1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2013 EMC Corp. 5 * Copyright (c) 2011 Jeffrey Roberson <jeff@freebsd.org> 6 * Copyright (c) 2008 Mayur Shardul <mayur.shardul@gmail.com> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 * 30 */ 31 32 /* 33 * Path-compressed radix trie implementation. 34 * 35 * The implementation takes into account the following rationale: 36 * - Size of the nodes should be as small as possible but still big enough 37 * to avoid a large maximum depth for the trie. This is a balance 38 * between the necessity to not wire too much physical memory for the nodes 39 * and the necessity to avoid too much cache pollution during the trie 40 * operations. 41 * - There is not a huge bias toward the number of lookup operations over 42 * the number of insert and remove operations. This basically implies 43 * that optimizations supposedly helping one operation but hurting the 44 * other might be carefully evaluated. 45 * - On average not many nodes are expected to be fully populated, hence 46 * level compression may just complicate things. 47 */ 48 49 #include <sys/cdefs.h> 50 #include "opt_ddb.h" 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/kernel.h> 55 #include <sys/libkern.h> 56 #include <sys/pctrie.h> 57 #include <sys/proc.h> /* smr.h depends on struct thread. */ 58 #include <sys/smr.h> 59 #include <sys/smr_types.h> 60 61 #ifdef DDB 62 #include <ddb/ddb.h> 63 #endif 64 65 #define PCTRIE_MASK (PCTRIE_COUNT - 1) 66 #define PCTRIE_LIMIT (howmany(sizeof(uint64_t) * NBBY, PCTRIE_WIDTH) - 1) 67 68 #if PCTRIE_WIDTH == 3 69 typedef uint8_t pn_popmap_t; 70 #elif PCTRIE_WIDTH == 4 71 typedef uint16_t pn_popmap_t; 72 #elif PCTRIE_WIDTH == 5 73 typedef uint32_t pn_popmap_t; 74 #else 75 #error Unsupported width 76 #endif 77 _Static_assert(sizeof(pn_popmap_t) <= sizeof(int), 78 "pn_popmap_t too wide"); 79 80 struct pctrie_node; 81 typedef SMR_POINTER(struct pctrie_node *) smr_pctnode_t; 82 83 struct pctrie_node { 84 uint64_t pn_owner; /* Owner of record. */ 85 pn_popmap_t pn_popmap; /* Valid children. */ 86 uint8_t pn_clev; /* Level * WIDTH. */ 87 smr_pctnode_t pn_child[PCTRIE_COUNT]; /* Child nodes. */ 88 }; 89 90 enum pctrie_access { PCTRIE_SMR, PCTRIE_LOCKED, PCTRIE_UNSERIALIZED }; 91 92 static __inline void pctrie_node_store(smr_pctnode_t *p, void *val, 93 enum pctrie_access access); 94 95 /* 96 * Map index to an array position for the children of node, 97 */ 98 static __inline int 99 pctrie_slot(struct pctrie_node *node, uint64_t index) 100 { 101 return ((index >> node->pn_clev) & PCTRIE_MASK); 102 } 103 104 /* 105 * Returns true if index does not belong to the specified node. Otherwise, 106 * sets slot value, and returns false. 107 */ 108 static __inline bool 109 pctrie_keybarr(struct pctrie_node *node, uint64_t index, int *slot) 110 { 111 index = (index - node->pn_owner) >> node->pn_clev; 112 if (index >= PCTRIE_COUNT) 113 return (true); 114 *slot = index; 115 return (false); 116 } 117 118 /* 119 * Check radix node. 120 */ 121 static __inline void 122 pctrie_node_put(struct pctrie_node *node) 123 { 124 #ifdef INVARIANTS 125 int slot; 126 127 KASSERT(powerof2(node->pn_popmap), 128 ("pctrie_node_put: node %p has too many children %04x", node, 129 node->pn_popmap)); 130 for (slot = 0; slot < PCTRIE_COUNT; slot++) { 131 if ((node->pn_popmap & (1 << slot)) != 0) 132 continue; 133 KASSERT(smr_unserialized_load(&node->pn_child[slot], true) == 134 PCTRIE_NULL, 135 ("pctrie_node_put: node %p has a child", node)); 136 } 137 #endif 138 } 139 140 /* 141 * Fetch a node pointer from a slot. 142 */ 143 static __inline struct pctrie_node * 144 pctrie_node_load(smr_pctnode_t *p, smr_t smr, enum pctrie_access access) 145 { 146 switch (access) { 147 case PCTRIE_UNSERIALIZED: 148 return (smr_unserialized_load(p, true)); 149 case PCTRIE_LOCKED: 150 return (smr_serialized_load(p, true)); 151 case PCTRIE_SMR: 152 return (smr_entered_load(p, smr)); 153 } 154 __assert_unreachable(); 155 } 156 157 static __inline void 158 pctrie_node_store(smr_pctnode_t *p, void *v, enum pctrie_access access) 159 { 160 switch (access) { 161 case PCTRIE_UNSERIALIZED: 162 smr_unserialized_store(p, v, true); 163 break; 164 case PCTRIE_LOCKED: 165 smr_serialized_store(p, v, true); 166 break; 167 case PCTRIE_SMR: 168 panic("%s: Not supported in SMR section.", __func__); 169 break; 170 default: 171 __assert_unreachable(); 172 break; 173 } 174 } 175 176 /* 177 * Get the root node for a tree. 178 */ 179 static __inline struct pctrie_node * 180 pctrie_root_load(struct pctrie *ptree, smr_t smr, enum pctrie_access access) 181 { 182 return (pctrie_node_load((smr_pctnode_t *)&ptree->pt_root, smr, access)); 183 } 184 185 /* 186 * Set the root node for a tree. 187 */ 188 static __inline void 189 pctrie_root_store(struct pctrie *ptree, struct pctrie_node *node, 190 enum pctrie_access access) 191 { 192 pctrie_node_store((smr_pctnode_t *)&ptree->pt_root, node, access); 193 } 194 195 /* 196 * Returns TRUE if the specified node is a leaf and FALSE otherwise. 197 */ 198 static __inline bool 199 pctrie_isleaf(struct pctrie_node *node) 200 { 201 202 return (((uintptr_t)node & PCTRIE_ISLEAF) != 0); 203 } 204 205 /* 206 * Returns val with leaf bit set. 207 */ 208 static __inline void * 209 pctrie_toleaf(uint64_t *val) 210 { 211 return ((void *)((uintptr_t)val | PCTRIE_ISLEAF)); 212 } 213 214 /* 215 * Returns the associated val extracted from node. 216 */ 217 static __inline uint64_t * 218 pctrie_toval(struct pctrie_node *node) 219 { 220 221 return ((uint64_t *)((uintptr_t)node & ~PCTRIE_FLAGS)); 222 } 223 224 /* 225 * Make 'child' a child of 'node'. 226 */ 227 static __inline void 228 pctrie_addnode(struct pctrie_node *node, uint64_t index, 229 struct pctrie_node *child, enum pctrie_access access) 230 { 231 int slot; 232 233 slot = pctrie_slot(node, index); 234 pctrie_node_store(&node->pn_child[slot], child, access); 235 node->pn_popmap ^= 1 << slot; 236 KASSERT((node->pn_popmap & (1 << slot)) != 0, 237 ("%s: bad popmap slot %d in node %p", __func__, slot, node)); 238 } 239 240 /* 241 * pctrie node zone initializer. 242 */ 243 int 244 pctrie_zone_init(void *mem, int size __unused, int flags __unused) 245 { 246 struct pctrie_node *node; 247 248 node = mem; 249 node->pn_popmap = 0; 250 for (int i = 0; i < nitems(node->pn_child); i++) 251 pctrie_node_store(&node->pn_child[i], PCTRIE_NULL, 252 PCTRIE_UNSERIALIZED); 253 return (0); 254 } 255 256 size_t 257 pctrie_node_size(void) 258 { 259 260 return (sizeof(struct pctrie_node)); 261 } 262 263 /* 264 * Looks for where to insert the key-value pair into the trie. Completes the 265 * insertion if it replaces a null leaf; otherwise, returns insertion location 266 * to caller. Panics if the key already exists. 