xref: /freebsd/sys/kern/subr_rman.c (revision 2546665afcaf0d53dc2c7058fee96354b3680f5a)
1 /*
2  * Copyright 1998 Massachusetts Institute of Technology
3  *
4  * Permission to use, copy, modify, and distribute this software and
5  * its documentation for any purpose and without fee is hereby
6  * granted, provided that both the above copyright notice and this
7  * permission notice appear in all copies, that both the above
8  * copyright notice and this permission notice appear in all
9  * supporting documentation, and that the name of M.I.T. not be used
10  * in advertising or publicity pertaining to distribution of the
11  * software without specific, written prior permission.  M.I.T. makes
12  * no representations about the suitability of this software for any
13  * purpose.  It is provided "as is" without express or implied
14  * warranty.
15  *
16  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
17  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /*
31  * The kernel resource manager.  This code is responsible for keeping track
32  * of hardware resources which are apportioned out to various drivers.
33  * It does not actually assign those resources, and it is not expected
34  * that end-device drivers will call into this code directly.  Rather,
35  * the code which implements the buses that those devices are attached to,
36  * and the code which manages CPU resources, will call this code, and the
37  * end-device drivers will make upcalls to that code to actually perform
38  * the allocation.
39  *
40  * There are two sorts of resources managed by this code.  The first is
41  * the more familiar array (RMAN_ARRAY) type; resources in this class
42  * consist of a sequence of individually-allocatable objects which have
43  * been numbered in some well-defined order.  Most of the resources
44  * are of this type, as it is the most familiar.  The second type is
45  * called a gauge (RMAN_GAUGE), and models fungible resources (i.e.,
46  * resources in which each instance is indistinguishable from every
47  * other instance).  The principal anticipated application of gauges
48  * is in the context of power consumption, where a bus may have a specific
49  * power budget which all attached devices share.  RMAN_GAUGE is not
50  * implemented yet.
51  *
52  * For array resources, we make one simplifying assumption: two clients
53  * sharing the same resource must use the same range of indices.  That
54  * is to say, sharing of overlapping-but-not-identical regions is not
55  * permitted.
56  */
57 
58 #include <sys/cdefs.h>
59 __FBSDID("$FreeBSD$");
60 
61 #define __RMAN_RESOURCE_VISIBLE
62 #include <sys/param.h>
63 #include <sys/systm.h>
64 #include <sys/kernel.h>
65 #include <sys/lock.h>
66 #include <sys/malloc.h>
67 #include <sys/mutex.h>
68 #include <sys/bus.h>		/* XXX debugging */
69 #include <machine/bus.h>
70 #include <sys/rman.h>
71 #include <sys/sysctl.h>
72 
73 int     rman_debug = 0;
74 TUNABLE_INT("debug.rman_debug", &rman_debug);
75 SYSCTL_INT(_debug, OID_AUTO, rman_debug, CTLFLAG_RW,
76     &rman_debug, 0, "rman debug");
77 
78 #define DPRINTF(params) if (rman_debug) printf params
79 
80 static MALLOC_DEFINE(M_RMAN, "rman", "Resource manager");
81 
82 struct	rman_head rman_head;
83 static	struct mtx rman_mtx; /* mutex to protect rman_head */
84 static	int int_rman_activate_resource(struct rman *rm, struct resource *r,
85 				       struct resource **whohas);
86 static	int int_rman_deactivate_resource(struct resource *r);
87 static	int int_rman_release_resource(struct rman *rm, struct resource *r);
88 
89 int
90 rman_init(struct rman *rm)
91 {
92 	static int once;
93 
94 	if (once == 0) {
95 		once = 1;
96 		TAILQ_INIT(&rman_head);
97 		mtx_init(&rman_mtx, "rman head", NULL, MTX_DEF);
98 	}
99 
100 	if (rm->rm_type == RMAN_UNINIT)
101 		panic("rman_init");
102 	if (rm->rm_type == RMAN_GAUGE)
103 		panic("implement RMAN_GAUGE");
104 
105 	TAILQ_INIT(&rm->rm_list);
106 	rm->rm_mtx = malloc(sizeof *rm->rm_mtx, M_RMAN, M_NOWAIT | M_ZERO);
107 	if (rm->rm_mtx == 0)
108 		return ENOMEM;
109 	mtx_init(rm->rm_mtx, "rman", NULL, MTX_DEF);
110 
111 	mtx_lock(&rman_mtx);
112 	TAILQ_INSERT_TAIL(&rman_head, rm, rm_link);
113 	mtx_unlock(&rman_mtx);
114 	return 0;
115 }
116 
117 /*
118  * NB: this interface is not robust against programming errors which
119  * add multiple copies of the same region.
