xref: /freebsd/sys/kern/subr_prof.c (revision 230f8c40e55e3462e90151e30f61bd0fdd4dcda3)
1 /*-
2  * Copyright (c) 1982, 1986, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)subr_prof.c	8.3 (Berkeley) 9/23/93
34  * $Id$
35  */
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/sysproto.h>
40 #include <sys/kernel.h>
41 #include <sys/proc.h>
42 #include <sys/resourcevar.h>
43 #include <sys/sysctl.h>
44 
45 #include <machine/cpu.h>
46 
47 #ifdef GPROF
48 #include <sys/malloc.h>
49 #include <sys/gmon.h>
50 
51 static void kmstartup __P((void *));
52 SYSINIT(kmem, SI_SUB_KPROF, SI_ORDER_FIRST, kmstartup, NULL)
53 
54 struct gmonparam _gmonparam = { GMON_PROF_OFF };
55 
56 extern char btext[];
57 extern char etext[];
58 
59 #ifdef GUPROF
60 void
61 nullfunc_loop_profiled()
62 {
63 	int i;
64 
65 	for (i = 0; i < CALIB_SCALE; i++)
66 		nullfunc_profiled();
67 }
68 
69 #define	nullfunc_loop_profiled_end	nullfunc_profiled	/* XXX */
70 
71 void
72 nullfunc_profiled()
73 {
74 }
75 #endif /* GUPROF */
76 
77 static void
78 kmstartup(dummy)
79 	void *dummy;
80 {
81 	char *cp;
82 	struct gmonparam *p = &_gmonparam;
83 #ifdef GUPROF
84 	int cputime_overhead;
85 	int empty_loop_time;
86 	int i;
87 	int mcount_overhead;
88 	int mexitcount_overhead;
89 	int nullfunc_loop_overhead;
90 	int nullfunc_loop_profiled_time;
91 	fptrint_t tmp_addr;
92 #endif
93 
94 	/*
95 	 * Round lowpc and highpc to multiples of the density we're using
96 	 * so the rest of the scaling (here and in gprof) stays in ints.
97 	 */
98 	p->lowpc = ROUNDDOWN((u_long)btext, HISTFRACTION * sizeof(HISTCOUNTER));
99 	p->highpc = ROUNDUP((u_long)etext, HISTFRACTION * sizeof(HISTCOUNTER));
100 	p->textsize = p->highpc - p->lowpc;
101 	printf("Profiling kernel, textsize=%lu [%x..%x]\n",
102 	       p->textsize, p->lowpc, p->highpc);
103 	p->kcountsize = p->textsize / HISTFRACTION;
104 	p->hashfraction = HASHFRACTION;
105 	p->fromssize = p->textsize / HASHFRACTION;
106 	p->tolimit = p->textsize * ARCDENSITY / 100;
107 	if (p->tolimit < MINARCS)
108 		p->tolimit = MINARCS;
109 	else if (p->tolimit > MAXARCS)
110 		p->tolimit = MAXARCS;
111 	p->tossize = p->tolimit * sizeof(struct tostruct);
112 	cp = (char *)malloc(p->kcountsize + p->fromssize + p->tossize,
113 	    M_GPROF, M_NOWAIT);
114 	if (cp == 0) {
115 		printf("No memory for profiling.\n");
116 		return;
117 	}
118 	bzero(cp, p->kcountsize + p->tossize + p->fromssize);
119 	p->tos = (struct tostruct *)cp;
120 	cp += p->tossize;
121 	p->kcount = (HISTCOUNTER *)cp;
122 	cp += p->kcountsize;
123 	p->froms = (u_short *)cp;
124 
125 #ifdef GUPROF
126 	/* Initialize pointers to overhead counters. */
127 	p->cputime_count = &KCOUNT(p, PC_TO_I(p, cputime));
128 	p->mcount_count = &KCOUNT(p, PC_TO_I(p, mcount));
129 	p->mexitcount_count = &KCOUNT(p, PC_TO_I(p, mexitcount));
130 
131 	/*
132 	 * Disable interrupts to avoid interference while we calibrate
133 	 * things.
134 	 */
135 	disable_intr();
136 
137 	/*
138 	 * Determine overheads.
139 	 * XXX this needs to be repeated for each useful timer/counter.
