xref: /freebsd/sys/kern/subr_prof.c (revision 8fa113e5fc65fe6abc757f0089f477a87ee4d185)
1 /*-
2  * Copyright (c) 1982, 1986, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)subr_prof.c	8.3 (Berkeley) 9/23/93
34  * $FreeBSD$
35  */
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/sysproto.h>
40 #include <sys/kernel.h>
41 #include <sys/lock.h>
42 #include <sys/mutex.h>
43 #include <sys/proc.h>
44 #include <sys/resourcevar.h>
45 #include <sys/sysctl.h>
46 
47 #include <machine/cpu.h>
48 
49 #ifdef GPROF
50 #include <sys/malloc.h>
51 #include <sys/gmon.h>
52 #undef MCOUNT
53 
54 static MALLOC_DEFINE(M_GPROF, "gprof", "kernel profiling buffer");
55 
56 static void kmstartup __P((void *));
57 SYSINIT(kmem, SI_SUB_KPROF, SI_ORDER_FIRST, kmstartup, NULL)
58 
59 struct gmonparam _gmonparam = { GMON_PROF_OFF };
60 
61 #ifdef GUPROF
62 #include <machine/asmacros.h>
63 
64 void
65 nullfunc_loop_profiled()
66 {
67 	int i;
68 
69 	for (i = 0; i < CALIB_SCALE; i++)
70 		nullfunc_profiled();
71 }
72 
73 #define	nullfunc_loop_profiled_end	nullfunc_profiled	/* XXX */
74 
75 void
76 nullfunc_profiled()
77 {
78 }
79 #endif /* GUPROF */
80 
81 /*
82  * Update the histograms to support extending the text region arbitrarily.
83  * This is done slightly naively (no sparse regions), so will waste slight
84  * amounts of memory, but will overall work nicely enough to allow profiling
85  * of KLDs.
86  */
87 void
88 kmupetext(uintfptr_t nhighpc)
89 {
90 	struct gmonparam np;	/* slightly large */
91 	struct gmonparam *p = &_gmonparam;
92 	char *cp;
93 	critical_t savecrit;
94 
95 	GIANT_REQUIRED;
96 	bcopy(p, &np, sizeof(*p));
97 	np.highpc = ROUNDUP(nhighpc, HISTFRACTION * sizeof(HISTCOUNTER));
98 	if (np.highpc <= p->highpc)
99 		return;
100 	np.textsize = np.highpc - p->lowpc;
101 	np.kcountsize = np.textsize / HISTFRACTION;
102 	np.hashfraction = HASHFRACTION;
103 	np.fromssize = np.textsize / HASHFRACTION;
104 	np.tolimit = np.textsize * ARCDENSITY / 100;
105 	if (np.tolimit < MINARCS)
106 		np.tolimit = MINARCS;
107 	else if (np.tolimit > MAXARCS)
108 		np.tolimit = MAXARCS;
109 	np.tossize = np.tolimit * sizeof(struct tostruct);
110 	cp = malloc(np.kcountsize + np.fromssize + np.tossize,
111 	    M_GPROF, M_WAITOK);
112 	/*
113 	 * Check for something else extending highpc while we slept.
114 	 */
115 	if (np.highpc <= p->highpc) {
116 		free(cp, M_GPROF);
117 		return;
118 	}
119 	np.tos = (struct tostruct *)cp;
120 	cp += np.tossize;
121 	np.kcount = (HISTCOUNTER *)cp;
122 	cp += np.kcountsize;
123 	np.froms = (u_short *)cp;
124 #ifdef GUPROF
125 	/* Reinitialize pointers to overhead counters. */
126 	np.cputime_count = &KCOUNT(&np, PC_TO_I(&np, cputime));
127 	np.mcount_count = &KCOUNT(&np, PC_TO_I(&np, mcount));
128 	np.mexitcount_count = &KCOUNT(&np, PC_TO_I(&np, mexitcount));
129 #endif
130 	savecrit = critical_enter();
131 	bcopy(p->tos, np.tos, p->tossize);
132 	bzero((char *)np.tos + p->tossize, np.tossize - p->tossize);
133 	bcopy(p->kcount, np.kcount, p->kcountsize);
134 	bzero((char *)np.kcount + p->kcountsize, np.kcountsize -
135 	    p->kcountsize);
136 	bcopy(p->froms, np.froms, p->fromssize);
137 	bzero((char *)np.froms + p->fromssize, np.fromssize - p->fromssize);
138 	cp = (char *)p->tos;
139 	bcopy(&np, p, sizeof(*p));
140 	critical_exit(savecrit);
141 	free(cp, M_GPROF);
142 }
143 
144 static void
145 kmstartup(dummy)
146 	void *dummy;
147 {
148 	char *cp;
149 	struct gmonparam *p = &_gmonparam;
150 #ifdef GUPROF
151 	int cputime_overhead;
152 	int empty_loop_time;
153 	int i;
154 	int mcount_overhead;
155 	int mexitcount_overhead;
156 	int nullfunc_loop_overhead;
157 	int nullfunc_loop_profiled_time;
158 	uintfptr_t tmp_addr;
159 	critical_t savecrit;
160 #endif
161 
162 	/*
163 	 * Round lowpc and highpc to multiples of the density we're using
164 	 * so the rest of the scaling (here and in gprof) stays in ints.