120  */
121 int
122 rman_manage_region(struct rman *rm, u_long start, u_long end)
123 {
124 	struct resource *r, *s;
125 
126 	r = malloc(sizeof *r, M_RMAN, M_NOWAIT | M_ZERO);
127 	if (r == 0)
128 		return ENOMEM;
129 	r->r_start = start;
130 	r->r_end = end;
131 	r->r_rm = rm;
132 
133 	mtx_lock(rm->rm_mtx);
134 	for (s = TAILQ_FIRST(&rm->rm_list);
135 	     s && s->r_end < r->r_start;
136 	     s = TAILQ_NEXT(s, r_link))
137 		;
138 
139 	if (s == NULL) {
140 		TAILQ_INSERT_TAIL(&rm->rm_list, r, r_link);
141 	} else {
142 		TAILQ_INSERT_BEFORE(s, r, r_link);
143 	}
144 
145 	mtx_unlock(rm->rm_mtx);
146 	return 0;
147 }
148 
149 int
150 rman_fini(struct rman *rm)
151 {
152 	struct resource *r;
153 
154 	mtx_lock(rm->rm_mtx);
155 	TAILQ_FOREACH(r, &rm->rm_list, r_link) {
156 		if (r->r_flags & RF_ALLOCATED) {
157 			mtx_unlock(rm->rm_mtx);
158 			return EBUSY;
159 		}
160 	}
161 
162 	/*
163 	 * There really should only be one of these if we are in this
164 	 * state and the code is working properly, but it can't hurt.
165 	 */
166 	while (!TAILQ_EMPTY(&rm->rm_list)) {
167 		r = TAILQ_FIRST(&rm->rm_list);
168 		TAILQ_REMOVE(&rm->rm_list, r, r_link);
169 		free(r, M_RMAN);
170 	}
171 	mtx_unlock(rm->rm_mtx);
172 	mtx_lock(&rman_mtx);
173 	TAILQ_REMOVE(&rman_head, rm, rm_link);
174 	mtx_unlock(&rman_mtx);
175 	mtx_destroy(rm->rm_mtx);
176 	free(rm->rm_mtx, M_RMAN);
177 
178 	return 0;
179 }
180 
181 struct resource *
182 rman_reserve_resource_bound(struct rman *rm, u_long start, u_long end,
183 		      u_long count, u_long bound,  u_int flags,
184 		      struct device *dev)
185 {
186 	u_int	want_activate;
187 	struct	resource *r, *s, *rv;
188 	u_long	rstart, rend, amask, bmask;
189 
190 	rv = 0;
191 
192 	DPRINTF(("rman_reserve_resource: <%s> request: [%#lx, %#lx], length "
193 	       "%#lx, flags %u, device %s\n", rm->rm_descr, start, end, count,
194 	       flags, dev == NULL ? "<null>" : device_get_nameunit(dev)));
195 	want_activate = (flags & RF_ACTIVE);
196 	flags &= ~RF_ACTIVE;
197 
198 	mtx_lock(rm->rm_mtx);
199 
200 	for (r = TAILQ_FIRST(&rm->rm_list);
201 	     r && r->r_end < start;
202 	     r = TAILQ_NEXT(r, r_link))
203 		;
204 
205 	if (r == NULL) {
206 		DPRINTF(("could not find a region\n"));
207 		goto out;
208 	}
209 
210 	amask = (1ul << RF_ALIGNMENT(flags)) - 1;
211 	/* If bound is 0, bmask will also be 0 */
212 	bmask = ~(bound - 1);
213 	/*
214 	 * First try to find an acceptable totally-unshared region.
