xref: /freebsd/sys/kern/subr_prof.c (revision ca2e4ecd7395ba655ab4bebe7262a06e634216ce)
1 /*-
2  * Copyright (c) 1982, 1986, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)subr_prof.c	8.3 (Berkeley) 9/23/93
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/sysproto.h>
38 #include <sys/kernel.h>
39 #include <sys/lock.h>
40 #include <sys/mutex.h>
41 #include <sys/proc.h>
42 #include <sys/resourcevar.h>
43 #include <sys/sysctl.h>
44 
45 #include <machine/cpu.h>
46 
47 #ifdef GPROF
48 #include <sys/malloc.h>
49 #include <sys/gmon.h>
50 #undef MCOUNT
51 
52 static MALLOC_DEFINE(M_GPROF, "gprof", "kernel profiling buffer");
53 
54 static void kmstartup(void *);
55 SYSINIT(kmem, SI_SUB_KPROF, SI_ORDER_FIRST, kmstartup, NULL);
56 
57 struct gmonparam _gmonparam = { GMON_PROF_OFF };
58 
59 #ifdef GUPROF
60 void
61 nullfunc_loop_profiled()
62 {
63 	int i;
64 
65 	for (i = 0; i < CALIB_SCALE; i++)
66 		nullfunc_profiled();
67 }
68 
69 #define	nullfunc_loop_profiled_end	nullfunc_profiled	/* XXX */
70 
71 void
72 nullfunc_profiled()
73 {
74 }
75 #endif /* GUPROF */
76 
77 /*
78  * Update the histograms to support extending the text region arbitrarily.
79  * This is done slightly naively (no sparse regions), so will waste slight
80  * amounts of memory, but will overall work nicely enough to allow profiling
81  * of KLDs.
82  */
83 void
84 kmupetext(uintfptr_t nhighpc)
85 {
86 	struct gmonparam np;	/* slightly large */
87 	struct gmonparam *p = &_gmonparam;
88 	char *cp;
89 
90 	GIANT_REQUIRED;
91 	bcopy(p, &np, sizeof(*p));
92 	np.highpc = ROUNDUP(nhighpc, HISTFRACTION * sizeof(HISTCOUNTER));
93 	if (np.highpc <= p->highpc)
94 		return;
95 	np.textsize = np.highpc - p->lowpc;
96 	np.kcountsize = np.textsize / HISTFRACTION;
97 	np.hashfraction = HASHFRACTION;
98 	np.fromssize = np.textsize / HASHFRACTION;
99 	np.tolimit = np.textsize * ARCDENSITY / 100;
100 	if (np.tolimit < MINARCS)
101 		np.tolimit = MINARCS;
102 	else if (np.tolimit > MAXARCS)
103 		np.tolimit = MAXARCS;
104 	np.tossize = np.tolimit * sizeof(struct tostruct);
105 	cp = malloc(np.kcountsize + np.fromssize + np.tossize,
106 	    M_GPROF, M_WAITOK);
107 	/*
108 	 * Check for something else extending highpc while we slept.
109 	 */
110 	if (np.highpc <= p->highpc) {
111 		free(cp, M_GPROF);
112 		return;
113 	}
114 	np.tos = (struct tostruct *)cp;
115 	cp += np.tossize;
116 	np.kcount = (HISTCOUNTER *)cp;
117 	cp += np.kcountsize;
118 	np.froms = (u_short *)cp;
119 #ifdef GUPROF
120 	/* Reinitialize pointers to overhead counters. */
121 	np.cputime_count = &KCOUNT(&np, PC_TO_I(&np, cputime));
122 	np.mcount_count = &KCOUNT(&np, PC_TO_I(&np, mcount));
123 	np.mexitcount_count = &KCOUNT(&np, PC_TO_I(&np, mexitcount));
124 #endif
125 	critical_enter();
126 	bcopy(p->tos, np.tos, p->tossize);
127 	bzero((char *)np.tos + p->tossize, np.tossize - p->tossize);
128 	bcopy(p->kcount, np.kcount, p->kcountsize);
129 	bzero((char *)np.kcount + p->kcountsize, np.kcountsize -
130 	    p->kcountsize);
131 	bcopy(p->froms, np.froms, p->fromssize);
132 	bzero((char *)np.froms + p->fromssize, np.fromssize - p->fromssize);
133 	cp = (char *)p->tos;
134 	bcopy(&np, p, sizeof(*p));
135 	critical_exit();
136 	free(cp, M_GPROF);
137 }
138 
139 static void
140 kmstartup(dummy)
141 	void *dummy;
142 {
143 	char *cp;
144 	struct gmonparam *p = &_gmonparam;
145 #ifdef GUPROF
146 	int cputime_overhead;
147 	int empty_loop_time;
148 	int i;
149 	int mcount_overhead;
150 	int mexitcount_overhead;
151 	int nullfunc_loop_overhead;
152 	int nullfunc_loop_profiled_time;
153 	uintfptr_t tmp_addr;
154 #endif
155 
156 	/*
157 	 * Round lowpc and highpc to multiples of the density we're using
158 	 * so the rest of the scaling (here and in gprof) stays in ints.
