1 /*- 2 * Copyright (c) 1986, 1988, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 4. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)subr_prf.c 8.3 (Berkeley) 1/21/94 35 */ 36 37 #include <sys/cdefs.h> 38 __FBSDID("$FreeBSD$"); 39 40 #include "opt_ddb.h" 41 #include "opt_printf.h" 42 43 #include <sys/param.h> 44 #include <sys/systm.h> 45 #include <sys/lock.h> 46 #include <sys/kdb.h> 47 #include <sys/mutex.h> 48 #include <sys/sx.h> 49 #include <sys/kernel.h> 50 #include <sys/msgbuf.h> 51 #include <sys/malloc.h> 52 #include <sys/priv.h> 53 #include <sys/proc.h> 54 #include <sys/stddef.h> 55 #include <sys/sysctl.h> 56 #include <sys/tty.h> 57 #include <sys/syslog.h> 58 #include <sys/cons.h> 59 #include <sys/uio.h> 60 #include <sys/ctype.h> 61 62 #ifdef DDB 63 #include <ddb/ddb.h> 64 #endif 65 66 /* 67 * Note that stdarg.h and the ANSI style va_start macro is used for both 68 * ANSI and traditional C compilers. 69 */ 70 #include <machine/stdarg.h> 71 72 #define TOCONS 0x01 73 #define TOTTY 0x02 74 #define TOLOG 0x04 75 76 /* Max number conversion buffer length: a u_quad_t in base 2, plus NUL byte. */ 77 #define MAXNBUF (sizeof(intmax_t) * NBBY + 1) 78 79 struct putchar_arg { 80 int flags; 81 int pri; 82 struct tty *tty; 83 char *p_bufr; 84 size_t n_bufr; 85 char *p_next; 86 size_t remain; 87 }; 88 89 struct snprintf_arg { 90 char *str; 91 size_t remain; 92 }; 93 94 extern int log_open; 95 96 static void msglogchar(int c, int pri); 97 static void msglogstr(char *str, int pri, int filter_cr); 98 static void putchar(int ch, void *arg); 99 static char *ksprintn(char *nbuf, uintmax_t num, int base, int *len, int upper); 100 static void snprintf_func(int ch, void *arg); 101 102 static int msgbufmapped; /* Set when safe to use msgbuf */ 103 int msgbuftrigger; 104 105 static int log_console_output = 1; 106 TUNABLE_INT("kern.log_console_output", &log_console_output); 107 SYSCTL_INT(_kern, OID_AUTO, log_console_output, CTLFLAG_RW, 108 &log_console_output, 0, "Duplicate console output to the syslog."); 109 110 /* 111 * See the comment in log_console() below for more explanation of this. 112 */ 113 static int log_console_add_linefeed = 0; 114 TUNABLE_INT("kern.log_console_add_linefeed", &log_console_add_linefeed); 115 SYSCTL_INT(_kern, OID_AUTO, log_console_add_linefeed, CTLFLAG_RW, 116 &log_console_add_linefeed, 0, "log_console() adds extra newlines."); 117 118 static int always_console_output = 0; 119 TUNABLE_INT("kern.always_console_output", &always_console_output); 120 SYSCTL_INT(_kern, OID_AUTO, always_console_output, CTLFLAG_RW, 121 &always_console_output, 0, "Always output to console despite TIOCCONS."); 122 123 /* 124 * Warn that a system table is full. 125 */ 126 void 127 tablefull(const char *tab) 128 { 129 130 log(LOG_ERR, "%s: table is full\n", tab); 131 } 132 133 /* 134 * Uprintf prints to the controlling terminal for the current process. 135 */ 136 int 137 uprintf(const char *fmt, ...) 