140 	 */
141 	cputime_overhead = 0;
142 	startguprof(p);
143 	for (i = 0; i < CALIB_SCALE; i++)
144 		cputime_overhead += cputime();
145 
146 	empty_loop();
147 	startguprof(p);
148 	empty_loop();
149 	empty_loop_time = cputime();
150 
151 	nullfunc_loop_profiled();
152 
153 	/*
154 	 * Start profiling.  There won't be any normal function calls since
155 	 * interrupts are disabled, but we will call the profiling routines
156 	 * directly to determine their overheads.
157 	 */
158 	p->state = GMON_PROF_HIRES;
159 
160 	startguprof(p);
161 	nullfunc_loop_profiled();
162 
163 	startguprof(p);
164 	for (i = 0; i < CALIB_SCALE; i++)
165 #if defined(i386) && __GNUC__ >= 2
166 		asm("pushl %0; call __mcount; popl %%ecx"
167 		    :
168 		    : "i" (profil)
169 		    : "ax", "bx", "cx", "dx", "memory");
170 #else
171 #error
172 #endif
173 	mcount_overhead = KCOUNT(p, PC_TO_I(p, profil));
174 
175 	startguprof(p);
176 	for (i = 0; i < CALIB_SCALE; i++)
177 #if defined(i386) && __GNUC__ >= 2
178 		    asm("call mexitcount; 1:"
179 			: : : "ax", "bx", "cx", "dx", "memory");
180 	asm("movl $1b,%0" : "=rm" (tmp_addr));
181 #else
182 #error
183 #endif
184 	mexitcount_overhead = KCOUNT(p, PC_TO_I(p, tmp_addr));
185 
186 	p->state = GMON_PROF_OFF;
187 	stopguprof(p);
188 
189 	enable_intr();
190 
191 	nullfunc_loop_profiled_time = 0;
192 	for (tmp_addr = (fptrint_t)nullfunc_loop_profiled;
193 	     tmp_addr < (fptrint_t)nullfunc_loop_profiled_end;
194 	     tmp_addr += HISTFRACTION * sizeof(HISTCOUNTER))
195 		nullfunc_loop_profiled_time += KCOUNT(p, PC_TO_I(p, tmp_addr));
196 #define CALIB_DOSCALE(count)	(((count) + CALIB_SCALE / 3) / CALIB_SCALE)
197 #define	c2n(count, freq)	((int)((count) * 1000000000LL / freq))
198 	printf("cputime %d, empty_loop %d, nullfunc_loop_profiled %d, mcount %d, mexitcount %d\n",
199 	       CALIB_DOSCALE(c2n(cputime_overhead, p->profrate)),
200 	       CALIB_DOSCALE(c2n(empty_loop_time, p->profrate)),
201 	       CALIB_DOSCALE(c2n(nullfunc_loop_profiled_time, p->profrate)),
202 	       CALIB_DOSCALE(c2n(mcount_overhead, p->profrate)),
203 	       CALIB_DOSCALE(c2n(mexitcount_overhead, p->profrate)));
204 	cputime_overhead -= empty_loop_time;
205 	mcount_overhead -= empty_loop_time;
206 	mexitcount_overhead -= empty_loop_time;
207 
208 	/*-
209 	 * Profiling overheads are determined by the times between the
210 	 * following events:
211 	 *	MC1: mcount() is called
212 	 *	MC2: cputime() (called from mcount()) latches the timer
213 	 *	MC3: mcount() completes
214 	 *	ME1: mexitcount() is called
215 	 *	ME2: cputime() (called from mexitcount()) latches the timer
216 	 *	ME3: mexitcount() completes.
217 	 * The times between the events vary slightly depending on instruction
218 	 * combination and cache misses, etc.  Attempt to determine the
219 	 * minimum times.  These can be subtracted from the profiling times
220 	 * without much risk of reducing the profiling times below what they
221 	 * would be when profiling is not configured.  Abbreviate:
222 	 *	ab = minimum time between MC1 and MC3
223 	 *	a  = minumum time between MC1 and MC2
224 	 *	b  = minimum time between MC2 and MC3
225 	 *	cd = minimum time between ME1 and ME3
226 	 *	c  = minimum time between ME1 and ME2
227 	 *	d  = minimum time between ME2 and ME3.
228 	 * These satisfy the relations:
229 	 *	ab            <= mcount_overhead		(just measured)
230 	 *	a + b         <= ab
231 	 *	        cd    <= mexitcount_overhead		(just measured)
232 	 *	        c + d <= cd
233 	 *	a         + d <= nullfunc_loop_profiled_time	(just measured)
234 	 *	a >= 0, b >= 0, c >= 0, d >= 0.
