xref: /freebsd/sys/kern/subr_pctrie.c (revision ae1a0648b05acf798816e7b83b3c10856de5c8e5)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2013 EMC Corp.
5  * Copyright (c) 2011 Jeffrey Roberson <jeff@freebsd.org>
6  * Copyright (c) 2008 Mayur Shardul <mayur.shardul@gmail.com>
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  */
31 
32 /*
33  * Path-compressed radix trie implementation.
34  *
35  * The implementation takes into account the following rationale:
36  * - Size of the nodes should be as small as possible but still big enough
37  *   to avoid a large maximum depth for the trie.  This is a balance
38  *   between the necessity to not wire too much physical memory for the nodes
39  *   and the necessity to avoid too much cache pollution during the trie
40  *   operations.
41  * - There is not a huge bias toward the number of lookup operations over
42  *   the number of insert and remove operations.  This basically implies
43  *   that optimizations supposedly helping one operation but hurting the
44  *   other might be carefully evaluated.
45  * - On average not many nodes are expected to be fully populated, hence
46  *   level compression may just complicate things.
47  */
48 
49 #include <sys/cdefs.h>
50 #include "opt_ddb.h"
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/kernel.h>
55 #include <sys/libkern.h>
56 #include <sys/pctrie.h>
57 #include <sys/proc.h>	/* smr.h depends on struct thread. */
58 #include <sys/smr.h>
59 #include <sys/smr_types.h>
60 
61 #ifdef DDB
62 #include <ddb/ddb.h>
63 #endif
64 
65 #if PCTRIE_WIDTH == 3
66 typedef uint8_t pn_popmap_t;
67 #elif PCTRIE_WIDTH == 4
68 typedef uint16_t pn_popmap_t;
69 #elif PCTRIE_WIDTH == 5
70 typedef uint32_t pn_popmap_t;
71 #else
72 #error Unsupported width
73 #endif
74 _Static_assert(sizeof(pn_popmap_t) <= sizeof(int),
75     "pn_popmap_t too wide");
76 
77 struct pctrie_node;
78 typedef SMR_POINTER(struct pctrie_node *) smr_pctnode_t;
79 
80 struct pctrie_node {
81 	uint64_t	pn_owner;			/* Owner of record. */
82 	pn_popmap_t	pn_popmap;			/* Valid children. */
83 	uint8_t		pn_clev;			/* Level * WIDTH. */
84 	smr_pctnode_t	pn_child[PCTRIE_COUNT];		/* Child nodes. */
85 };
86 
87 /*
88  * Map index to an array position for the children of node,
89  */
90 static __inline int
91 pctrie_slot(struct pctrie_node *node, uint64_t index)
92 {
93 	return ((index >> node->pn_clev) & (PCTRIE_COUNT - 1));
94 }
95 
96 /*
97  * Returns true if index does not belong to the specified node.  Otherwise,
98  * sets slot value, and returns false.
99  */
100 static __inline bool
101 pctrie_keybarr(struct pctrie_node *node, uint64_t index, int *slot)
102 {
103 	index = (index - node->pn_owner) >> node->pn_clev;
104 	if (index >= PCTRIE_COUNT)
105 		return (true);
106 	*slot = index;
107 	return (false);
108 }
109 
110 /*
111  * Check radix node.
112  */
113 static __inline void
114 pctrie_node_put(struct pctrie_node *node)
115 {
116 #ifdef INVARIANTS
117 	int slot;
118 
119 	KASSERT(powerof2(node->pn_popmap),
120 	    ("pctrie_node_put: node %p has too many children %04x", node,
121 	    node->pn_popmap));
122 	for (slot = 0; slot < PCTRIE_COUNT; slot++) {
123 		if ((node->pn_popmap & (1 << slot)) != 0)
124 			continue;
125 		KASSERT(smr_unserialized_load(&node->pn_child[slot], true) ==
126 		    PCTRIE_NULL,
127 		    ("pctrie_node_put: node %p has a child", node));
128 	}
129 #endif
130 }
131 
132 enum pctrie_access { PCTRIE_SMR, PCTRIE_LOCKED, PCTRIE_UNSERIALIZED };
133 
134 /*
135  * Fetch a node pointer from a slot.
