516 				rstart += bound - (rstart & ~bmask);
517 		} while ((rstart & amask) != 0 && rstart < end &&
518 		    rstart < s->r_end);
519 		rend = ummin(s->r_end, ummax(rstart + count - 1, end));
520 		if (rstart > rend) {
521 			DPRINTF(("adjusted start exceeds end\n"));
522 			continue;
523 		}
524 		DPRINTF(("truncated region: [%#jx, %#jx]; size %#jx (requested %#jx)\n",
525 		       rstart, rend, (rend - rstart + 1), count));
526 
527 		if ((rend - rstart + 1) >= count) {
528 			DPRINTF(("candidate region: [%#jx, %#jx], size %#jx\n",
529 			       rstart, rend, (rend - rstart + 1)));
530 			if ((s->r_end - s->r_start + 1) == count) {
531 				DPRINTF(("candidate region is entire chunk\n"));
532 				rv = s;
533 				rv->r_flags = new_rflags;
534 				rv->r_dev = dev;
535 				goto out;
536 			}
537 
538 			/*
539 			 * If s->r_start < rstart and
540 			 *    s->r_end > rstart + count - 1, then
541 			 * we need to split the region into three pieces
542 			 * (the middle one will get returned to the user).
543 			 * Otherwise, we are allocating at either the
544 			 * beginning or the end of s, so we only need to
545 			 * split it in two.  The first case requires
546 			 * two new allocations; the second requires but one.
547 			 */
548 			rv = int_alloc_resource(M_NOWAIT);
549 			if (rv == NULL)
550 				goto out;
551 			rv->r_start = rstart;
552 			rv->r_end = rstart + count - 1;
553 			rv->r_flags = new_rflags;
554 			rv->r_dev = dev;
555 			rv->r_rm = rm;
556 
557 			if (s->r_start < rv->r_start && s->r_end > rv->r_end) {
558 				DPRINTF(("splitting region in three parts: "
559 				       "[%#jx, %#jx]; [%#jx, %#jx]; [%#jx, %#jx]\n",
560 				       s->r_start, rv->r_start - 1,
561 				       rv->r_start, rv->r_end,
562 				       rv->r_end + 1, s->r_end));
563 				/*
564 				 * We are allocating in the middle.
565 				 */
566 				r = int_alloc_resource(M_NOWAIT);
567 				if (r == NULL) {
568 					free(rv, M_RMAN);
569 					rv = NULL;
570 					goto out;
571 				}
572 				r->r_start = rv->r_end + 1;
573 				r->r_end = s->r_end;
574 				r->r_flags = s->r_flags;
575 				r->r_rm = rm;
576 				s->r_end = rv->r_start - 1;
577 				TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
578 						     r_link);
579 				TAILQ_INSERT_AFTER(&rm->rm_list, rv, r,
580 						     r_link);
581 			} else if (s->r_start == rv->r_start) {
582 				DPRINTF(("allocating from the beginning\n"));
583 				/*
584 				 * We are allocating at the beginning.
585 				 */
586 				s->r_start = rv->r_end + 1;
587 				TAILQ_INSERT_BEFORE(s, rv, r_link);
588 			} else {
589 				DPRINTF(("allocating at the end\n"));
590 				/*
591 				 * We are allocating at the end.
592 				 */
593 				s->r_end = rv->r_start - 1;
594 				TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
595 						     r_link);
596 			}
597 			goto out;
598 		}
599 	}
600 
601 	/*
602 	 * Now find an acceptable shared region, if the client's requirements
603 	 * allow sharing.  By our implementation restriction, a candidate
604 	 * region must match exactly by both size and sharing type in order
605 	 * to be considered compatible with the client's request.  (The
606 	 * former restriction could probably be lifted without too much
607 	 * additional work, but this does not seem warranted.)