215 	 */
216 	for (s = r; s; s = TAILQ_NEXT(s, r_link)) {
217 		DPRINTF(("considering [%#lx, %#lx]\n", s->r_start, s->r_end));
218 		if (s->r_start > end) {
219 			DPRINTF(("s->r_start (%#lx) > end (%#lx)\n", s->r_start, end));
220 			break;
221 		}
222 		if (s->r_flags & RF_ALLOCATED) {
223 			DPRINTF(("region is allocated\n"));
224 			continue;
225 		}
226 		rstart = ulmax(s->r_start, start);
227 		/*
228 		 * Try to find a region by adjusting to boundary and alignment
229 		 * until both conditions are satisfied. This is not an optimal
230 		 * algorithm, but in most cases it isn't really bad, either.
231 		 */
232 		do {
233 			rstart = (rstart + amask) & ~amask;
234 			if (((rstart ^ (rstart + count - 1)) & bmask) != 0)
235 				rstart += bound - (rstart & ~bmask);
236 		} while ((rstart & amask) != 0 && rstart < end &&
237 		    rstart < s->r_end);
238 		rend = ulmin(s->r_end, ulmax(rstart + count - 1, end));
239 		if (rstart > rend) {
240 			DPRINTF(("adjusted start exceeds end\n"));
241 			continue;
242 		}
243 		DPRINTF(("truncated region: [%#lx, %#lx]; size %#lx (requested %#lx)\n",
244 		       rstart, rend, (rend - rstart + 1), count));
245 
246 		if ((rend - rstart + 1) >= count) {
247 			DPRINTF(("candidate region: [%#lx, %#lx], size %#lx\n",
248 			       rend, rstart, (rend - rstart + 1)));
249 			if ((s->r_end - s->r_start + 1) == count) {
250 				DPRINTF(("candidate region is entire chunk\n"));
251 				rv = s;
252 				rv->r_flags |= RF_ALLOCATED | flags;
253 				rv->r_dev = dev;
254 				goto out;
255 			}
256 
257 			/*
258 			 * If s->r_start < rstart and
259 			 *    s->r_end > rstart + count - 1, then
260 			 * we need to split the region into three pieces
261 			 * (the middle one will get returned to the user).
262 			 * Otherwise, we are allocating at either the
263 			 * beginning or the end of s, so we only need to
264 			 * split it in two.  The first case requires
265 			 * two new allocations; the second requires but one.
266 			 */
267 			rv = malloc(sizeof *rv, M_RMAN, M_NOWAIT | M_ZERO);
268 			if (rv == 0)
269 				goto out;
270 			rv->r_start = rstart;
271 			rv->r_end = rstart + count - 1;
272 			rv->r_flags = flags | RF_ALLOCATED;
273 			rv->r_dev = dev;
274 			rv->r_rm = rm;
275 
276 			if (s->r_start < rv->r_start && s->r_end > rv->r_end) {
277 				DPRINTF(("splitting region in three parts: "
278 				       "[%#lx, %#lx]; [%#lx, %#lx]; [%#lx, %#lx]\n",
279 				       s->r_start, rv->r_start - 1,
280 				       rv->r_start, rv->r_end,
281 				       rv->r_end + 1, s->r_end));
282 				/*
283 				 * We are allocating in the middle.
284 				 */
285 				r = malloc(sizeof *r, M_RMAN, M_NOWAIT|M_ZERO);
286 				if (r == 0) {
287 					free(rv, M_RMAN);
288 					rv = 0;
289 					goto out;
290 				}
291 				r->r_start = rv->r_end + 1;
292 				r->r_end = s->r_end;
293 				r->r_flags = s->r_flags;
294 				r->r_rm = rm;
295 				s->r_end = rv->r_start - 1;
296 				TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
297 						     r_link);
298 				TAILQ_INSERT_AFTER(&rm->rm_list, rv, r,
299 						     r_link);
300 			} else if (s->r_start == rv->r_start) {
301 				DPRINTF(("allocating from the beginning\n"));
302 				/*
303 				 * We are allocating at the beginning.
304 				 */
305 				s->r_start = rv->r_end + 1;
306 				TAILQ_INSERT_BEFORE(s, rv, r_link);
307 			} else {
308 				DPRINTF(("allocating at the end\n"));
309 				/*
310 				 * We are allocating at the end.