136  */
137 static __inline struct pctrie_node *
138 pctrie_node_load(smr_pctnode_t *p, smr_t smr, enum pctrie_access access)
139 {
140 	switch (access) {
141 	case PCTRIE_UNSERIALIZED:
142 		return (smr_unserialized_load(p, true));
143 	case PCTRIE_LOCKED:
144 		return (smr_serialized_load(p, true));
145 	case PCTRIE_SMR:
146 		return (smr_entered_load(p, smr));
147 	}
148 	__assert_unreachable();
149 }
150 
151 static __inline void
152 pctrie_node_store(smr_pctnode_t *p, void *v, enum pctrie_access access)
153 {
154 	switch (access) {
155 	case PCTRIE_UNSERIALIZED:
156 		smr_unserialized_store(p, v, true);
157 		break;
158 	case PCTRIE_LOCKED:
159 		smr_serialized_store(p, v, true);
160 		break;
161 	case PCTRIE_SMR:
162 		panic("%s: Not supported in SMR section.", __func__);
163 		break;
164 	default:
165 		__assert_unreachable();
166 		break;
167 	}
168 }
169 
170 /*
171  * Get the root node for a tree.
172  */
173 static __inline struct pctrie_node *
174 pctrie_root_load(struct pctrie *ptree, smr_t smr, enum pctrie_access access)
175 {
176 	return (pctrie_node_load((smr_pctnode_t *)&ptree->pt_root, smr, access));
177 }
178 
179 /*
180  * Set the root node for a tree.
181  */
182 static __inline void
183 pctrie_root_store(struct pctrie *ptree, struct pctrie_node *node,
184     enum pctrie_access access)
185 {
186 	pctrie_node_store((smr_pctnode_t *)&ptree->pt_root, node, access);
187 }
188 
189 /*
190  * Returns TRUE if the specified node is a leaf and FALSE otherwise.
191  */
192 static __inline bool
193 pctrie_isleaf(struct pctrie_node *node)
194 {
195 	return (((uintptr_t)node & PCTRIE_ISLEAF) != 0);
196 }
197 
198 /*
199  * Returns val with leaf bit set.
200  */
201 static __inline void *
202 pctrie_toleaf(uint64_t *val)
203 {
204 	return ((void *)((uintptr_t)val | PCTRIE_ISLEAF));
205 }
206 
207 /*
208  * Returns the associated val extracted from node.
209  */
210 static __inline uint64_t *
211 pctrie_toval(struct pctrie_node *node)
212 {
213 	return ((uint64_t *)((uintptr_t)node & ~PCTRIE_FLAGS));
214 }
215 
216 /*
217  * Returns the associated pointer extracted from node and field offset.
218  */
219 static __inline void *
220 pctrie_toptr(struct pctrie_node *node, int keyoff)
221 {
222 	return ((void *)(((uintptr_t)node & ~PCTRIE_FLAGS) - keyoff));
223 }
224 
225 /*
226  * Make 'child' a child of 'node'.
227  */
228 static __inline void
229 pctrie_addnode(struct pctrie_node *node, uint64_t index,
230     struct pctrie_node *child, enum pctrie_access access)
231 {
232 	int slot;
233 
234 	slot = pctrie_slot(node, index);
235 	pctrie_node_store(&node->pn_child[slot], child, access);
236 	node->pn_popmap ^= 1 << slot;
237 	KASSERT((node->pn_popmap & (1 << slot)) != 0,
238 	    ("%s: bad popmap slot %d in node %p", __func__, slot, node));
239 }
240 
241 /*
242  * pctrie node zone initializer.