159 	 */
160 	p->lowpc = ROUNDDOWN((u_long)btext, HISTFRACTION * sizeof(HISTCOUNTER));
161 	p->highpc = ROUNDUP((u_long)etext, HISTFRACTION * sizeof(HISTCOUNTER));
162 	p->textsize = p->highpc - p->lowpc;
163 	printf("Profiling kernel, textsize=%lu [%jx..%jx]\n",
164 	    p->textsize, (uintmax_t)p->lowpc, (uintmax_t)p->highpc);
165 	p->kcountsize = p->textsize / HISTFRACTION;
166 	p->hashfraction = HASHFRACTION;
167 	p->fromssize = p->textsize / HASHFRACTION;
168 	p->tolimit = p->textsize * ARCDENSITY / 100;
169 	if (p->tolimit < MINARCS)
170 		p->tolimit = MINARCS;
171 	else if (p->tolimit > MAXARCS)
172 		p->tolimit = MAXARCS;
173 	p->tossize = p->tolimit * sizeof(struct tostruct);
174 	cp = (char *)malloc(p->kcountsize + p->fromssize + p->tossize,
175 	    M_GPROF, M_WAITOK | M_ZERO);
176 	p->tos = (struct tostruct *)cp;
177 	cp += p->tossize;
178 	p->kcount = (HISTCOUNTER *)cp;
179 	cp += p->kcountsize;
180 	p->froms = (u_short *)cp;
181 	p->histcounter_type = FUNCTION_ALIGNMENT / HISTFRACTION * NBBY;
182 
183 #ifdef GUPROF
184 	/* Signed counters. */
185 	p->histcounter_type = -p->histcounter_type;
186 
187 	/* Initialize pointers to overhead counters. */
188 	p->cputime_count = &KCOUNT(p, PC_TO_I(p, cputime));
189 	p->mcount_count = &KCOUNT(p, PC_TO_I(p, mcount));
190 	p->mexitcount_count = &KCOUNT(p, PC_TO_I(p, mexitcount));
191 
192 	/*
193 	 * Disable interrupts to avoid interference while we calibrate
194 	 * things.
195 	 */
196 	critical_enter();
197 
198 	/*
199 	 * Determine overheads.
200 	 * XXX this needs to be repeated for each useful timer/counter.
201 	 */
202 	cputime_overhead = 0;
203 	startguprof(p);
204 	for (i = 0; i < CALIB_SCALE; i++)
205 		cputime_overhead += cputime();
206 
207 	empty_loop();
208 	startguprof(p);
209 	empty_loop();
210 	empty_loop_time = cputime();
211 
212 	nullfunc_loop_profiled();
213 
214 	/*
215 	 * Start profiling.  There won't be any normal function calls since
216 	 * interrupts are disabled, but we will call the profiling routines
217 	 * directly to determine their overheads.