311 				 */
312 				s->r_end = rv->r_start - 1;
313 				TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
314 						     r_link);
315 			}
316 			goto out;
317 		}
318 	}
319 
320 	/*
321 	 * Now find an acceptable shared region, if the client's requirements
322 	 * allow sharing.  By our implementation restriction, a candidate
323 	 * region must match exactly by both size and sharing type in order
324 	 * to be considered compatible with the client's request.  (The
325 	 * former restriction could probably be lifted without too much
326 	 * additional work, but this does not seem warranted.)
327 	 */
328 	DPRINTF(("no unshared regions found\n"));
329 	if ((flags & (RF_SHAREABLE | RF_TIMESHARE)) == 0)
330 		goto out;
331 
332 	for (s = r; s; s = TAILQ_NEXT(s, r_link)) {
333 		if (s->r_start > end)
334 			break;
335 		if ((s->r_flags & flags) != flags)
336 			continue;
337 		rstart = ulmax(s->r_start, start);
338 		rend = ulmin(s->r_end, ulmax(start + count - 1, end));
339 		if (s->r_start >= start && s->r_end <= end
340 		    && (s->r_end - s->r_start + 1) == count &&
341 		    (s->r_start & amask) == 0 &&
342 		    ((s->r_start ^ s->r_end) & bmask) == 0) {
343 			rv = malloc(sizeof *rv, M_RMAN, M_NOWAIT | M_ZERO);
344 			if (rv == 0)
345 				goto out;
346 			rv->r_start = s->r_start;
347 			rv->r_end = s->r_end;
348 			rv->r_flags = s->r_flags &
349 				(RF_ALLOCATED | RF_SHAREABLE | RF_TIMESHARE);
350 			rv->r_dev = dev;
351 			rv->r_rm = rm;
352 			if (s->r_sharehead == 0) {
353 				s->r_sharehead = malloc(sizeof *s->r_sharehead,
354 						M_RMAN, M_NOWAIT | M_ZERO);
355 				if (s->r_sharehead == 0) {
356 					free(rv, M_RMAN);
357 					rv = 0;
358 					goto out;
359 				}
360 				LIST_INIT(s->r_sharehead);
361 				LIST_INSERT_HEAD(s->r_sharehead, s,
362 						 r_sharelink);
363 				s->r_flags |= RF_FIRSTSHARE;
364 			}
365 			rv->r_sharehead = s->r_sharehead;
366 			LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink);
367 			goto out;
368 		}
369 	}
370 
371 	/*
372 	 * We couldn't find anything.
373 	 */
374 out:
375 	/*
376 	 * If the user specified RF_ACTIVE in the initial flags,
377 	 * which is reflected in `want_activate', we attempt to atomically
378 	 * activate the resource.  If this fails, we release the resource
379 	 * and indicate overall failure.  (This behavior probably doesn't
380 	 * make sense for RF_TIMESHARE-type resources.)
381 	 */
382 	if (rv && want_activate) {
383 		struct resource *whohas;
384 		if (int_rman_activate_resource(rm, rv, &whohas)) {
385 			int_rman_release_resource(rm, rv);
386 			rv = 0;
387 		}
388 	}
389 
390 	mtx_unlock(rm->rm_mtx);
391 	return (rv);
392 }
393 
394 struct resource *
395 rman_reserve_resource(struct rman *rm, u_long start, u_long end, u_long count,
396 		      u_int flags, struct device *dev)
397 {
398 
399 	return (rman_reserve_resource_bound(rm, start, end, count, 0, flags,
400 	    dev));
401 }
402 
403 static int
404 int_rman_activate_resource(struct rman *rm, struct resource *r,
405 			   struct resource **whohas)
406 {
407 	struct resource *s;
408 	int ok;
409 
410 	/*
411 	 * If we are not timesharing, then there is nothing much to do.
412 	 * If we already have the resource, then there is nothing at all to do.
413 	 * If we are not on a sharing list with anybody else, then there is
414 	 * little to do.