138 { 139 va_list ap; 140 struct putchar_arg pca; 141 struct proc *p; 142 struct thread *td; 143 int retval; 144 145 td = curthread; 146 if (TD_IS_IDLETHREAD(td)) 147 return (0); 148 149 sx_slock(&proctree_lock); 150 p = td->td_proc; 151 PROC_LOCK(p); 152 if ((p->p_flag & P_CONTROLT) == 0) { 153 PROC_UNLOCK(p); 154 sx_sunlock(&proctree_lock); 155 return (0); 156 } 157 SESS_LOCK(p->p_session); 158 pca.tty = p->p_session->s_ttyp; 159 SESS_UNLOCK(p->p_session); 160 PROC_UNLOCK(p); 161 if (pca.tty == NULL) { 162 sx_sunlock(&proctree_lock); 163 return (0); 164 } 165 pca.flags = TOTTY; 166 pca.p_bufr = NULL; 167 va_start(ap, fmt); 168 tty_lock(pca.tty); 169 sx_sunlock(&proctree_lock); 170 retval = kvprintf(fmt, putchar, &pca, 10, ap); 171 tty_unlock(pca.tty); 172 va_end(ap); 173 return (retval); 174 } 175 176 /* 177 * tprintf and vtprintf print on the controlling terminal associated with the 178 * given session, possibly to the log as well. 179 */ 180 void 181 tprintf(struct proc *p, int pri, const char *fmt, ...) 182 { 183 va_list ap; 184 185 va_start(ap, fmt); 186 vtprintf(p, pri, fmt, ap); 187 va_end(ap); 188 } 189 190 void 191 vtprintf(struct proc *p, int pri, const char *fmt, va_list ap) 192 { 193 struct tty *tp = NULL; 194 int flags = 0; 195 struct putchar_arg pca; 196 struct session *sess = NULL; 197 198 sx_slock(&proctree_lock); 199 if (pri != -1) 200 flags |= TOLOG; 201 if (p != NULL) { 202 PROC_LOCK(p); 203 if (p->p_flag & P_CONTROLT && p->p_session->s_ttyvp) { 204 sess = p->p_session; 205 sess_hold(sess); 206 PROC_UNLOCK(p); 207 tp = sess->s_ttyp; 208 if (tp != NULL && tty_checkoutq(tp)) 209 flags |= TOTTY; 210 else 211 tp = NULL; 212 } else 213 PROC_UNLOCK(p); 214 } 215 pca.pri = pri; 216 pca.tty = tp; 217 pca.flags = flags; 218 pca.p_bufr = NULL; 219 if (pca.tty != NULL) 220 tty_lock(pca.tty); 221 sx_sunlock(&proctree_lock); 222 kvprintf(fmt, putchar, &pca, 10, ap); 223 if (pca.tty != NULL) 224 tty_unlock(pca.tty); 225 if (sess != NULL) 226 sess_release(sess); 227 msgbuftrigger = 1; 228 } 229 230 /* 231 * Ttyprintf displays a message on a tty; it should be used only by 232 * the tty driver, or anything that knows the underlying tty will not 233 * be revoke(2)'d away. Other callers should use tprintf. 234 */ 235 int 236 ttyprintf(struct tty *tp, const char *fmt, ...) 237 { 238 va_list ap; 239 struct putchar_arg pca; 240 int retval; 241 242 va_start(ap, fmt); 243 pca.tty = tp; 244 pca.flags = TOTTY; 245 pca.p_bufr = NULL; 246 retval = kvprintf(fmt, putchar, &pca, 10, ap); 247 va_end(ap); 248 return (retval); 249 } 250 251 /* 252 * Log writes to the log buffer, and guarantees not to sleep (so can be 253 * called by interrupt routines). If there is no process reading the 254 * log yet, it writes to the console also. 255 */ 256 void 257 log(int level, const char *fmt, ...) 258 { 259 va_list ap; 260 struct putchar_arg pca; 261 #ifdef PRINTF_BUFR_SIZE 262 char bufr[PRINTF_BUFR_SIZE]; 263 #endif 264 265 pca.tty = NULL; 266 pca.pri = level; 267 pca.flags = log_open ? TOLOG : TOCONS; 268 #ifdef PRINTF_BUFR_SIZE 269 pca.p_bufr = bufr; 270 pca.p_next = pca.p_bufr; 271 pca.n_bufr = sizeof(bufr); 272 pca.remain = sizeof(bufr); 273 *pca.p_next = '\0'; 274 #else 275 pca.p_bufr = NULL; 276 #endif 277 278 va_start(ap, fmt); 279 kvprintf(fmt, putchar, &pca, 10, ap); 280 va_end(ap); 281 282 #ifdef PRINTF_BUFR_SIZE 283 /* Write any buffered console/log output: */ 284 if (*pca.p_bufr != '\0') { 285 if (pca.flags & TOLOG) 286 msglogstr(pca.p_bufr, level, /*filter_cr*/1); 287 288 if (pca.flags & TOCONS) 289 