267 */ 268 void * 269 pctrie_insert_lookup(struct pctrie *ptree, uint64_t *val) 270 { 271 uint64_t index; 272 struct pctrie_node *node, *parent; 273 int slot; 274 275 index = *val; 276 277 /* 278 * The owner of record for root is not really important because it 279 * will never be used. 280 */ 281 node = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED); 282 parent = NULL; 283 for (;;) { 284 if (pctrie_isleaf(node)) { 285 if (node == PCTRIE_NULL) { 286 if (parent == NULL) 287 ptree->pt_root = pctrie_toleaf(val); 288 else 289 pctrie_addnode(parent, index, 290 pctrie_toleaf(val), PCTRIE_LOCKED); 291 return (NULL); 292 } 293 if (*pctrie_toval(node) == index) 294 panic("%s: key %jx is already present", 295 __func__, (uintmax_t)index); 296 break; 297 } 298 if (pctrie_keybarr(node, index, &slot)) 299 break; 300 parent = node; 301 node = pctrie_node_load(&node->pn_child[slot], NULL, 302 PCTRIE_LOCKED); 303 } 304 305 /* 306 * 'node' must be replaced in the tree with a new branch node, with 307 * children 'node' and 'val'. Return the place that points to 'node' 308 * now, and will point to to the new branching node later. 309 */ 310 return ((parent != NULL) ? &parent->pn_child[slot]: 311 (smr_pctnode_t *)&ptree->pt_root); 312 } 313 314 /* 315 * Uses new node to insert key-value pair into the trie at given location. 316 */ 317 void 318 pctrie_insert_node(void *parentp, struct pctrie_node *parent, uint64_t *val) 319 { 320 struct pctrie_node *node; 321 uint64_t index, newind; 322 323 /* 324 * Clear the last child pointer of the newly allocated parent. We want 325 * to clear it after the final section has exited so lookup can not 326 * return false negatives. It is done here because it will be 327 * cache-cold in the dtor callback. 328 */ 329 if (parent->pn_popmap != 0) { 330 pctrie_node_store(&parent->pn_child[ffs(parent->pn_popmap) - 1], 331 PCTRIE_NULL, PCTRIE_UNSERIALIZED); 332 parent->pn_popmap = 0; 333 } 334 335 /* 336 * Recover the values of the two children of the new parent node. If 337 * 'node' is not a leaf, this stores into 'newind' the 'owner' field, 338 * which must be first in the node. 339 */ 340 index = *val; 341 node = pctrie_node_load(parentp, NULL, PCTRIE_UNSERIALIZED); 342 newind = *pctrie_toval(node); 343 344 /* 345 * From the highest-order bit where the indexes differ, 346 * compute the highest level in the trie where they differ. Then, 347 * compute the least index of this subtrie. 348 */ 349 _Static_assert(sizeof(long long) >= sizeof(uint64_t), 350 "uint64 too wide"); 351 _Static_assert(sizeof(uint64_t) * NBBY <= 352 (1 << (sizeof(parent->pn_clev) * NBBY)), "pn_clev too narrow"); 353 parent->pn_clev = rounddown(flsll(index ^ newind) - 1, PCTRIE_WIDTH); 354 parent->pn_owner = PCTRIE_COUNT; 355 parent->pn_owner = index & -(parent->pn_owner << parent->pn_clev); 356 357 358 /* These writes are not yet visible due to ordering. */ 359 pctrie_addnode(parent, index, pctrie_toleaf(val), PCTRIE_UNSERIALIZED); 360 pctrie_addnode(parent, newind, node, PCTRIE_UNSERIALIZED); 361 /* Synchronize to make the above visible. */ 362 pctrie_node_store(parentp, parent, PCTRIE_LOCKED); 363 } 364 365 /* 366 * Returns the value stored at the index. If the index is not present, 367 * NULL is returned. 368 */ 369 static __always_inline uint64_t * 370 _pctrie_lookup(struct pctrie *ptree, uint64_t index, smr_t smr, 371 enum pctrie_access access) 372 { 373 struct pctrie_node *node; 374 uint64_t *m; 375 int slot; 376 377 node = pctrie_root_load(ptree, smr, access); 378 for (;;) { 379 if (pctrie_isleaf(node)) { 380 if ((m = pctrie_toval(node)) != NULL && *m == index) 381 return (m); 382 break; 383 } 384 if (pctrie_keybarr(node, index, &slot)) 385 break; 386 node = pctrie_node_load(&node->pn_child[slot], smr, access); 387 } 388 return (NULL); 389 } 390 391 /* 392 * Returns the value stored at the index, assuming access is externally 393 * synchronized by a lock. 394 * 395 * If the index is not present, NULL is returned. 