608 	 */
609 	DPRINTF(("no unshared regions found\n"));
610 	if ((flags & RF_SHAREABLE) == 0)
611 		goto out;
612 
613 	for (s = r; s && s->r_end <= end; s = TAILQ_NEXT(s, r_link)) {
614 		if (SHARE_TYPE(s->r_flags) == SHARE_TYPE(flags) &&
615 		    s->r_start >= start &&
616 		    (s->r_end - s->r_start + 1) == count &&
617 		    (s->r_start & amask) == 0 &&
618 		    ((s->r_start ^ s->r_end) & bmask) == 0) {
619 			rv = int_alloc_resource(M_NOWAIT);
620 			if (rv == NULL)
621 				goto out;
622 			rv->r_start = s->r_start;
623 			rv->r_end = s->r_end;
624 			rv->r_flags = new_rflags;
625 			rv->r_dev = dev;
626 			rv->r_rm = rm;
627 			if (s->r_sharehead == NULL) {
628 				s->r_sharehead = malloc(sizeof *s->r_sharehead,
629 						M_RMAN, M_NOWAIT | M_ZERO);
630 				if (s->r_sharehead == NULL) {
631 					free(rv, M_RMAN);
632 					rv = NULL;
633 					goto out;
634 				}
635 				LIST_INIT(s->r_sharehead);
636 				LIST_INSERT_HEAD(s->r_sharehead, s,
637 						 r_sharelink);
638 				s->r_flags |= RF_FIRSTSHARE;
639 			}
640 			rv->r_sharehead = s->r_sharehead;
641 			LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink);
642 			goto out;
643 		}
644 	}
645 	/*
646 	 * We couldn't find anything.
647 	 */
648 
649 out:
650 	mtx_unlock(rm->rm_mtx);
651 	return (rv == NULL ? NULL : &rv->r_r);
652 }
653 
654 struct resource *
655 rman_reserve_resource(struct rman *rm, rman_res_t start, rman_res_t end,
656 		      rman_res_t count, u_int flags, device_t dev)
657 {
658 
659 	return (rman_reserve_resource_bound(rm, start, end, count, 0, flags,
660 	    dev));
661 }
662 
663 int
664 rman_activate_resource(struct resource *re)
665 {
666 	struct resource_i *r;
667 	struct rman *rm;
668 
669 	r = re->__r_i;
670 	rm = r->r_rm;
671 	mtx_lock(rm->rm_mtx);
672 	r->r_flags |= RF_ACTIVE;
673 	mtx_unlock(rm->rm_mtx);
674 	return 0;
675 }
676 
677 int
678 rman_deactivate_resource(struct resource *r)
679 {
680 	struct rman *rm;
681 
682 	rm = r->__r_i->r_rm;
683 	mtx_lock(rm->rm_mtx);
684 	r->__r_i->r_flags &= ~RF_ACTIVE;
685 	mtx_unlock(rm->rm_mtx);
686 	return 0;
687 }
688 
689 static int
690 int_rman_release_resource(struct rman *rm, struct resource_i *r)
691 {
692 	struct resource_i *s, *t;
693 
694 	if (r->r_flags & RF_ACTIVE)
695 		r->r_flags &= ~RF_ACTIVE;
696 
697 	/*
698 	 * Check for a sharing list first.  If there is one, then we don't
699 	 * have to think as hard.
700 	 */
701 	if (r->r_sharehead) {
702 		/*
703 		 * If a sharing list exists, then we know there are at
704 		 * least two sharers.
705 		 *
706 		 * If we are in the main circleq, appoint someone else.
707 		 */
708 		LIST_REMOVE(r, r_sharelink);
709 		s = LIST_FIRST(r->r_sharehead);
710 		if (r->r_flags & RF_FIRSTSHARE) {
711 			s->r_flags |= RF_FIRSTSHARE;
712 			TAILQ_INSERT_BEFORE(r, s, r_link);
713 			TAILQ_REMOVE(&rm->rm_list, r, r_link);
714 		}
715 
716 		/*
717 		 * Make sure that the sharing list goes away completely
718 		 * if the resource is no longer being shared at all.
719 		 */
720 		if (LIST_NEXT(s, r_sharelink) == NULL) {
721 			free(s->r_sharehead, M_RMAN);
722 			s->r_sharehead = NULL;
723 			s->r_flags &= ~RF_FIRSTSHARE;
724 		}
725 		goto out;
726 	}
727 
728 	/*
729 	 * Look at the adjacent resources in the list and see if our
730 	 * segment can be merged with any of them.  If either of the
731 	 * resources is allocated or is not exactly adjacent then they
732 	 * cannot be merged with our segment.