cnputs(pca.p_bufr); 290 } 291 #endif 292 msgbuftrigger = 1; 293 } 294 295 #define CONSCHUNK 128 296 297 void 298 log_console(struct uio *uio) 299 { 300 int c, error, nl; 301 char *consbuffer; 302 int pri; 303 304 if (!log_console_output) 305 return; 306 307 pri = LOG_INFO | LOG_CONSOLE; 308 uio = cloneuio(uio); 309 consbuffer = malloc(CONSCHUNK, M_TEMP, M_WAITOK); 310 311 nl = 0; 312 while (uio->uio_resid > 0) { 313 c = imin(uio->uio_resid, CONSCHUNK - 1); 314 error = uiomove(consbuffer, c, uio); 315 if (error != 0) 316 break; 317 /* Make sure we're NUL-terminated */ 318 consbuffer[c] = '\0'; 319 if (consbuffer[c - 1] == '\n') 320 nl = 1; 321 else 322 nl = 0; 323 msglogstr(consbuffer, pri, /*filter_cr*/ 1); 324 } 325 /* 326 * The previous behavior in log_console() is preserved when 327 * log_console_add_linefeed is non-zero. For that behavior, if an 328 * individual console write came in that was not terminated with a 329 * line feed, it would add a line feed. 330 * 331 * This results in different data in the message buffer than 332 * appears on the system console (which doesn't add extra line feed 333 * characters). 334 * 335 * A number of programs and rc scripts write a line feed, or a period 336 * and a line feed when they have completed their operation. On 337 * the console, this looks seamless, but when displayed with 338 * 'dmesg -a', you wind up with output that looks like this: 339 * 340 * Updating motd: 341 * . 342 * 343 * On the console, it looks like this: 344 * Updating motd:. 345 * 346 * We could add logic to detect that situation, or just not insert 347 * the extra newlines. Set the kern.log_console_add_linefeed 348 * sysctl/tunable variable to get the old behavior. 349 */ 350 if (!nl && log_console_add_linefeed) { 351 consbuffer[0] = '\n'; 352 consbuffer[1] = '\0'; 353 msglogstr(consbuffer, pri, /*filter_cr*/ 1); 354 } 355 msgbuftrigger = 1; 356 free(uio, M_IOV); 357 free(consbuffer, M_TEMP); 358 return; 359 } 360 361 int 362 printf(const char *fmt, ...) 363 { 364 va_list ap; 365 int retval; 366 367 va_start(ap, fmt); 368 retval = vprintf(fmt, ap); 369 va_end(ap); 370 371 return (retval); 372 } 373 374 int 375 vprintf(const char *fmt, va_list ap) 376 { 377 struct putchar_arg pca; 378 int retval; 379 #ifdef PRINTF_BUFR_SIZE 380 char bufr[PRINTF_BUFR_SIZE]; 381 #endif 382 383 pca.tty = NULL; 384 pca.flags = TOCONS | TOLOG; 385 pca.pri = -1; 386 #ifdef PRINTF_BUFR_SIZE 387 pca.p_bufr = bufr; 388 pca.p_next = pca.p_bufr; 389 pca.n_bufr = sizeof(bufr); 390 pca.remain = sizeof(bufr); 391 *pca.p_next = '\0'; 392 #else 393 /* Don't buffer console output. */ 394 pca.p_bufr = NULL; 395 #endif 396 397 retval = kvprintf(fmt, putchar, &pca, 10, ap); 398 399 #ifdef PRINTF_BUFR_SIZE 400 /* Write any buffered console/log output: */ 401 if (*pca.p_bufr != '\0') { 402 cnputs(pca.p_bufr); 403 msglogstr(pca.p_bufr, pca.pri, /*filter_cr*/ 1); 404 } 405 #endif 406 407 if (!panicstr) 408 msgbuftrigger = 1; 409 410 return (retval); 411 } 412 413 static void 414 putbuf(int c, struct putchar_arg *ap) 415 { 416 /* Check if no console output buffer was provided. */ 417 if (ap->p_bufr == NULL) { 418 /* Output direct to the console. */ 419 if (ap->flags & TOCONS) 420 cnputc(c); 421 422 if (ap->flags & TOLOG) 423 