235 	 * Assume that ab and cd are equal to the minimums.
236 	 */
237 	p->cputime_overhead = CALIB_DOSCALE(cputime_overhead);
238 	p->mcount_overhead = CALIB_DOSCALE(mcount_overhead - cputime_overhead);
239 	p->mexitcount_overhead = CALIB_DOSCALE(mexitcount_overhead
240 					       - cputime_overhead);
241 	nullfunc_loop_overhead = nullfunc_loop_profiled_time - empty_loop_time;
242 	p->mexitcount_post_overhead = CALIB_DOSCALE((mcount_overhead
243 						     - nullfunc_loop_overhead)
244 						    / 4);
245 	p->mexitcount_pre_overhead = p->mexitcount_overhead
246 				     + p->cputime_overhead
247 				     - p->mexitcount_post_overhead;
248 	p->mcount_pre_overhead = CALIB_DOSCALE(nullfunc_loop_overhead)
249 				 - p->mexitcount_post_overhead;
250 	p->mcount_post_overhead = p->mcount_overhead
251 				  + p->cputime_overhead
252 				  - p->mcount_pre_overhead;
253 	printf(
254 "Profiling overheads: mcount: %d+%d, %d+%d; mexitcount: %d+%d, %d+%d nsec\n",
255 	       c2n(p->cputime_overhead, p->profrate),
256 	       c2n(p->mcount_overhead, p->profrate),
257 	       c2n(p->mcount_pre_overhead, p->profrate),
258 	       c2n(p->mcount_post_overhead, p->profrate),
259 	       c2n(p->cputime_overhead, p->profrate),
260 	       c2n(p->mexitcount_overhead, p->profrate),
261 	       c2n(p->mexitcount_pre_overhead, p->profrate),
262 	       c2n(p->mexitcount_post_overhead, p->profrate));
263 	printf(
264 "Profiling overheads: mcount: %d+%d, %d+%d; mexitcount: %d+%d, %d+%d cycles\n",
265 	       p->cputime_overhead, p->mcount_overhead,
266 	       p->mcount_pre_overhead, p->mcount_post_overhead,
267 	       p->cputime_overhead, p->mexitcount_overhead,
268 	       p->mexitcount_pre_overhead, p->mexitcount_post_overhead);
269 #endif /* GUPROF */
270 }
271 
272 /*
273  * Return kernel profiling information.
274  */
275 static int
276 sysctl_kern_prof SYSCTL_HANDLER_ARGS
277 {
278 	int *name = (int *) arg1;
279 	u_int namelen = arg2;
280 	struct gmonparam *gp = &_gmonparam;
281 	int error;
282 	int state;
283 
284 	/* all sysctl names at this level are terminal */
285 	if (namelen != 1)
286 		return (ENOTDIR);		/* overloaded */
287 
288 	switch (name[0]) {
289 	case GPROF_STATE:
290 		state = gp->state;
291 		error = sysctl_handle_int(oidp, &state, 0, req);
292 		if (error)
293 			return (error);
294 		if (!req->newptr)
295 			return (0);
296 		if (state == GMON_PROF_OFF) {
297 			gp->state = state;
298 			stopprofclock(&proc0);
299 			stopguprof(gp);
300 		} else if (state == GMON_PROF_ON) {
301 			gp->state = GMON_PROF_OFF;
302 			stopguprof(gp);
303 			gp->profrate = profhz;
304 			startprofclock(&proc0);
305 			gp->state = state;
306 #ifdef GUPROF
307 		} else if (state == GMON_PROF_HIRES) {
308 			gp->state = GMON_PROF_OFF;
309 			stopprofclock(&proc0);
310 			startguprof(gp);
311 			gp->state = state;
312 #endif
313 		} else if (state != gp->state)
314 			return (EINVAL);
315 		return (0);
316 	case GPROF_COUNT:
317 		return (sysctl_handle_opaque(oidp,
318 			gp->kcount, gp->kcountsize, req));
319 	case GPROF_FROMS:
320 		return (sysctl_handle_opaque(oidp,
321 			gp->froms, gp->fromssize, req));
322 	case GPROF_TOS:
323 		return (sysctl_handle_opaque(oidp,
324 			gp->tos, gp->tossize, req));
325 	case GPROF_GMONPARAM:
326 		return (sysctl_handle_opaque(oidp, gp, sizeof *gp, req));
327 	default:
328 		return (EOPNOTSUPP);
329 	}
330 	/* NOTREACHED */
331 }
332 
333 SYSCTL_NODE(_kern, KERN_PROF, prof, CTLFLAG_RW, sysctl_kern_prof, "");
334 #endif /* GPROF */
335 
336 /*
337  * Profiling system call.