733 	 */
734 	s = TAILQ_PREV(r, resource_head, r_link);
735 	if (s != NULL && ((s->r_flags & RF_ALLOCATED) != 0 ||
736 	    s->r_end + 1 != r->r_start))
737 		s = NULL;
738 	t = TAILQ_NEXT(r, r_link);
739 	if (t != NULL && ((t->r_flags & RF_ALLOCATED) != 0 ||
740 	    r->r_end + 1 != t->r_start))
741 		t = NULL;
742 
743 	if (s != NULL && t != NULL) {
744 		/*
745 		 * Merge all three segments.
746 		 */
747 		s->r_end = t->r_end;
748 		TAILQ_REMOVE(&rm->rm_list, r, r_link);
749 		TAILQ_REMOVE(&rm->rm_list, t, r_link);
750 		free(t, M_RMAN);
751 	} else if (s != NULL) {
752 		/*
753 		 * Merge previous segment with ours.
754 		 */
755 		s->r_end = r->r_end;
756 		TAILQ_REMOVE(&rm->rm_list, r, r_link);
757 	} else if (t != NULL) {
758 		/*
759 		 * Merge next segment with ours.
760 		 */
761 		t->r_start = r->r_start;
762 		TAILQ_REMOVE(&rm->rm_list, r, r_link);
763 	} else {
764 		/*
765 		 * At this point, we know there is nothing we
766 		 * can potentially merge with, because on each
767 		 * side, there is either nothing there or what is
768 		 * there is still allocated.  In that case, we don't
769 		 * want to remove r from the list; we simply want to
770 		 * change it to an unallocated region and return
771 		 * without freeing anything.
772 		 */
773 		r->r_flags &= ~RF_ALLOCATED;
774 		r->r_dev = NULL;
775 		return 0;
776 	}
777 
778 out:
779 	free(r, M_RMAN);
780 	return 0;
781 }
782 
783 int
784 rman_release_resource(struct resource *re)
785 {
786 	int rv;
787 	struct resource_i *r;
788 	struct rman *rm;
789 
790 	r = re->__r_i;
791 	rm = r->r_rm;
792 	mtx_lock(rm->rm_mtx);
793 	rv = int_rman_release_resource(rm, r);
794 	mtx_unlock(rm->rm_mtx);
795 	return (rv);
796 }
797 
798 uint32_t
799 rman_make_alignment_flags(uint32_t size)
800 {
801 	int i;
802 
803 	/*
804 	 * Find the hightest bit set, and add one if more than one bit
805 	 * set.  We're effectively computing the ceil(log2(size)) here.
806 	 */
807 	for (i = 31; i > 0; i--)
808 		if ((1 << i) & size)
809 			break;
810 	if (~(1 << i) & size)
811 		i++;
812 
813 	return(RF_ALIGNMENT_LOG2(i));
814 }
815 
816 void
817 rman_set_start(struct resource *r, rman_res_t start)
818 {
819 
820 	r->__r_i->r_start = start;
821 }
822 
823 rman_res_t
824 rman_get_start(struct resource *r)
825 {
826 
827 	return (r->__r_i->r_start);
828 }
829 
830 void
831 rman_set_end(struct resource *r, rman_res_t end)
832 {
833 
834 	r->__r_i->r_end = end;
835 }
836 
837 rman_res_t
838 rman_get_end(struct resource *r)
839 {
840 
841 	return (r->__r_i->r_end);
842 }
843 
844 rman_res_t
845 rman_get_size(struct resource *r)
846 {
847 
848 	return (r->__r_i->r_end - r->__r_i->r_start + 1);
849 }
850 
851 u_int
852 rman_get_flags(struct resource *r)
853 {
854 
855 	return (r->__r_i->r_flags);
856 }
857 
858 void
859 rman_set_virtual(struct resource *r, void *v)
860 {
861 
862 	r->__r_i->r_virtual = v;
863 }
864 
865 void *
866 rman_get_virtual(struct resource *r)
867 {
868 
869 	return (r->__r_i->r_virtual);
870 }
871 
872 void
873 rman_set_irq_cookie(struct resource *r, void *c)
874 {
875 
876 	r->__r_i->r_irq_cookie = c;
877 }
878 
879 void *
880 rman_get_irq_cookie(struct resource *r)