msglogchar(c, ap->pri); 424 } else { 425 /* Buffer the character: */ 426 *ap->p_next++ = c; 427 ap->remain--; 428 429 /* Always leave the buffer zero terminated. */ 430 *ap->p_next = '\0'; 431 432 /* Check if the buffer needs to be flushed. */ 433 if (ap->remain == 2 || c == '\n') { 434 435 if (ap->flags & TOLOG) 436 msglogstr(ap->p_bufr, ap->pri, /*filter_cr*/1); 437 438 if (ap->flags & TOCONS) { 439 if ((panicstr == NULL) && (constty != NULL)) 440 msgbuf_addstr(&consmsgbuf, -1, 441 ap->p_bufr, /*filter_cr*/ 0); 442 443 if ((constty == NULL) ||(always_console_output)) 444 cnputs(ap->p_bufr); 445 } 446 447 ap->p_next = ap->p_bufr; 448 ap->remain = ap->n_bufr; 449 *ap->p_next = '\0'; 450 } 451 452 /* 453 * Since we fill the buffer up one character at a time, 454 * this should not happen. We should always catch it when 455 * ap->remain == 2 (if not sooner due to a newline), flush 456 * the buffer and move on. One way this could happen is 457 * if someone sets PRINTF_BUFR_SIZE to 1 or something 458 * similarly silly. 459 */ 460 KASSERT(ap->remain > 2, ("Bad buffer logic, remain = %zd", 461 ap->remain)); 462 } 463 } 464 465 /* 466 * Print a character on console or users terminal. If destination is 467 * the console then the last bunch of characters are saved in msgbuf for 468 * inspection later. 469 */ 470 static void 471 putchar(int c, void *arg) 472 { 473 struct putchar_arg *ap = (struct putchar_arg*) arg; 474 struct tty *tp = ap->tty; 475 int flags = ap->flags; 476 477 /* Don't use the tty code after a panic or while in ddb. */ 478 if (kdb_active) { 479 if (c != '\0') 480 cnputc(c); 481 return; 482 } 483 484 if ((flags & TOTTY) && tp != NULL && panicstr == NULL) 485 tty_putchar(tp, c); 486 487 if ((flags & (TOCONS | TOLOG)) && c != '\0') 488 putbuf(c, ap); 489 } 490 491 /* 492 * Scaled down version of sprintf(3). 493 */ 494 int 495 sprintf(char *buf, const char *cfmt, ...) 496 { 497 int retval; 498 va_list ap; 499 500 va_start(ap, cfmt); 501 retval = kvprintf(cfmt, NULL, (void *)buf, 10, ap); 502 buf[retval] = '\0'; 503 va_end(ap); 504 return (retval); 505 } 506 507 /* 508 * Scaled down version of vsprintf(3). 509 */ 510 int 511 vsprintf(char *buf, const char *cfmt, va_list ap) 512 { 513 int retval; 514 515 retval = kvprintf(cfmt, NULL, (void *)buf, 10, ap); 516 buf[retval] = '\0'; 517 return (retval); 518 } 519 520 /* 521 * Scaled down version of snprintf(3). 522 */ 523 int 524 snprintf(char *str, size_t size, const char *format, ...) 525 { 526 int retval; 527 va_list ap; 528 529 va_start(ap, format); 530 retval = vsnprintf(str, size, format, ap); 531 va_end(ap); 532 return(retval); 533 } 534 535 /* 536 * Scaled down version of vsnprintf(3). 537 */ 538 int 539 vsnprintf(char *str, size_t size, const char *format, va_list ap) 540 { 541 struct snprintf_arg info; 542 int retval; 543 544 info.str = str; 545 info.remain = size; 546 retval = kvprintf(format, snprintf_func, &info, 10, ap); 547 if (info.remain >= 1) 548 *info.str++ = '\0'; 549 return (retval); 550 } 551 552 /* 553 * Kernel version which takes radix argument vsnprintf(3). 