415 	 */
416 	if ((r->r_flags & RF_TIMESHARE) == 0
417 	    || (r->r_flags & RF_ACTIVE) != 0
418 	    || r->r_sharehead == 0) {
419 		r->r_flags |= RF_ACTIVE;
420 		return 0;
421 	}
422 
423 	ok = 1;
424 	for (s = LIST_FIRST(r->r_sharehead); s && ok;
425 	     s = LIST_NEXT(s, r_sharelink)) {
426 		if ((s->r_flags & RF_ACTIVE) != 0) {
427 			ok = 0;
428 			*whohas = s;
429 		}
430 	}
431 	if (ok) {
432 		r->r_flags |= RF_ACTIVE;
433 		return 0;
434 	}
435 	return EBUSY;
436 }
437 
438 int
439 rman_activate_resource(struct resource *r)
440 {
441 	int rv;
442 	struct resource *whohas;
443 	struct rman *rm;
444 
445 	rm = r->r_rm;
446 	mtx_lock(rm->rm_mtx);
447 	rv = int_rman_activate_resource(rm, r, &whohas);
448 	mtx_unlock(rm->rm_mtx);
449 	return rv;
450 }
451 
452 int
453 rman_await_resource(struct resource *r, int pri, int timo)
454 {
455 	int	rv;
456 	struct	resource *whohas;
457 	struct	rman *rm;
458 
459 	rm = r->r_rm;
460 	mtx_lock(rm->rm_mtx);
461 	for (;;) {
462 		rv = int_rman_activate_resource(rm, r, &whohas);
463 		if (rv != EBUSY)
464 			return (rv);	/* returns with mutex held */
465 
466 		if (r->r_sharehead == 0)
467 			panic("rman_await_resource");
468 		whohas->r_flags |= RF_WANTED;
469 		rv = msleep(r->r_sharehead, rm->rm_mtx, pri, "rmwait", timo);
470 		if (rv) {
471 			mtx_unlock(rm->rm_mtx);
472 			return (rv);
473 		}
474 	}
475 }
476 
477 static int
478 int_rman_deactivate_resource(struct resource *r)
479 {
480 
481 	r->r_flags &= ~RF_ACTIVE;
482 	if (r->r_flags & RF_WANTED) {
483 		r->r_flags &= ~RF_WANTED;
484 		wakeup(r->r_sharehead);
485 	}
486 	return 0;
487 }
488 
489 int
490 rman_deactivate_resource(struct resource *r)
491 {
492 	struct	rman *rm;
493 
494 	rm = r->r_rm;
495 	mtx_lock(rm->rm_mtx);
496 	int_rman_deactivate_resource(r);
497 	mtx_unlock(rm->rm_mtx);
498 	return 0;
499 }
500 
501 static int
502 int_rman_release_resource(struct rman *rm, struct resource *r)
503 {
504 	struct	resource *s, *t;
505 
506 	if (r->r_flags & RF_ACTIVE)
507 		int_rman_deactivate_resource(r);
508 
509 	/*
510 	 * Check for a sharing list first.  If there is one, then we don't
511 	 * have to think as hard.
512 	 */
513 	if (r->r_sharehead) {
514 		/*
515 		 * If a sharing list exists, then we know there are at
516 		 * least two sharers.
517 		 *
518 		 * If we are in the main circleq, appoint someone else.
519 		 */
520 		LIST_REMOVE(r, r_sharelink);
521 		s = LIST_FIRST(r->r_sharehead);
522 		if (r->r_flags & RF_FIRSTSHARE) {
523 			s->r_flags |= RF_FIRSTSHARE;
524 			TAILQ_INSERT_BEFORE(r, s, r_link);
525 			TAILQ_REMOVE(&rm->rm_list, r, r_link);
526 		}
527 
528 		/*
529 		 * Make sure that the sharing list goes away completely
530 		 * if the resource is no longer being shared at all.
531 		 */
532 		if (LIST_NEXT(s, r_sharelink) == 0) {
533 			free(s->r_sharehead, M_RMAN);
534 			s->r_sharehead = 0;
535 			s->r_flags &= ~RF_FIRSTSHARE;
536 		}
537 		goto out;
538 	}
539 
540 	/*
541 	 * Look at the adjacent resources in the list and see if our
542 	 * segment can be merged with any of them.
543 	 */
544 	s = TAILQ_PREV(r, resource_head, r_link);
545 	t = TAILQ_NEXT(r, r_link);
546 
547 	if (s != NULL && (s->r_flags & RF_ALLOCATED) == 0
548 	    && t != NULL && (t->r_flags & RF_ALLOCATED) == 0) {
549 		/*
550 		 * Merge all three segments.