396 */ 397 uint64_t * 398 pctrie_lookup(struct pctrie *ptree, uint64_t index) 399 { 400 return (_pctrie_lookup(ptree, index, NULL, PCTRIE_LOCKED)); 401 } 402 403 /* 404 * Returns the value stored at the index without requiring an external lock. 405 * 406 * If the index is not present, NULL is returned. 407 */ 408 uint64_t * 409 pctrie_lookup_unlocked(struct pctrie *ptree, uint64_t index, smr_t smr) 410 { 411 uint64_t *res; 412 413 smr_enter(smr); 414 res = _pctrie_lookup(ptree, index, smr, PCTRIE_SMR); 415 smr_exit(smr); 416 return (res); 417 } 418 419 /* 420 * Returns the value with the least index that is greater than or equal to the 421 * specified index, or NULL if there are no such values. 422 * 423 * Requires that access be externally synchronized by a lock. 424 */ 425 uint64_t * 426 pctrie_lookup_ge(struct pctrie *ptree, uint64_t index) 427 { 428 struct pctrie_node *node, *succ; 429 uint64_t *m; 430 int slot; 431 432 /* 433 * Descend the trie as if performing an ordinary lookup for the 434 * specified value. However, unlike an ordinary lookup, as we descend 435 * the trie, we use "succ" to remember the last branching-off point, 436 * that is, the interior node under which the least value that is both 437 * outside our current path down the trie and greater than the specified 438 * index resides. (The node's popmap makes it fast and easy to 439 * recognize a branching-off point.) If our ordinary lookup fails to 440 * yield a value that is greater than or equal to the specified index, 441 * then we will exit this loop and perform a lookup starting from 442 * "succ". If "succ" is not NULL, then that lookup is guaranteed to 443 * succeed. 444 */ 445 node = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED); 446 succ = NULL; 447 for (;;) { 448 if (pctrie_isleaf(node)) { 449 if ((m = pctrie_toval(node)) != NULL && *m >= index) 450 return (m); 451 break; 452 } 453 if (pctrie_keybarr(node, index, &slot)) { 454 /* 455 * If all values in this subtree are > index, then the 456 * least value in this subtree is the answer. 457 */ 458 if (node->pn_owner > index) 459 succ = node; 460 break; 461 } 462 463 /* 464 * Just in case the next search step leads to a subtree of all 465 * values < index, check popmap to see if a next bigger step, to 466 * a subtree of all pages with values > index, is available. If 467 * so, remember to restart the search here. 468 */ 469 if ((node->pn_popmap >> slot) > 1) 470 succ = node; 471 node = pctrie_node_load(&node->pn_child[slot], NULL, 472 PCTRIE_LOCKED); 473 } 474 475 /* 476 * Restart the search from the last place visited in the subtree that 477 * included some values > index, if there was such a place. 478 */ 479 if (succ == NULL) 480 return (NULL); 481 if (succ != node) { 482 /* 483 * Take a step to the next bigger sibling of the node chosen 484 * last time. In that subtree, all values > index. 485 */ 486 slot = pctrie_slot(succ, index) + 1; 487 KASSERT((succ->pn_popmap >> slot) != 0, 488 ("%s: no popmap siblings past slot %d in node %p", 489 __func__, slot, succ)); 490 slot += ffs(succ->pn_popmap >> slot) - 1; 491 succ = pctrie_node_load(&succ->pn_child[slot], NULL, 492 PCTRIE_LOCKED); 493 } 494 495 /* 496 * Find the value in the subtree rooted at "succ" with the least index. 497 */ 498 while (!pctrie_isleaf(succ)) { 499 KASSERT(succ->pn_popmap != 0, 500 ("%s: no popmap children in node %p", __func__, succ)); 501 slot = ffs(succ->pn_popmap) - 1; 502 succ = pctrie_node_load(&succ->pn_child[slot], NULL, 503 PCTRIE_LOCKED); 504 } 505 return (pctrie_toval(succ)); 506 } 507 508 /* 509 * Returns the value with the greatest index that is less than or equal to the 510 * specified index, or NULL if there are no such values. 