218 	 */
219 	p->state = GMON_PROF_HIRES;
220 
221 	startguprof(p);
222 	nullfunc_loop_profiled();
223 
224 	startguprof(p);
225 	for (i = 0; i < CALIB_SCALE; i++)
226 		MCOUNT_OVERHEAD(sys_profil);
227 	mcount_overhead = KCOUNT(p, PC_TO_I(p, sys_profil));
228 
229 	startguprof(p);
230 	for (i = 0; i < CALIB_SCALE; i++)
231 		MEXITCOUNT_OVERHEAD();
232 	MEXITCOUNT_OVERHEAD_GETLABEL(tmp_addr);
233 	mexitcount_overhead = KCOUNT(p, PC_TO_I(p, tmp_addr));
234 
235 	p->state = GMON_PROF_OFF;
236 	stopguprof(p);
237 
238 	critical_exit();
239 
240 	nullfunc_loop_profiled_time = 0;
241 	for (tmp_addr = (uintfptr_t)nullfunc_loop_profiled;
242 	     tmp_addr < (uintfptr_t)nullfunc_loop_profiled_end;
243 	     tmp_addr += HISTFRACTION * sizeof(HISTCOUNTER))
244 		nullfunc_loop_profiled_time += KCOUNT(p, PC_TO_I(p, tmp_addr));
245 #define CALIB_DOSCALE(count)	(((count) + CALIB_SCALE / 3) / CALIB_SCALE)
246 #define	c2n(count, freq)	((int)((count) * 1000000000LL / freq))
247 	printf("cputime %d, empty_loop %d, nullfunc_loop_profiled %d, mcount %d, mexitcount %d\n",
248 	       CALIB_DOSCALE(c2n(cputime_overhead, p->profrate)),
249 	       CALIB_DOSCALE(c2n(empty_loop_time, p->profrate)),
250 	       CALIB_DOSCALE(c2n(nullfunc_loop_profiled_time, p->profrate)),
251 	       CALIB_DOSCALE(c2n(mcount_overhead, p->profrate)),
252 	       CALIB_DOSCALE(c2n(mexitcount_overhead, p->profrate)));
253 	cputime_overhead -= empty_loop_time;
254 	mcount_overhead -= empty_loop_time;
255 	mexitcount_overhead -= empty_loop_time;
256 
257 	/*-
258 	 * Profiling overheads are determined by the times between the
259 	 * following events:
260 	 *	MC1: mcount() is called
261 	 *	MC2: cputime() (called from mcount()) latches the timer
262 	 *	MC3: mcount() completes
263 	 *	ME1: mexitcount() is called
264 	 *	ME2: cputime() (called from mexitcount()) latches the timer
265 	 *	ME3: mexitcount() completes.
266 	 * The times between the events vary slightly depending on instruction
267 	 * combination and cache misses, etc.  Attempt to determine the
268 	 * minimum times.  These can be subtracted from the profiling times
269 	 * without much risk of reducing the profiling times below what they
270 	 * would be when profiling is not configured.  Abbreviate:
271 	 *	ab = minimum time between MC1 and MC3
272 	 *	a  = minumum time between MC1 and MC2
273 	 *	b  = minimum time between MC2 and MC3
274 	 *	cd = minimum time between ME1 and ME3
275 	 *	c  = minimum time between ME1 and ME2
276 	 *	d  = minimum time between ME2 and ME3.
277 	 * These satisfy the relations:
278 	 *	ab            <= mcount_overhead		(just measured)
279 	 *	a + b         <= ab
280 	 *	        cd    <= mexitcount_overhead		(just measured)
281 	 *	        c + d <= cd
282 	 *	a         + d <= nullfunc_loop_profiled_time	(just measured)
283 	 *	a >= 0, b >= 0, c >= 0, d >= 0.
284 	 * Assume that ab and cd are equal to the minimums.
285 	 */
286 	p->cputime_overhead = CALIB_DOSCALE(cputime_overhead);
287 	p->mcount_overhead = CALIB_DOSCALE(mcount_overhead - cputime_overhead);
288 	p->mexitcount_overhead = CALIB_DOSCALE(mexitcount_overhead
289 					       - cputime_overhead);
290 	nullfunc_loop_overhead = nullfunc_loop_profiled_time - empty_loop_time;
291 	p->mexitcount_post_overhead = CALIB_DOSCALE((mcount_overhead
292 						     - nullfunc_loop_overhead)
293 						    / 4);
294 	p->mexitcount_pre_overhead = p->mexitcount_overhead
295 				     + p->cputime_overhead
296 				     - p->mexitcount_post_overhead;
297 	p->mcount_pre_overhead = CALIB_DOSCALE(nullfunc_loop_overhead)
298 				 - p->mexitcount_post_overhead;
299 	p->mcount_post_overhead = p->mcount_overhead
300 				  + p->cputime_overhead
301 				  - p->mcount_pre_overhead;
302 	printf(
303 "Profiling overheads: mcount: %d+%d, %d+%d; mexitcount: %d+%d, %d+%d nsec\n",
304 	       c2n(p->cputime_overhead, p->profrate),
305 	       c2n(p->mcount_overhead, p->profrate),
306 	       c2n(p->mcount_pre_overhead, p->profrate),
307 	       c2n(p->mcount_post_overhead, p->profrate),
308 	       c2n(p->cputime_overhead, p->profrate),
309 	       c2n(p->mexitcount_overhead, p->profrate),
310 	       c2n(p->mexitcount_pre_overhead, p->profrate),
311 	       c2n(p->mexitcount_post_overhead, p->profrate));
312 	printf(
313 "Profiling overheads: mcount: %d+%d, %d+%d; mexitcount: %d+%d, %d+%d cycles\n",
314 	       p->cputime_overhead, p->mcount_overhead,
315 	       p->mcount_pre_overhead, p->mcount_post_overhead,
316 	       p->cputime_overhead, p->mexitcount_overhead,
317 	       p->mexitcount_pre_overhead, p->mexitcount_post_overhead);
318 #endif /* GUPROF */
319 }
320 
321 /*
322  * Return kernel profiling information.