551 		 */
552 		s->r_end = t->r_end;
553 		TAILQ_REMOVE(&rm->rm_list, r, r_link);
554 		TAILQ_REMOVE(&rm->rm_list, t, r_link);
555 		free(t, M_RMAN);
556 	} else if (s != NULL && (s->r_flags & RF_ALLOCATED) == 0) {
557 		/*
558 		 * Merge previous segment with ours.
559 		 */
560 		s->r_end = r->r_end;
561 		TAILQ_REMOVE(&rm->rm_list, r, r_link);
562 	} else if (t != NULL && (t->r_flags & RF_ALLOCATED) == 0) {
563 		/*
564 		 * Merge next segment with ours.
565 		 */
566 		t->r_start = r->r_start;
567 		TAILQ_REMOVE(&rm->rm_list, r, r_link);
568 	} else {
569 		/*
570 		 * At this point, we know there is nothing we
571 		 * can potentially merge with, because on each
572 		 * side, there is either nothing there or what is
573 		 * there is still allocated.  In that case, we don't
574 		 * want to remove r from the list; we simply want to
575 		 * change it to an unallocated region and return
576 		 * without freeing anything.
577 		 */
578 		r->r_flags &= ~RF_ALLOCATED;
579 		return 0;
580 	}
581 
582 out:
583 	free(r, M_RMAN);
584 	return 0;
585 }
586 
587 int
588 rman_release_resource(struct resource *r)
589 {
590 	int	rv;
591 	struct	rman *rm = r->r_rm;
592 
593 	mtx_lock(rm->rm_mtx);
594 	rv = int_rman_release_resource(rm, r);
595 	mtx_unlock(rm->rm_mtx);
596 	return (rv);
597 }
598 
599 uint32_t
600 rman_make_alignment_flags(uint32_t size)
601 {
602 	int	i;
603 
604 	/*
605 	 * Find the hightest bit set, and add one if more than one bit
606 	 * set.  We're effectively computing the ceil(log2(size)) here.
607 	 */
608 	for (i = 31; i > 0; i--)
609 		if ((1 << i) & size)
610 			break;
611 	if (~(1 << i) & size)
612 		i++;
613 
614 	return(RF_ALIGNMENT_LOG2(i));
615 }
616 
617 u_long
618 rman_get_start(struct resource *r)
619 {
620 	return (r->r_start);
621 }
622 
623 u_long
624 rman_get_end(struct resource *r)
625 {
626 	return (r->r_end);
627 }
628 
629 u_long
630 rman_get_size(struct resource *r)
631 {
632 	return (r->r_end - r->r_start + 1);
633 }
634 
635 u_int
636 rman_get_flags(struct resource *r)
637 {
638 	return (r->r_flags);
639 }
640 
641 void
642 rman_set_virtual(struct resource *r, void *v)
643 {
644 	r->r_virtual = v;
645 }
646 
647 void *
648 rman_get_virtual(struct resource *r)
649 {
650 	return (r->r_virtual);
651 }
652 
653 void
654 rman_set_bustag(struct resource *r, bus_space_tag_t t)
655 {
656 	r->r_bustag = t;
657 }
658 
659 bus_space_tag_t
660 rman_get_bustag(struct resource *r)
661 {
662 	return (r->r_bustag);
663 }
664 
665 void
666 rman_set_bushandle(struct resource *r, bus_space_handle_t h)
667 {
668 	r->r_bushandle = h;
669 }
670 
671 bus_space_handle_t
672 rman_get_bushandle(struct resource *r)
673 {
674 	return (r->r_bushandle);
675 }
676 
677 void
678 rman_set_rid(struct resource *r, int rid)
679 {
680 	r->r_rid = rid;
681 }
682 
683 void
684 rman_set_start(struct resource *r, u_long start)
685 {
686 	r->r_start = start;
687 }
688 
689 void
690 rman_set_end(struct resource *r, u_long end)
691 {
692 	r->r_end = end;
693 }
694 
695 int
696 rman_get_rid(struct resource *r)
697 {
698 	return (r->r_rid);
699 }
700 
701 struct device *
702 rman_get_device(struct resource *r)
703 {
704 	return (r->r_dev);
705 }
706