554 */ 555 int 556 vsnrprintf(char *str, size_t size, int radix, const char *format, va_list ap) 557 { 558 struct snprintf_arg info; 559 int retval; 560 561 info.str = str; 562 info.remain = size; 563 retval = kvprintf(format, snprintf_func, &info, radix, ap); 564 if (info.remain >= 1) 565 *info.str++ = '\0'; 566 return (retval); 567 } 568 569 static void 570 snprintf_func(int ch, void *arg) 571 { 572 struct snprintf_arg *const info = arg; 573 574 if (info->remain >= 2) { 575 *info->str++ = ch; 576 info->remain--; 577 } 578 } 579 580 /* 581 * Put a NUL-terminated ASCII number (base <= 36) in a buffer in reverse 582 * order; return an optional length and a pointer to the last character 583 * written in the buffer (i.e., the first character of the string). 584 * The buffer pointed to by `nbuf' must have length >= MAXNBUF. 585 */ 586 static char * 587 ksprintn(char *nbuf, uintmax_t num, int base, int *lenp, int upper) 588 { 589 char *p, c; 590 591 p = nbuf; 592 *p = '\0'; 593 do { 594 c = hex2ascii(num % base); 595 *++p = upper ? toupper(c) : c; 596 } while (num /= base); 597 if (lenp) 598 *lenp = p - nbuf; 599 return (p); 600 } 601 602 /* 603 * Scaled down version of printf(3). 604 * 605 * Two additional formats: 606 * 607 * The format %b is supported to decode error registers. 608 * Its usage is: 609 * 610 * printf("reg=%b\n", regval, "<base><arg>*"); 611 * 612 * where <base> is the output base expressed as a control character, e.g. 613 * \10 gives octal; \20 gives hex. Each arg is a sequence of characters, 614 * the first of which gives the bit number to be inspected (origin 1), and 615 * the next characters (up to a control character, i.e. a character <= 32), 616 * give the name of the register. Thus: 617 * 618 * kvprintf("reg=%b\n", 3, "\10\2BITTWO\1BITONE\n"); 619 * 620 * would produce output: 621 * 622 * reg=3<BITTWO,BITONE> 623 * 624 * XXX: %D -- Hexdump, takes pointer and separator string: 625 * ("%6D", ptr, ":") -> XX:XX:XX:XX:XX:XX 626 * ("%*D", len, ptr, " " -> XX XX XX XX ... 627 */ 628 int 629 kvprintf(char const *fmt, void (*func)(int, void*), void *arg, int radix, va_list ap) 630 { 631 #define PCHAR(c) {int cc=(c); if (func) (*func)(cc,arg); else *d++ = cc; retval++; } 632 char nbuf[MAXNBUF]; 633 char *d; 634 const char *p, *percent, *q; 635 u_char *up; 636 int ch, n; 637 uintmax_t num; 638 int base, lflag, qflag, tmp, width, ladjust, sharpflag, neg, sign, dot; 639 int cflag, hflag, jflag, tflag, zflag; 640 int dwidth, upper; 641 char padc; 642 int stop = 0, retval = 0; 643 644 num = 0; 645 if (!func) 646 d = (char *) arg; 647 else 648 d = NULL; 649 650 if (fmt == NULL) 651 fmt = "(fmt null)\n"; 652 653 if (radix < 2 || radix > 36) 654 radix = 10; 655 656 for (;;) { 657 padc = ' '; 658 width = 0; 659 while ((ch = (u_char)*fmt++) != '%' || stop) { 660 if (ch == '\0') 661 return (retval); 662 PCHAR(ch); 663 } 664 percent = fmt - 1; 665 qflag = 0; lflag = 0; ladjust = 0; sharpflag = 0; neg = 0; 666 sign = 0; dot = 0; dwidth = 0; upper = 0; 667 cflag = 0; hflag = 0; jflag = 0; tflag = 0; zflag = 0; 668 reswitch: switch (ch = (u_char)*fmt++) { 669 case '.': 670 dot = 1; 671 goto reswitch; 672 case '#': 673 sharpflag = 1; 674 goto reswitch; 675 case '+': 676 sign = 1; 677 goto reswitch; 678 case '-': 679 ladjust = 1; 680 goto reswitch; 681 case '%': 682 PCHAR(ch); 683 break; 684 case '*': 685 if (!dot) { 686 width = va_arg(ap, int); 687 if (width < 0) { 688 