165 	 */
166 	p->lowpc = ROUNDDOWN((u_long)btext, HISTFRACTION * sizeof(HISTCOUNTER));
167 	p->highpc = ROUNDUP((u_long)etext, HISTFRACTION * sizeof(HISTCOUNTER));
168 	p->textsize = p->highpc - p->lowpc;
169 	printf("Profiling kernel, textsize=%lu [%x..%x]\n",
170 	       p->textsize, p->lowpc, p->highpc);
171 	p->kcountsize = p->textsize / HISTFRACTION;
172 	p->hashfraction = HASHFRACTION;
173 	p->fromssize = p->textsize / HASHFRACTION;
174 	p->tolimit = p->textsize * ARCDENSITY / 100;
175 	if (p->tolimit < MINARCS)
176 		p->tolimit = MINARCS;
177 	else if (p->tolimit > MAXARCS)
178 		p->tolimit = MAXARCS;
179 	p->tossize = p->tolimit * sizeof(struct tostruct);
180 	cp = (char *)malloc(p->kcountsize + p->fromssize + p->tossize,
181 	    M_GPROF, M_WAITOK | M_ZERO);
182 	p->tos = (struct tostruct *)cp;
183 	cp += p->tossize;
184 	p->kcount = (HISTCOUNTER *)cp;
185 	cp += p->kcountsize;
186 	p->froms = (u_short *)cp;
187 
188 #ifdef GUPROF
189 	/* Initialize pointers to overhead counters. */
190 	p->cputime_count = &KCOUNT(p, PC_TO_I(p, cputime));
191 	p->mcount_count = &KCOUNT(p, PC_TO_I(p, mcount));
192 	p->mexitcount_count = &KCOUNT(p, PC_TO_I(p, mexitcount));
193 
194 	/*
195 	 * Disable interrupts to avoid interference while we calibrate
196 	 * things.
197 	 */
198 	savecrit = critical_enter();
199 
200 	/*
201 	 * Determine overheads.
202 	 * XXX this needs to be repeated for each useful timer/counter.
203 	 */
204 	cputime_overhead = 0;
205 	startguprof(p);
206 	for (i = 0; i < CALIB_SCALE; i++)
207 		cputime_overhead += cputime();
208 
209 	empty_loop();
210 	startguprof(p);
211 	empty_loop();
212 	empty_loop_time = cputime();
213 
214 	nullfunc_loop_profiled();
215 
216 	/*
217 	 * Start profiling.  There won't be any normal function calls since
218 	 * interrupts are disabled, but we will call the profiling routines
219 	 * directly to determine their overheads.