323  */
324 static int
325 sysctl_kern_prof(SYSCTL_HANDLER_ARGS)
326 {
327 	int *name = (int *) arg1;
328 	u_int namelen = arg2;
329 	struct gmonparam *gp = &_gmonparam;
330 	int error;
331 	int state;
332 
333 	/* all sysctl names at this level are terminal */
334 	if (namelen != 1)
335 		return (ENOTDIR);		/* overloaded */
336 
337 	switch (name[0]) {
338 	case GPROF_STATE:
339 		state = gp->state;
340 		error = sysctl_handle_int(oidp, &state, 0, req);
341 		if (error)
342 			return (error);
343 		if (!req->newptr)
344 			return (0);
345 		if (state == GMON_PROF_OFF) {
346 			gp->state = state;
347 			PROC_LOCK(&proc0);
348 			stopprofclock(&proc0);
349 			PROC_UNLOCK(&proc0);
350 			stopguprof(gp);
351 		} else if (state == GMON_PROF_ON) {
352 			gp->state = GMON_PROF_OFF;
353 			stopguprof(gp);
354 			gp->profrate = profhz;
355 			PROC_LOCK(&proc0);
356 			startprofclock(&proc0);
357 			PROC_UNLOCK(&proc0);
358 			gp->state = state;
359 #ifdef GUPROF
360 		} else if (state == GMON_PROF_HIRES) {
361 			gp->state = GMON_PROF_OFF;
362 			PROC_LOCK(&proc0);
363 			stopprofclock(&proc0);
364 			PROC_UNLOCK(&proc0);
365 			startguprof(gp);
366 			gp->state = state;
367 #endif
368 		} else if (state != gp->state)
369 			return (EINVAL);
370 		return (0);
371 	case GPROF_COUNT:
372 		return (sysctl_handle_opaque(oidp,
373 			gp->kcount, gp->kcountsize, req));
374 	case GPROF_FROMS:
375 		return (sysctl_handle_opaque(oidp,
376 			gp->froms, gp->fromssize, req));
377 	case GPROF_TOS:
378 		return (sysctl_handle_opaque(oidp,
379 			gp->tos, gp->tossize, req));
380 	case GPROF_GMONPARAM:
381 		return (sysctl_handle_opaque(oidp, gp, sizeof *gp, req));
382 	default:
383 		return (EOPNOTSUPP);
384 	}
385 	/* NOTREACHED */
386 }
387 
388 static SYSCTL_NODE(_kern, KERN_PROF, prof, CTLFLAG_RW, sysctl_kern_prof, "");
389 #endif /* GPROF */
390 
391 /*
392  * Profiling system call.
393  *
394  * The scale factor is a fixed point number with 16 bits of fraction, so that
395  * 1.0 is represented as 0x10000.  A scale factor of 0 turns off profiling.
396  */
397 #ifndef _SYS_SYSPROTO_H_
398 struct profil_args {
399 	caddr_t	samples;
400 	size_t	size;
401 	size_t	offset;
402 	u_int	scale;
403 };
404 #endif
405 /* ARGSUSED */
406 int
407 sys_profil(struct thread *td, struct profil_args *uap)
408 {
409 	struct uprof *upp;
410 	struct proc *p;
411 
412 	if (uap->scale > (1 << 16))
413 		return (EINVAL);
414 
415 	p = td->td_proc;
416 	if (uap->scale == 0) {
417 		PROC_LOCK(p);
418 		stopprofclock(p);
419 		PROC_UNLOCK(p);
420 		return (0);
421 	}
422 	PROC_LOCK(p);
423 	upp = &td->td_proc->p_stats->p_prof;
424 	PROC_PROFLOCK(p);
425 	upp->pr_off = uap->offset;
426 	upp->pr_scale = uap->scale;
427 	upp->pr_base = uap->samples;
428 	upp->pr_size = uap->size;
429 	PROC_PROFUNLOCK(p);
430 	startprofclock(p);
431 	PROC_UNLOCK(p);
432 
433 	return (0);
434 }
435 
436 /*
437  * Scale is a fixed-point number with the binary point 16 bits
438  * into the value, and is <= 1.0.  pc is at most 32 bits, so the
439  * intermediate result is at most 48 bits.