338  *
339  * The scale factor is a fixed point number with 16 bits of fraction, so that
340  * 1.0 is represented as 0x10000.  A scale factor of 0 turns off profiling.
341  */
342 #ifndef _SYS_SYSPROTO_H_
343 struct profil_args {
344 	caddr_t	samples;
345 	u_int	size;
346 	u_int	offset;
347 	u_int	scale;
348 };
349 #endif
350 /* ARGSUSED */
351 int
352 profil(p, uap, retval)
353 	struct proc *p;
354 	register struct profil_args *uap;
355 	int *retval;
356 {
357 	register struct uprof *upp;
358 	int s;
359 
360 	if (uap->scale > (1 << 16))
361 		return (EINVAL);
362 	if (uap->scale == 0) {
363 		stopprofclock(p);
364 		return (0);
365 	}
366 	upp = &p->p_stats->p_prof;
367 
368 	/* Block profile interrupts while changing state. */
369 	s = splstatclock();
370 	upp->pr_off = uap->offset;
371 	upp->pr_scale = uap->scale;
372 	upp->pr_base = uap->samples;
373 	upp->pr_size = uap->size;
374 	startprofclock(p);
375 	splx(s);
376 
377 	return (0);
378 }
379 
380 /*
381  * Scale is a fixed-point number with the binary point 16 bits
382  * into the value, and is <= 1.0.  pc is at most 32 bits, so the
383  * intermediate result is at most 48 bits.
384  */
385 #define	PC_TO_INDEX(pc, prof) \
386 	((int)(((u_quad_t)((pc) - (prof)->pr_off) * \
387 	    (u_quad_t)((prof)->pr_scale)) >> 16) & ~1)
388 
389 /*
390  * Collect user-level profiling statistics; called on a profiling tick,
391  * when a process is running in user-mode.  This routine may be called
392  * from an interrupt context.  We try to update the user profiling buffers
393  * cheaply with fuswintr() and suswintr().  If that fails, we revert to
394  * an AST that will vector us to trap() with a context in which copyin
395  * and copyout will work.  Trap will then call addupc_task().
396  *
397  * Note that we may (rarely) not get around to the AST soon enough, and
398  * lose profile ticks when the next tick overwrites this one, but in this
399  * case the system is overloaded and the profile is probably already
400  * inaccurate.
401  */
402 void
403 addupc_intr(p, pc, ticks)
404 	register struct proc *p;
405 	register u_long pc;
406 	u_int ticks;
407 {
408 	register struct uprof *prof;
409 	register caddr_t addr;
410 	register u_int i;
411 	register int v;
412 
413 	if (ticks == 0)
414 		return;
415 	prof = &p->p_stats->p_prof;
416 	if (pc < prof->pr_off ||
417 	    (i = PC_TO_INDEX(pc, prof)) >= prof->pr_size)
418 		return;			/* out of range; ignore */
419 
420 	addr = prof->pr_base + i;
421 	if ((v = fuswintr(addr)) == -1 || suswintr(addr, v + ticks) == -1) {
422 		prof->pr_addr = pc;
423 		prof->pr_ticks = ticks;
424 		need_proftick(p);
425 	}
426 }
427 
428 /*
429  * Much like before, but we can afford to take faults here.  If the
430  * update fails, we simply turn off profiling.
431  */
432 void
433 addupc_task(p, pc, ticks)
434 	register struct proc *p;
435 	register u_long pc;
436 	u_int ticks;
437 {
438 	register struct uprof *prof;
439 	register caddr_t addr;
440 	register u_int i;
441 	u_short v;
442 
443 	/* Testing P_PROFIL may be unnecessary, but is certainly safe. */
444 	if ((p->p_flag & P_PROFIL) == 0 || ticks == 0)
445 		return;
446 
447 	prof = &p->p_stats->p_prof;
448 	if (pc < prof->pr_off ||
449 	    (i = PC_TO_INDEX(pc, prof)) >= prof->pr_size)
450 		return;
451 
452 	addr = prof->pr_base + i;
453 	if (copyin(addr, (caddr_t)&v, sizeof(v)) == 0) {
454 		v += ticks;
455 		if (copyout((caddr_t)&v, addr, sizeof(v)) == 0)
456 			return;
457 	}
458 	stopprofclock(p);
459 }
460