220 	 */
221 	p->state = GMON_PROF_HIRES;
222 
223 	startguprof(p);
224 	nullfunc_loop_profiled();
225 
226 	startguprof(p);
227 	for (i = 0; i < CALIB_SCALE; i++)
228 #if defined(__i386__) && __GNUC__ >= 2
229 		__asm("pushl %0; call __mcount; popl %%ecx"
230 		      :
231 		      : "i" (profil)
232 		      : "ax", "bx", "cx", "dx", "memory");
233 #else
234 #error
235 #endif
236 	mcount_overhead = KCOUNT(p, PC_TO_I(p, profil));
237 
238 	startguprof(p);
239 	for (i = 0; i < CALIB_SCALE; i++)
240 #if defined(__i386__) && __GNUC__ >= 2
241 		    __asm("call " __XSTRING(HIDENAME(mexitcount)) "; 1:"
242 			  : : : "ax", "bx", "cx", "dx", "memory");
243 	__asm("movl $1b,%0" : "=rm" (tmp_addr));
244 #else
245 #error
246 #endif
247 	mexitcount_overhead = KCOUNT(p, PC_TO_I(p, tmp_addr));
248 
249 	p->state = GMON_PROF_OFF;
250 	stopguprof(p);
251 
252 	critical_exit(savecrit);
253 
254 	nullfunc_loop_profiled_time = 0;
255 	for (tmp_addr = (uintfptr_t)nullfunc_loop_profiled;
256 	     tmp_addr < (uintfptr_t)nullfunc_loop_profiled_end;
257 	     tmp_addr += HISTFRACTION * sizeof(HISTCOUNTER))
258 		nullfunc_loop_profiled_time += KCOUNT(p, PC_TO_I(p, tmp_addr));
259 #define CALIB_DOSCALE(count)	(((count) + CALIB_SCALE / 3) / CALIB_SCALE)
260 #define	c2n(count, freq)	((int)((count) * 1000000000LL / freq))
261 	printf("cputime %d, empty_loop %d, nullfunc_loop_profiled %d, mcount %d, mexitcount %d\n",
262 	       CALIB_DOSCALE(c2n(cputime_overhead, p->profrate)),
263 	       CALIB_DOSCALE(c2n(empty_loop_time, p->profrate)),
264 	       CALIB_DOSCALE(c2n(nullfunc_loop_profiled_time, p->profrate)),
265 	       CALIB_DOSCALE(c2n(mcount_overhead, p->profrate)),
266 	       CALIB_DOSCALE(c2n(mexitcount_overhead, p->profrate)));
267 	cputime_overhead -= empty_loop_time;
268 	mcount_overhead -= empty_loop_time;
269 	mexitcount_overhead -= empty_loop_time;
270 
271 	/*-
272 	 * Profiling overheads are determined by the times between the
273 	 * following events:
274 	 *	MC1: mcount() is called
275 	 *	MC2: cputime() (called from mcount()) latches the timer
276 	 *	MC3: mcount() completes
277 	 *	ME1: mexitcount() is called
278 	 *	ME2: cputime() (called from mexitcount()) latches the timer
279 	 *	ME3: mexitcount() completes.
280 	 * The times between the events vary slightly depending on instruction
281 	 * combination and cache misses, etc.  Attempt to determine the
282 	 * minimum times.  These can be subtracted from the profiling times
283 	 * without much risk of reducing the profiling times below what they
284 	 * would be when profiling is not configured.  Abbreviate:
285 	 *	ab = minimum time between MC1 and MC3
286 	 *	a  = minumum time between MC1 and MC2
287 	 *	b  = minimum time between MC2 and MC3
288 	 *	cd = minimum time between ME1 and ME3
289 	 *	c  = minimum time between ME1 and ME2
290 	 *	d  = minimum time between ME2 and ME3.
291 	 * These satisfy the relations:
292 	 *	ab            <= mcount_overhead		(just measured)
293 	 *	a + b         <= ab
294 	 *	        cd    <= mexitcount_overhead		(just measured)
295 	 *	        c + d <= cd
296 	 *	a         + d <= nullfunc_loop_profiled_time	(just measured)
297 	 *	a >= 0, b >= 0, c >= 0, d >= 0.
298 	 * Assume that ab and cd are equal to the minimums.