ladjust = !ladjust; 689 width = -width; 690 } 691 } else { 692 dwidth = va_arg(ap, int); 693 } 694 goto reswitch; 695 case '0': 696 if (!dot) { 697 padc = '0'; 698 goto reswitch; 699 } 700 case '1': case '2': case '3': case '4': 701 case '5': case '6': case '7': case '8': case '9': 702 for (n = 0;; ++fmt) { 703 n = n * 10 + ch - '0'; 704 ch = *fmt; 705 if (ch < '0' || ch > '9') 706 break; 707 } 708 if (dot) 709 dwidth = n; 710 else 711 width = n; 712 goto reswitch; 713 case 'b': 714 num = (u_int)va_arg(ap, int); 715 p = va_arg(ap, char *); 716 for (q = ksprintn(nbuf, num, *p++, NULL, 0); *q;) 717 PCHAR(*q--); 718 719 if (num == 0) 720 break; 721 722 for (tmp = 0; *p;) { 723 n = *p++; 724 if (num & (1 << (n - 1))) { 725 PCHAR(tmp ? ',' : '<'); 726 for (; (n = *p) > ' '; ++p) 727 PCHAR(n); 728 tmp = 1; 729 } else 730 for (; *p > ' '; ++p) 731 continue; 732 } 733 if (tmp) 734 PCHAR('>'); 735 break; 736 case 'c': 737 PCHAR(va_arg(ap, int)); 738 break; 739 case 'D': 740 up = va_arg(ap, u_char *); 741 p = va_arg(ap, char *); 742 if (!width) 743 width = 16; 744 while(width--) { 745 PCHAR(hex2ascii(*up >> 4)); 746 PCHAR(hex2ascii(*up & 0x0f)); 747 up++; 748 if (width) 749 for (q=p;*q;q++) 750 PCHAR(*q); 751 } 752 break; 753 case 'd': 754 case 'i': 755 base = 10; 756 sign = 1; 757 goto handle_sign; 758 case 'h': 759 if (hflag) { 760 hflag = 0; 761 cflag = 1; 762 } else 763 hflag = 1; 764 goto reswitch; 765 case 'j': 766 jflag = 1; 767 goto reswitch; 768 case 'l': 769 if (lflag) { 770 lflag = 0; 771 qflag = 1; 772 } else 773 lflag = 1; 774 goto reswitch; 775 case 'n': 776 if (jflag) 777 *(va_arg(ap, intmax_t *)) = retval; 778 else if (qflag) 779 *(va_arg(ap, quad_t *)) = retval; 780 else if (lflag) 781 *(va_arg(ap, long *)) = retval; 782 else if (zflag) 783 *(va_arg(ap, size_t *)) = retval; 784 else if (hflag) 785 *(va_arg(ap, short *)) = retval; 786 else if (cflag) 787 *(va_arg(ap, char *)) = retval; 788 else 789 *(va_arg(ap, int *)) = retval; 790 break; 791 case 'o': 792 base = 8; 793 goto handle_nosign; 794 case 'p': 795 base = 16; 796 sharpflag = (width == 0); 797 sign = 0; 798 num = (uintptr_t)va_arg(ap, void *); 799 goto number; 800 case 'q': 801 qflag = 1; 802 goto reswitch; 803 case 'r': 804 base = radix; 805 if (sign) 806 goto handle_sign; 807 goto handle_nosign; 808 case 's': 809 p = va_arg(ap, char *); 810 if (p == NULL) 811 p = "(null)"; 812 if (!dot) 813 n = strlen (p); 814 else 815 for (n = 0; n < dwidth && p[n]; n++) 816 continue; 817 818 width -= n; 819 820 if (!ladjust && width > 0) 821 while (width--) 822 PCHAR(padc); 823 while (n--) 824 PCHAR(*p++); 825 if (ladjust && width > 0) 826 while (width--) 827 PCHAR(padc); 828 break; 829 case 't': 830 tflag = 1; 831 goto reswitch; 832 case 'u': 833 base = 10; 834 goto handle_nosign; 835 case 'X': 836 upper = 1; 837 case 'x': 838 base = 16; 839 goto handle_nosign; 840 case 'y': 841 base = 16; 842 sign = 1; 843 goto handle_sign; 844 case 'z': 845 zflag = 1; 846 goto reswitch; 847 handle_nosign: 848 sign = 0; 849 if (jflag) 850 num = va_arg(ap, uintmax_t); 851 else if (qflag) 852 num = va_arg(ap, u_quad_t); 853 else if (tflag) 854 num = va_arg(ap, ptrdiff_t); 855 else if (lflag) 856 num = va_arg(ap, u_long); 857 else if (zflag) 858 num = va_arg(ap, size_t); 859 else if (hflag) 860 num = (u_short)va_arg(ap, int); 861 else if (cflag) 862 num = (u_char)va_arg(ap, int); 863 else 864 num = va_arg(ap, u_int); 865 goto number; 866 handle_sign: 867 if (jflag) 868 num = va_arg(ap, intmax_t); 869 else if (qflag) 870 num = va_arg(ap, quad_t); 871 else if (tflag) 872 num = va_arg(ap, ptrdiff_t); 873 else if (lflag) 874 num = va_arg(ap, long); 875 else if (zflag) 876 num = va_arg(ap, ssize_t); 877 else if (hflag) 878 num = (short)va_arg(ap, int); 879 else if (cflag) 880 num = (char)va_arg(ap, int); 881 else 882 num = va_arg(ap, int); 883 number: 884 if (sign && (intmax_t)num < 0) { 885 neg = 1; 886 num = -(intmax_t)num; 887 } 888 p = ksprintn(nbuf, num, base, &n, upper); 889 tmp = 0; 890 if (sharpflag && num != 0) { 891 if (base == 8) 892 tmp++; 893 else if (base == 16) 894 tmp += 2; 895 } 896 if (neg) 897 tmp++; 898 899 if (!ladjust && padc == '0') 900 dwidth = width - tmp; 901 width -= tmp + imax(dwidth, n); 902 dwidth -= n; 903 if (!ladjust) 904 while (width-- > 0) 905 PCHAR(' '); 906 if (neg) 907 PCHAR('-'); 908 if (sharpflag && num != 0) { 909 if (base == 8) { 910 PCHAR('0'); 911 } else if (base == 16) { 912 PCHAR('0'); 913 PCHAR('x'); 914 } 915 } 916 while (dwidth-- > 0) 917 PCHAR('0'); 918 919 while (*p) 920 PCHAR(*p--); 921 922 if (ladjust) 923 while (width-- > 0) 924 PCHAR(' '); 925 926 break; 927 default: 928 while (percent < fmt) 929 PCHAR(*percent++); 930 /* 931 * Since we ignore an formatting argument it is no 932 * longer safe to obey the remaining formatting 933 * arguments as the arguments will no longer match 934 * the format specs. 935 */ 936 stop = 1; 937 break; 938 } 939 } 940 #undef PCHAR 941 } 942 943 /* 944 * Put character in log buffer with a particular priority. 945 */ 946 static void 947 msglogchar(int c, int pri) 948 { 949 static int lastpri = -1; 950 static int dangling; 951 char nbuf[MAXNBUF]; 952 char *p; 953 954 if (!msgbufmapped) 955 return; 956 if (c == '\0' || c == '\r') 957 return; 958 if (pri != -1 && pri != lastpri) { 959 if (dangling) { 960 msgbuf_addchar(msgbufp, '\n'); 961 dangling = 0; 962 } 963 msgbuf_addchar(msgbufp, '<'); 964 for (p = ksprintn(nbuf, (uintmax_t)pri, 10, NULL, 0); *p;) 965 msgbuf_addchar(msgbufp, *p--); 966 msgbuf_addchar(msgbufp, '>'); 967 lastpri = pri; 968 } 969 msgbuf_addchar(msgbufp, c); 970 if (c == '\n') { 971 dangling = 0; 972 lastpri = -1; 973 } else { 974 dangling = 1; 975 } 976 } 977 978 static void 979 msglogstr(char *str, int pri, int filter_cr) 980 { 981 if (!msgbufmapped) 982 return; 983 984 msgbuf_addstr(msgbufp, pri, str, filter_cr); 985 } 986 987 void 988 msgbufinit(void *ptr, int size) 989 { 990 char *cp; 991 static struct msgbuf *oldp = NULL; 992 993 size -= sizeof(*msgbufp); 994 cp = (char *)ptr; 995 msgbufp = (struct msgbuf *)(cp + size); 996 msgbuf_reinit(msgbufp, cp, size); 997 if (msgbufmapped && oldp != msgbufp) 998 msgbuf_copy(oldp, msgbufp); 999 msgbufmapped = 1; 1000 oldp = msgbufp; 1001 } 1002 1003 static int unprivileged_read_msgbuf = 1; 1004 SYSCTL_INT(_security_bsd, OID_AUTO, unprivileged_read_msgbuf, 1005 CTLFLAG_RW, &unprivileged_read_msgbuf, 0, 1006 "Unprivileged processes may read the kernel message buffer"); 1007 1008 /* Sysctls for accessing/clearing the