881 {
882 
883 	return (r->__r_i->r_irq_cookie);
884 }
885 
886 void
887 rman_set_bustag(struct resource *r, bus_space_tag_t t)
888 {
889 
890 	r->r_bustag = t;
891 }
892 
893 bus_space_tag_t
894 rman_get_bustag(struct resource *r)
895 {
896 
897 	return (r->r_bustag);
898 }
899 
900 void
901 rman_set_bushandle(struct resource *r, bus_space_handle_t h)
902 {
903 
904 	r->r_bushandle = h;
905 }
906 
907 bus_space_handle_t
908 rman_get_bushandle(struct resource *r)
909 {
910 
911 	return (r->r_bushandle);
912 }
913 
914 void
915 rman_set_mapping(struct resource *r, struct resource_map *map)
916 {
917 
918 	KASSERT(rman_get_size(r) == map->r_size,
919 	    ("rman_set_mapping: size mismatch"));
920 	rman_set_bustag(r, map->r_bustag);
921 	rman_set_bushandle(r, map->r_bushandle);
922 	rman_set_virtual(r, map->r_vaddr);
923 }
924 
925 void
926 rman_get_mapping(struct resource *r, struct resource_map *map)
927 {
928 
929 	map->r_bustag = rman_get_bustag(r);
930 	map->r_bushandle = rman_get_bushandle(r);
931 	map->r_size = rman_get_size(r);
932 	map->r_vaddr = rman_get_virtual(r);
933 }
934 
935 void
936 rman_set_rid(struct resource *r, int rid)
937 {
938 
939 	r->__r_i->r_rid = rid;
940 }
941 
942 int
943 rman_get_rid(struct resource *r)
944 {
945 
946 	return (r->__r_i->r_rid);
947 }
948 
949 void
950 rman_set_device(struct resource *r, device_t dev)
951 {
952 
953 	r->__r_i->r_dev = dev;
954 }
955 
956 device_t
957 rman_get_device(struct resource *r)
958 {
959 
960 	return (r->__r_i->r_dev);
961 }
962 
963 int
964 rman_is_region_manager(struct resource *r, struct rman *rm)
965 {
966 
967 	return (r->__r_i->r_rm == rm);
968 }
969 
970 /*
971  * Sysctl interface for scanning the resource lists.
972  *
973  * We take two input parameters; the index into the list of resource
974  * managers, and the resource offset into the list.
975  */
976 static int
977 sysctl_rman(SYSCTL_HANDLER_ARGS)
978 {
979 	int			*name = (int *)arg1;
980 	u_int			namelen = arg2;
981 	int			rman_idx, res_idx;
982 	struct rman		*rm;
983 	struct resource_i	*res;
984 	struct resource_i	*sres;
985 	struct u_rman		urm;
986 	struct u_resource	ures;
987 	int			error;
988 
989 	if (namelen != 3)
990 		return (EINVAL);
991 
992 	if (bus_data_generation_check(name[0]))
993 		return (EINVAL);
994 	rman_idx = name[1];
995 	res_idx = name[2];
996 
997 	/*
998 	 * Find the indexed resource manager
999 	 */
1000 	mtx_lock(&rman_mtx);
1001 	TAILQ_FOREACH(rm, &rman_head, rm_link) {
1002 		if (rman_idx-- == 0)
1003 			break;
1004 	}
1005 	mtx_unlock(&rman_mtx);
1006 	if (rm == NULL)
1007 		return (ENOENT);
1008 
1009 	/*
1010 	 * If the resource index is -1, we want details on the
1011 	 * resource manager.
1012 	 */
1013 	if (res_idx == -1) {
1014 		bzero(&urm, sizeof(urm));
1015 		urm.rm_handle = (uintptr_t)rm;
1016 		if (rm->rm_descr != NULL)
1017 			strlcpy(urm.rm_descr, rm->rm_descr, RM_TEXTLEN);
1018 		urm.rm_start = rm->rm_start;
1019 		urm.rm_size = rm->rm_end - rm->rm_start + 1;
1020 		urm.rm_type = rm->rm_type;
1021 
1022 		error = SYSCTL_OUT(req, &urm, sizeof(urm));
1023 		return (error);
1024 	}
1025 
1026 	/*
1027 	 * Find the indexed resource and return it.