511 * 512 * Requires that access be externally synchronized by a lock. 513 */ 514 uint64_t * 515 pctrie_lookup_le(struct pctrie *ptree, uint64_t index) 516 { 517 struct pctrie_node *node, *pred; 518 uint64_t *m; 519 int slot; 520 521 /* 522 * Mirror the implementation of pctrie_lookup_ge, described above. 523 */ 524 node = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED); 525 pred = NULL; 526 for (;;) { 527 if (pctrie_isleaf(node)) { 528 if ((m = pctrie_toval(node)) != NULL && *m <= index) 529 return (m); 530 break; 531 } 532 if (pctrie_keybarr(node, index, &slot)) { 533 if (node->pn_owner < index) 534 pred = node; 535 break; 536 } 537 if ((node->pn_popmap & ((1 << slot) - 1)) != 0) 538 pred = node; 539 node = pctrie_node_load(&node->pn_child[slot], NULL, 540 PCTRIE_LOCKED); 541 } 542 if (pred == NULL) 543 return (NULL); 544 if (pred != node) { 545 slot = pctrie_slot(pred, index); 546 KASSERT((pred->pn_popmap & ((1 << slot) - 1)) != 0, 547 ("%s: no popmap siblings before slot %d in node %p", 548 __func__, slot, pred)); 549 slot = fls(pred->pn_popmap & ((1 << slot) - 1)) - 1; 550 pred = pctrie_node_load(&pred->pn_child[slot], NULL, 551 PCTRIE_LOCKED); 552 } 553 while (!pctrie_isleaf(pred)) { 554 KASSERT(pred->pn_popmap != 0, 555 ("%s: no popmap children in node %p", __func__, pred)); 556 slot = fls(pred->pn_popmap) - 1; 557 pred = pctrie_node_load(&pred->pn_child[slot], NULL, 558 PCTRIE_LOCKED); 559 } 560 return (pctrie_toval(pred)); 561 } 562 563 /* 564 * Remove the specified index from the tree, and return the value stored at 565 * that index. If the index is not present, return NULL. 566 */ 567 uint64_t * 568 pctrie_remove_lookup(struct pctrie *ptree, uint64_t index, 569 struct pctrie_node **freenode) 570 { 571 struct pctrie_node *child, *node, *parent; 572 uint64_t *m; 573 int slot; 574 575 *freenode = node = NULL; 576 child = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED); 577 for (;;) { 578 if (pctrie_isleaf(child)) 579 break; 580 parent = node; 581 node = child; 582 slot = pctrie_slot(node, index); 583 child = pctrie_node_load(&node->pn_child[slot], NULL, 584 PCTRIE_LOCKED); 585 } 586 if ((m = pctrie_toval(child)) == NULL || *m != index) 587 return (NULL); 588 if (node == NULL) { 589 pctrie_root_store(ptree, PCTRIE_NULL, PCTRIE_LOCKED); 590 return (m); 591 } 592 KASSERT((node->pn_popmap & (1 << slot)) != 0, 593 ("%s: bad popmap slot %d in node %p", 594 __func__, slot, node)); 595 node->pn_popmap ^= 1 << slot; 596 pctrie_node_store(&node->pn_child[slot], PCTRIE_NULL, PCTRIE_LOCKED); 597 if (!powerof2(node->pn_popmap)) 598 return (m); 599 KASSERT(node->pn_popmap != 0, ("%s: bad popmap all zeroes", __func__)); 600 slot = ffs(node->pn_popmap) - 1; 601 child = pctrie_node_load(&node->pn_child[slot], NULL, PCTRIE_LOCKED); 602 KASSERT(child != PCTRIE_NULL, 603 ("%s: bad popmap slot %d in node %p", __func__, slot, node)); 604 if (parent == NULL) 605 pctrie_root_store(ptree, child, PCTRIE_LOCKED); 606 else { 607 slot = pctrie_slot(parent, index); 608 KASSERT(node == 609 pctrie_node_load(&parent->pn_child[slot], NULL, 610 PCTRIE_LOCKED), ("%s: invalid child value", __func__)); 611 pctrie_node_store(&parent->pn_child[slot], child, 612 PCTRIE_LOCKED); 613 } 614 /* 615 * The child is still valid and we can not zero the 616 * pointer until all SMR references are gone. 617 */ 618 pctrie_node_put(node); 619 *freenode = node; 620 return (m); 621 } 622 623 /* 624 * Prune all the leaves of 'node' before its first non-leaf child, make child 625 * zero of 'node' point up to 'parent', make 'node' into 'parent' and that 626 * non-leaf child into 'node'. Repeat until a node has been stripped of all 627 * children, and mark it for freeing, returning its parent. 