msgbuf */ 1009 static int 1010 sysctl_kern_msgbuf(SYSCTL_HANDLER_ARGS) 1011 { 1012 char buf[128]; 1013 u_int seq; 1014 int error, len; 1015 1016 if (!unprivileged_read_msgbuf) { 1017 error = priv_check(req->td, PRIV_MSGBUF); 1018 if (error) 1019 return (error); 1020 } 1021 1022 /* Read the whole buffer, one chunk at a time. */ 1023 mtx_lock(&msgbuf_lock); 1024 msgbuf_peekbytes(msgbufp, NULL, 0, &seq); 1025 for (;;) { 1026 len = msgbuf_peekbytes(msgbufp, buf, sizeof(buf), &seq); 1027 mtx_unlock(&msgbuf_lock); 1028 if (len == 0) 1029 return (0); 1030 1031 error = sysctl_handle_opaque(oidp, buf, len, req); 1032 if (error) 1033 return (error); 1034 1035 mtx_lock(&msgbuf_lock); 1036 } 1037 } 1038 1039 SYSCTL_PROC(_kern, OID_AUTO, msgbuf, 1040 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 1041 NULL, 0, sysctl_kern_msgbuf, "A", "Contents of kernel message buffer"); 1042 1043 static int msgbuf_clearflag; 1044 1045 static int 1046 sysctl_kern_msgbuf_clear(SYSCTL_HANDLER_ARGS) 1047 { 1048 int error; 1049 error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req); 1050 if (!error && req->newptr) { 1051 mtx_lock(&msgbuf_lock); 1052 msgbuf_clear(msgbufp); 1053 mtx_unlock(&msgbuf_lock); 1054 msgbuf_clearflag = 0; 1055 } 1056 return (error); 1057 } 1058 1059 SYSCTL_PROC(_kern, OID_AUTO, msgbuf_clear, 1060 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_SECURE | CTLFLAG_MPSAFE, 1061 &msgbuf_clearflag, 0, sysctl_kern_msgbuf_clear, "I", 1062 "Clear kernel message buffer"); 1063 1064 #ifdef DDB 1065 1066 DB_SHOW_COMMAND(msgbuf, db_show_msgbuf) 1067 { 1068 int i, j; 1069 1070 if (!msgbufmapped) { 1071 db_printf("msgbuf not mapped yet\n"); 1072 return; 1073 } 1074 db_printf("msgbufp = %p\n", msgbufp); 1075 db_printf("magic = %x, size = %d, r= %u, w = %u, ptr = %p, cksum= %u\n", 1076 msgbufp->msg_magic, msgbufp->msg_size, msgbufp->msg_rseq, 1077 msgbufp->msg_wseq, msgbufp->msg_ptr, msgbufp->msg_cksum); 1078 for (i = 0; i < msgbufp->msg_size && !db_pager_quit; i++) { 1079 j = MSGBUF_SEQ_TO_POS(msgbufp, i + msgbufp->msg_rseq); 1080 db_printf("%c", msgbufp->msg_ptr[j]); 1081 } 1082 db_printf("\n"); 1083 } 1084 1085 #endif /* DDB */ 1086 1087 void 1088 hexdump(const void *ptr, int length, const char *hdr, int flags) 1089 { 1090 int i, j, k; 1091 int cols; 1092 const unsigned char *cp; 1093 char delim; 1094 1095 if ((flags & HD_DELIM_MASK) != 0) 1096 delim = (flags & HD_DELIM_MASK) >> 8; 1097 else 1098 delim = ' '; 1099 1100 if ((flags & HD_COLUMN_MASK) != 0) 1101 cols = flags & HD_COLUMN_MASK; 1102 else 1103 cols = 16; 1104 1105 cp = ptr; 1106 for (i = 0; i < length; i+= cols) { 1107 if (hdr != NULL) 1108 printf("%s", hdr); 1109 1110 if ((flags & HD_OMIT_COUNT) == 0) 1111 printf("%04x ", i); 1112 1113 if ((flags & HD_OMIT_HEX) == 0) { 1114 for (j = 0; j < cols; j++) { 1115 k = i + j; 1116 if (k < length) 1117 printf("%c%02x", delim, cp[k]); 1118 else 1119 printf(" "); 1120 } 1121 } 1122 1123 if ((flags & HD_OMIT_CHARS) == 0) { 1124 printf(" |"); 1125 for (j = 0; j < cols; j++) { 1126 k = i + j; 1127 if (k >= length) 1128 printf(" "); 1129 else if (cp[k] >= ' ' && cp[k] <= '~') 1130 printf("%c", cp[k]); 1131 else 1132 printf("."); 1133 } 1134 printf("|"); 1135 } 1136 printf("\n"); 1137 } 1138 } 1139 1140