1028 	 */
1029 	mtx_lock(rm->rm_mtx);
1030 	TAILQ_FOREACH(res, &rm->rm_list, r_link) {
1031 		if (res->r_sharehead != NULL) {
1032 			LIST_FOREACH(sres, res->r_sharehead, r_sharelink)
1033 				if (res_idx-- == 0) {
1034 					res = sres;
1035 					goto found;
1036 				}
1037 		}
1038 		else if (res_idx-- == 0)
1039 				goto found;
1040 	}
1041 	mtx_unlock(rm->rm_mtx);
1042 	return (ENOENT);
1043 
1044 found:
1045 	bzero(&ures, sizeof(ures));
1046 	ures.r_handle = (uintptr_t)res;
1047 	ures.r_parent = (uintptr_t)res->r_rm;
1048 	ures.r_device = (uintptr_t)res->r_dev;
1049 	if (res->r_dev != NULL) {
1050 		if (device_get_name(res->r_dev) != NULL) {
1051 			snprintf(ures.r_devname, RM_TEXTLEN,
1052 			    "%s%d",
1053 			    device_get_name(res->r_dev),
1054 			    device_get_unit(res->r_dev));
1055 		} else {
1056 			strlcpy(ures.r_devname, "nomatch",
1057 			    RM_TEXTLEN);
1058 		}
1059 	} else {
1060 		ures.r_devname[0] = '\0';
1061 	}
1062 	ures.r_start = res->r_start;
1063 	ures.r_size = res->r_end - res->r_start + 1;
1064 	ures.r_flags = res->r_flags;
1065 
1066 	mtx_unlock(rm->rm_mtx);
1067 	error = SYSCTL_OUT(req, &ures, sizeof(ures));
1068 	return (error);
1069 }
1070 
1071 static SYSCTL_NODE(_hw_bus, OID_AUTO, rman, CTLFLAG_RD, sysctl_rman,
1072     "kernel resource manager");
1073 
1074 #ifdef DDB
1075 static void
1076 dump_rman_header(struct rman *rm)
1077 {
1078 
1079 	if (db_pager_quit)
1080 		return;
1081 	db_printf("rman %p: %s (0x%jx-0x%jx full range)\n",
1082 	    rm, rm->rm_descr, (rman_res_t)rm->rm_start, (rman_res_t)rm->rm_end);
1083 }
1084 
1085 static void
1086 dump_rman(struct rman *rm)
1087 {
1088 	struct resource_i *r;
1089 	const char *devname;
1090 
1091 	if (db_pager_quit)
1092 		return;
1093 	TAILQ_FOREACH(r, &rm->rm_list, r_link) {
1094 		if (r->r_dev != NULL) {
1095 			devname = device_get_nameunit(r->r_dev);
1096 			if (devname == NULL)
1097 				devname = "nomatch";
1098 		} else
1099 			devname = NULL;
1100 		db_printf("    0x%jx-0x%jx (RID=%d) ",
1101 		    r->r_start, r->r_end, r->r_rid);
1102 		if (devname != NULL)
1103 			db_printf("(%s)\n", devname);
1104 		else
1105 			db_printf("----\n");
1106 		if (db_pager_quit)
1107 			return;
1108 	}
1109 }
1110 
1111 DB_SHOW_COMMAND(rman, db_show_rman)
1112 {
1113 
1114 	if (have_addr) {
1115 		dump_rman_header((struct rman *)addr);
1116 		dump_rman((struct rman *)addr);
1117 	}
1118 }
1119 
1120 DB_SHOW_COMMAND(rmans, db_show_rmans)
1121 {
1122 	struct rman *rm;
1123 
1124 	TAILQ_FOREACH(rm, &rman_head, rm_link) {
1125 		dump_rman_header(rm);
1126 	}
1127 }
1128 
1129 DB_SHOW_ALL_COMMAND(rman, db_show_all_rman)
1130 {
1131 	struct rman *rm;
1132 
1133 	TAILQ_FOREACH(rm, &rman_head, rm_link) {
1134 		dump_rman_header(rm);
1135 		dump_rman(rm);
1136 	}
1137 }
1138 DB_SHOW_ALIAS(allrman, db_show_all_rman);
1139 #endif
1140