299 	 */
300 	p->cputime_overhead = CALIB_DOSCALE(cputime_overhead);
301 	p->mcount_overhead = CALIB_DOSCALE(mcount_overhead - cputime_overhead);
302 	p->mexitcount_overhead = CALIB_DOSCALE(mexitcount_overhead
303 					       - cputime_overhead);
304 	nullfunc_loop_overhead = nullfunc_loop_profiled_time - empty_loop_time;
305 	p->mexitcount_post_overhead = CALIB_DOSCALE((mcount_overhead
306 						     - nullfunc_loop_overhead)
307 						    / 4);
308 	p->mexitcount_pre_overhead = p->mexitcount_overhead
309 				     + p->cputime_overhead
310 				     - p->mexitcount_post_overhead;
311 	p->mcount_pre_overhead = CALIB_DOSCALE(nullfunc_loop_overhead)
312 				 - p->mexitcount_post_overhead;
313 	p->mcount_post_overhead = p->mcount_overhead
314 				  + p->cputime_overhead
315 				  - p->mcount_pre_overhead;
316 	printf(
317 "Profiling overheads: mcount: %d+%d, %d+%d; mexitcount: %d+%d, %d+%d nsec\n",
318 	       c2n(p->cputime_overhead, p->profrate),
319 	       c2n(p->mcount_overhead, p->profrate),
320 	       c2n(p->mcount_pre_overhead, p->profrate),
321 	       c2n(p->mcount_post_overhead, p->profrate),
322 	       c2n(p->cputime_overhead, p->profrate),
323 	       c2n(p->mexitcount_overhead, p->profrate),
324 	       c2n(p->mexitcount_pre_overhead, p->profrate),
325 	       c2n(p->mexitcount_post_overhead, p->profrate));
326 	printf(
327 "Profiling overheads: mcount: %d+%d, %d+%d; mexitcount: %d+%d, %d+%d cycles\n",
328 	       p->cputime_overhead, p->mcount_overhead,
329 	       p->mcount_pre_overhead, p->mcount_post_overhead,
330 	       p->cputime_overhead, p->mexitcount_overhead,
331 	       p->mexitcount_pre_overhead, p->mexitcount_post_overhead);
332 #endif /* GUPROF */
333 }
334 
335 /*
336  * Return kernel profiling information.
337  */
338 static int
339 sysctl_kern_prof(SYSCTL_HANDLER_ARGS)
340 {
341 	int *name = (int *) arg1;
342 	u_int namelen = arg2;
343 	struct gmonparam *gp = &_gmonparam;
344 	int error;
345 	int state;
346 
347 	/* all sysctl names at this level are terminal */
348 	if (namelen != 1)
349 		return (ENOTDIR);		/* overloaded */
350 
351 	switch (name[0]) {
352 	case GPROF_STATE:
353 		state = gp->state;
354 		error = sysctl_handle_int(oidp, &state, 0, req);
355 		if (error)
356 			return (error);
357 		if (!req->newptr)
358 			return (0);
359 		if (state == GMON_PROF_OFF) {
360 			gp->state = state;
361 			stopprofclock(&proc0);
362 			stopguprof(gp);
363 		} else if (state == GMON_PROF_ON) {
364 			gp->state = GMON_PROF_OFF;
365 			stopguprof(gp);
366 			gp->profrate = profhz;
367 			startprofclock(&proc0);
368 			gp->state = state;
369 #ifdef GUPROF
370 		} else if (state == GMON_PROF_HIRES) {
371 			gp->state = GMON_PROF_OFF;
372 			stopprofclock(&proc0);
373 			startguprof(gp);
374 			gp->state = state;
375 #endif
376 		} else if (state != gp->state)
377 			return (EINVAL);
378 		return (0);
379 	case GPROF_COUNT:
380 		return (sysctl_handle_opaque(oidp,
381 			gp->kcount, gp->kcountsize, req));
382 	case GPROF_FROMS:
383 		return (sysctl_handle_opaque(oidp,
384 			gp->froms, gp->fromssize, req));
385 	case GPROF_TOS:
386 		return (sysctl_handle_opaque(oidp,
387 			gp->tos, gp->tossize, req));
388 	case GPROF_GMONPARAM:
389 		return (sysctl_handle_opaque(oidp, gp, sizeof *gp, req));
390 	default:
391 		return (EOPNOTSUPP);
392 	}
393 	/* NOTREACHED */
394 }
395 
396 SYSCTL_NODE(_kern, KERN_PROF, prof, CTLFLAG_RW, sysctl_kern_prof, "");
397 #endif /* GPROF */
398 
399 /*
400  * Profiling system call.
401  *
402  * The scale factor is a fixed point number with 16 bits of fraction, so that
403  * 1.0 is represented as 0x10000.  A scale factor of 0 turns off profiling.