243  */
244 int
245 pctrie_zone_init(void *mem, int size __unused, int flags __unused)
246 {
247 	struct pctrie_node *node;
248 
249 	node = mem;
250 	node->pn_popmap = 0;
251 	for (int i = 0; i < nitems(node->pn_child); i++)
252 		pctrie_node_store(&node->pn_child[i], PCTRIE_NULL,
253 		    PCTRIE_UNSERIALIZED);
254 	return (0);
255 }
256 
257 size_t
258 pctrie_node_size(void)
259 {
260 
261 	return (sizeof(struct pctrie_node));
262 }
263 
264 enum pctrie_insert_neighbor_mode {
265 	PCTRIE_INSERT_NEIGHBOR_NONE,
266 	PCTRIE_INSERT_NEIGHBOR_LT,
267 	PCTRIE_INSERT_NEIGHBOR_GT,
268 };
269 
270 /*
271  * Look for where to insert the key-value pair into the trie.  Complete the
272  * insertion if it replaces a null leaf.  Return the insertion location if the
273  * insertion needs to be completed by the caller; otherwise return NULL.
274  *
275  * If the key is already present in the trie, populate *found_out as if by
276  * pctrie_lookup().
277  *
278  * With mode PCTRIE_INSERT_NEIGHBOR_GT or PCTRIE_INSERT_NEIGHBOR_LT, set
279  * *neighbor_out to the lowest level node we encounter during the insert lookup
280  * that is a parent of the next greater or lesser entry.  The value is not
281  * defined if the key was already present in the trie.
282  *
283  * Note that mode is expected to be a compile-time constant, and this procedure
284  * is expected to be inlined into callers with extraneous code optimized out.
285  */
286 static __always_inline void *
287 pctrie_insert_lookup_compound(struct pctrie *ptree, uint64_t *val,
288     uint64_t **found_out, struct pctrie_node **neighbor_out,
289     enum pctrie_insert_neighbor_mode mode)
290 {
291 	uint64_t index;
292 	struct pctrie_node *node, *parent;
293 	int slot;
294 
295 	index = *val;
296 
297 	/*
298 	 * The owner of record for root is not really important because it
299 	 * will never be used.
300 	 */
301 	node = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED);
302 	parent = NULL;
303 	for (;;) {
304 		if (pctrie_isleaf(node)) {
305 			if (node == PCTRIE_NULL) {
306 				if (parent == NULL)
307 					ptree->pt_root = pctrie_toleaf(val);
308 				else
309 					pctrie_addnode(parent, index,
310 					    pctrie_toleaf(val), PCTRIE_LOCKED);
311 				return (NULL);
312 			}
313 			if (*pctrie_toval(node) == index) {
314 				*found_out = pctrie_toval(node);
315 				return (NULL);
316 			}
317 			break;
318 		}
319 		if (pctrie_keybarr(node, index, &slot))
320 			break;
321 		/*
322 		 * Descend.  If we're tracking the next neighbor and this node
323 		 * contains a neighboring entry in the right direction, record
324 		 * it.
325 		 */
326 		if (mode == PCTRIE_INSERT_NEIGHBOR_LT) {
327 			if ((node->pn_popmap & ((1 << slot) - 1)) != 0)
328 				*neighbor_out = node;
329 		} else if (mode == PCTRIE_INSERT_NEIGHBOR_GT) {
330 			if ((node->pn_popmap >> slot) > 1)
331 				*neighbor_out = node;
332 		}
333 		parent = node;
334 		node = pctrie_node_load(&node->pn_child[slot], NULL,
335 		    PCTRIE_LOCKED);
336 	}
337 
338 	/*
339 	 * The caller will split this node.  If we're tracking the next
340 	 * neighbor, record the old node if the old entry is in the right
341 	 * direction.