628 */ 629 static struct pctrie_node * 630 pctrie_reclaim_prune(struct pctrie_node **pnode, 631 struct pctrie_node *parent) 632 { 633 struct pctrie_node *child, *node; 634 int slot; 635 636 node = *pnode; 637 while (node->pn_popmap != 0) { 638 slot = ffs(node->pn_popmap) - 1; 639 node->pn_popmap ^= 1 << slot; 640 child = pctrie_node_load(&node->pn_child[slot], NULL, 641 PCTRIE_UNSERIALIZED); 642 pctrie_node_store(&node->pn_child[slot], PCTRIE_NULL, 643 PCTRIE_UNSERIALIZED); 644 if (pctrie_isleaf(child)) 645 continue; 646 /* Climb one level down the trie. */ 647 pctrie_node_store(&node->pn_child[0], parent, 648 PCTRIE_UNSERIALIZED); 649 parent = node; 650 node = child; 651 } 652 *pnode = parent; 653 return (node); 654 } 655 656 /* 657 * Recover the node parent from its first child and continue pruning. 658 */ 659 struct pctrie_node * 660 pctrie_reclaim_resume(struct pctrie_node **pnode) 661 { 662 struct pctrie_node *parent, *node; 663 664 node = *pnode; 665 if (node == NULL) 666 return (NULL); 667 /* Climb one level up the trie. */ 668 parent = pctrie_node_load(&node->pn_child[0], NULL, 669 PCTRIE_UNSERIALIZED); 670 pctrie_node_store(&node->pn_child[0], PCTRIE_NULL, PCTRIE_UNSERIALIZED); 671 return (pctrie_reclaim_prune(pnode, parent)); 672 } 673 674 /* 675 * Find the trie root, and start pruning with a NULL parent. 676 */ 677 struct pctrie_node * 678 pctrie_reclaim_begin(struct pctrie_node **pnode, 679 struct pctrie *ptree) 680 { 681 struct pctrie_node *node; 682 683 node = pctrie_root_load(ptree, NULL, PCTRIE_UNSERIALIZED); 684 pctrie_root_store(ptree, PCTRIE_NULL, PCTRIE_UNSERIALIZED); 685 if (pctrie_isleaf(node)) 686 return (NULL); 687 *pnode = node; 688 return (pctrie_reclaim_prune(pnode, NULL)); 689 } 690 691 /* 692 * Replace an existing value in the trie with another one. 693 * Panics if there is not an old value in the trie at the new value's index. 694 */ 695 uint64_t * 696 pctrie_replace(struct pctrie *ptree, uint64_t *newval) 697 { 698 struct pctrie_node *leaf, *parent, *node; 699 uint64_t *m; 700 uint64_t index; 701 int slot; 702 703 leaf = pctrie_toleaf(newval); 704 index = *newval; 705 node = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED); 706 parent = NULL; 707 for (;;) { 708 if (pctrie_isleaf(node)) { 709 if ((m = pctrie_toval(node)) != NULL && *m == index) { 710 if (parent == NULL) 711 ptree->pt_root = leaf; 712 else 713 pctrie_node_store( 714 &parent->pn_child[slot], leaf, 715 PCTRIE_LOCKED); 716 return (m); 717 } 718 break; 719 } 720 if (pctrie_keybarr(node, index, &slot)) 721 break; 722 parent = node; 723 node = pctrie_node_load(&node->pn_child[slot], NULL, 724 PCTRIE_LOCKED); 725 } 726 panic("%s: original replacing value not found", __func__); 727 } 728 729 #ifdef DDB 730 /* 731 * Show details about the given node. 732 */ 733 DB_SHOW_COMMAND(pctrienode, db_show_pctrienode) 734 { 735 struct pctrie_node *node, *tmp; 736 int slot; 737 pn_popmap_t popmap; 738 739 if (!have_addr) 740 return; 741 node = (struct pctrie_node *)addr; 742 db_printf("node %p, owner %jx, children popmap %04x, level %u:\n", 743 (void *)node, (uintmax_t)node->pn_owner, node->pn_popmap, 744 node->pn_clev / PCTRIE_WIDTH); 745 for (popmap = node->pn_popmap; popmap != 0; popmap ^= 1 << slot) { 746 slot = ffs(popmap) - 1; 747 tmp = pctrie_node_load(&node->pn_child[slot], NULL, 748 PCTRIE_UNSERIALIZED); 749 db_printf("slot: %d, val: %p, value: %p, clev: %d\n", 750 slot, (void *)tmp, 751 pctrie_isleaf(tmp) ? pctrie_toval(tmp) : NULL, 752 node->pn_clev / PCTRIE_WIDTH); 753 } 754 } 755 #endif /* DDB */ 756