440  */
441 #define	PC_TO_INDEX(pc, prof) \
442 	((int)(((u_quad_t)((pc) - (prof)->pr_off) * \
443 	    (u_quad_t)((prof)->pr_scale)) >> 16) & ~1)
444 
445 /*
446  * Collect user-level profiling statistics; called on a profiling tick,
447  * when a process is running in user-mode.  This routine may be called
448  * from an interrupt context.  We try to update the user profiling buffers
449  * cheaply with fuswintr() and suswintr().  If that fails, we revert to
450  * an AST that will vector us to trap() with a context in which copyin
451  * and copyout will work.  Trap will then call addupc_task().
452  *
453  * Note that we may (rarely) not get around to the AST soon enough, and
454  * lose profile ticks when the next tick overwrites this one, but in this
455  * case the system is overloaded and the profile is probably already
456  * inaccurate.
457  */
458 void
459 addupc_intr(struct thread *td, uintfptr_t pc, u_int ticks)
460 {
461 	struct uprof *prof;
462 	caddr_t addr;
463 	u_int i;
464 	int v;
465 
466 	if (ticks == 0)
467 		return;
468 	prof = &td->td_proc->p_stats->p_prof;
469 	PROC_PROFLOCK(td->td_proc);
470 	if (pc < prof->pr_off ||
471 	    (i = PC_TO_INDEX(pc, prof)) >= prof->pr_size) {
472 		PROC_PROFUNLOCK(td->td_proc);
473 		return;			/* out of range; ignore */
474 	}
475 
476 	addr = prof->pr_base + i;
477 	PROC_PROFUNLOCK(td->td_proc);
478 	if ((v = fuswintr(addr)) == -1 || suswintr(addr, v + ticks) == -1) {
479 		td->td_profil_addr = pc;
480 		td->td_profil_ticks = ticks;
481 		td->td_pflags |= TDP_OWEUPC;
482 		thread_lock(td);
483 		td->td_flags |= TDF_ASTPENDING;
484 		thread_unlock(td);
485 	}
486 }
487 
488 /*
489  * Much like before, but we can afford to take faults here.  If the
490  * update fails, we simply turn off profiling.
491  */
492 void
493 addupc_task(struct thread *td, uintfptr_t pc, u_int ticks)
494 {
495 	struct proc *p = td->td_proc;
496 	struct uprof *prof;
497 	caddr_t addr;
498 	u_int i;
499 	u_short v;
500 	int stop = 0;
501 
502 	if (ticks == 0)
503 		return;
504 
505 	PROC_LOCK(p);
506 	if (!(p->p_flag & P_PROFIL)) {
507 		PROC_UNLOCK(p);
508 		return;
509 	}
510 	p->p_profthreads++;
511 	prof = &p->p_stats->p_prof;
512 	PROC_PROFLOCK(p);
513 	if (pc < prof->pr_off ||
514 	    (i = PC_TO_INDEX(pc, prof)) >= prof->pr_size) {
515 		PROC_PROFUNLOCK(p);
516 		goto out;
517 	}
518 
519 	addr = prof->pr_base + i;
520 	PROC_PROFUNLOCK(p);
521 	PROC_UNLOCK(p);
522 	if (copyin(addr, &v, sizeof(v)) == 0) {
523 		v += ticks;
524 		if (copyout(&v, addr, sizeof(v)) == 0) {
525 			PROC_LOCK(p);
526 			goto out;
527 		}
528 	}
529 	stop = 1;
530 	PROC_LOCK(p);
531 
532 out:
533 	if (--p->p_profthreads == 0) {
534 		if (p->p_flag & P_STOPPROF) {
535 			wakeup(&p->p_profthreads);
536 			p->p_flag &= ~P_STOPPROF;
537 			stop = 0;
538 		}
539 	}
540 	if (stop)
541 		stopprofclock(p);
542 	PROC_UNLOCK(p);
543 }
544