404  */
405 #ifndef _SYS_SYSPROTO_H_
406 struct profil_args {
407 	caddr_t	samples;
408 	size_t	size;
409 	size_t	offset;
410 	u_int	scale;
411 };
412 #endif
413 /*
414  * MPSAFE
415  */
416 /* ARGSUSED */
417 int
418 profil(td, uap)
419 	struct thread *td;
420 	register struct profil_args *uap;
421 {
422 	register struct uprof *upp;
423 	int s;
424 	int error = 0;
425 
426 	mtx_lock(&Giant);
427 
428 	if (uap->scale > (1 << 16)) {
429 		error = EINVAL;
430 		goto done2;
431 	}
432 	if (uap->scale == 0) {
433 		stopprofclock(td->td_proc);
434 		goto done2;
435 	}
436 	upp = &td->td_proc->p_stats->p_prof;
437 
438 	/* Block profile interrupts while changing state. */
439 	s = splstatclock();
440 	upp->pr_off = uap->offset;
441 	upp->pr_scale = uap->scale;
442 	upp->pr_base = uap->samples;
443 	upp->pr_size = uap->size;
444 	startprofclock(td->td_proc);
445 	splx(s);
446 
447 done2:
448 	mtx_unlock(&Giant);
449 	return (error);
450 }
451 
452 /*
453  * Scale is a fixed-point number with the binary point 16 bits
454  * into the value, and is <= 1.0.  pc is at most 32 bits, so the
455  * intermediate result is at most 48 bits.
456  */
457 #define	PC_TO_INDEX(pc, prof) \
458 	((int)(((u_quad_t)((pc) - (prof)->pr_off) * \
459 	    (u_quad_t)((prof)->pr_scale)) >> 16) & ~1)
460 
461 /*
462  * Collect user-level profiling statistics; called on a profiling tick,
463  * when a process is running in user-mode.  This routine may be called
464  * from an interrupt context.  We try to update the user profiling buffers
465  * cheaply with fuswintr() and suswintr().  If that fails, we revert to
466  * an AST that will vector us to trap() with a context in which copyin
467  * and copyout will work.  Trap will then call addupc_task().
468  *
469  * Note that we may (rarely) not get around to the AST soon enough, and
470  * lose profile ticks when the next tick overwrites this one, but in this
471  * case the system is overloaded and the profile is probably already
472  * inaccurate.
473  */
474 void
475 addupc_intr(ke, pc, ticks)
476 	register struct kse *ke;
477 	register uintptr_t pc;
478 	u_int ticks;
479 {
480 	register struct uprof *prof;
481 	register caddr_t addr;
482 	register u_int i;
483 	register int v;
484 
485 	if (ticks == 0)
486 		return;
487 	prof = &ke->ke_proc->p_stats->p_prof;
488 	if (pc < prof->pr_off ||
489 	    (i = PC_TO_INDEX(pc, prof)) >= prof->pr_size)
490 		return;			/* out of range; ignore */
491 
492 	addr = prof->pr_base + i;
493 	if ((v = fuswintr(addr)) == -1 || suswintr(addr, v + ticks) == -1) {
494 		mtx_lock_spin(&sched_lock);
495 		prof->pr_addr = pc;
496 		prof->pr_ticks = ticks;
497 		ke->ke_flags |= KEF_OWEUPC | KEF_ASTPENDING ;
498 		mtx_unlock_spin(&sched_lock);
499 	}
500 }
501 
502 /*
503  * Much like before, but we can afford to take faults here.  If the
504  * update fails, we simply turn off profiling.
505  */
506 void
507 addupc_task(ke, pc, ticks)
508 	register struct kse *ke;
509 	register uintptr_t pc;
510 	u_int ticks;
511 {
512 	struct proc *p = ke->ke_proc;
513 	register struct uprof *prof;
514 	register caddr_t addr;
515 	register u_int i;
516 	u_short v;
517 
518 	/* Testing PS_PROFIL may be unnecessary, but is certainly safe. */
519 	if ((p->p_sflag & PS_PROFIL) == 0 || ticks == 0)
520 		return;
521 
522 	prof = &p->p_stats->p_prof;
523 	if (pc < prof->pr_off ||
524 	    (i = PC_TO_INDEX(pc, prof)) >= prof->pr_size)
525 		return;
526 
527 	addr = prof->pr_base + i;
528 	if (copyin(addr, (caddr_t)&v, sizeof(v)) == 0) {
529 		v += ticks;
530 		if (copyout((caddr_t)&v, addr, sizeof(v)) == 0)
531 			return;
532 	}
533 	stopprofclock(p);
534 }
535