342 	 */
343 	if (mode == PCTRIE_INSERT_NEIGHBOR_LT) {
344 		if (*pctrie_toval(node) < index)
345 			*neighbor_out = node;
346 	} else if (mode == PCTRIE_INSERT_NEIGHBOR_GT) {
347 		if (*pctrie_toval(node) > index)
348 			*neighbor_out = node;
349 	}
350 
351 	/*
352 	 * 'node' must be replaced in the tree with a new branch node, with
353 	 * children 'node' and 'val'. Return the place that points to 'node'
354 	 * now, and will point to to the new branching node later.
355 	 */
356 	return ((parent != NULL) ? &parent->pn_child[slot]:
357 	    (smr_pctnode_t *)&ptree->pt_root);
358 }
359 
360 /*
361  * Wrap pctrie_insert_lookup_compound to implement a strict insertion.  Panic
362  * if the key already exists, and do not look for neighboring entries.
363  */
364 void *
365 pctrie_insert_lookup_strict(struct pctrie *ptree, uint64_t *val)
366 {
367 	void *parentp;
368 	uint64_t *found;
369 
370 	found = NULL;
371 	parentp = pctrie_insert_lookup_compound(ptree, val, &found, NULL,
372 	    PCTRIE_INSERT_NEIGHBOR_NONE);
373 	if (__predict_false(found != NULL))
374 		panic("%s: key %jx is already present", __func__,
375 		    (uintmax_t)*val);
376 	return (parentp);
377 }
378 
379 /*
380  * Wrap pctrie_insert_lookup_compound to implement find-or-insert.  Do not look
381  * for neighboring entries.
382  */
383 void *
384 pctrie_insert_lookup(struct pctrie *ptree, uint64_t *val,
385     uint64_t **found_out)
386 {
387 	*found_out = NULL;
388 	return (pctrie_insert_lookup_compound(ptree, val, found_out, NULL,
389 	    PCTRIE_INSERT_NEIGHBOR_NONE));
390 }
391 
392 /*
393  * Wrap pctrie_insert_lookup_compound to implement find or insert and find next
394  * greater entry.  Find a subtree that contains the next entry greater than the
395  * newly-inserted or to-be-inserted entry.
396  */
397 void *
398 pctrie_insert_lookup_gt(struct pctrie *ptree, uint64_t *val,
399     uint64_t **found_out, struct pctrie_node **neighbor_out)
400 {
401 	*found_out = NULL;
402 	*neighbor_out = NULL;
403 	return (pctrie_insert_lookup_compound(ptree, val, found_out,
404 	    neighbor_out, PCTRIE_INSERT_NEIGHBOR_GT));
405 }
406 
407 /*
408  * Wrap pctrie_insert_lookup_compound to implement find or insert and find next
409  * lesser entry.  Find a subtree that contains the next entry less than the
410  * newly-inserted or to-be-inserted entry.
411  */
412 void *
413 pctrie_insert_lookup_lt(struct pctrie *ptree, uint64_t *val,
414     uint64_t **found_out, struct pctrie_node **neighbor_out)
415 {
416 	*found_out = NULL;
417 	*neighbor_out = NULL;
418 	return (pctrie_insert_lookup_compound(ptree, val, found_out,
419 	    neighbor_out, PCTRIE_INSERT_NEIGHBOR_LT));
420 }
421 
422 /*
423  * Uses new node to insert key-value pair into the trie at given location.
424  */
425 void
426 pctrie_insert_node(void *parentp, struct pctrie_node *parent, uint64_t *val)
427 {
428 	struct pctrie_node *node;
429 	uint64_t index, newind;
430 
431 	/*
432 	 * Clear the last child pointer of the newly allocated parent.  We want
433 	 * to clear it after the final section has exited so lookup can not
434 	 * return false negatives.  It is done here because it will be
435 	 * cache-cold in the dtor callback.
436 	 */
437 	if (parent->pn_popmap != 0) {
438 		pctrie_node_store(&parent->pn_child[ffs(parent->pn_popmap) - 1],
439 		    PCTRIE_NULL, PCTRIE_UNSERIALIZED);
440 		parent->pn_popmap = 0;
441 	}
442 
443 	/*
444 	 * Recover the values of the two children of the new parent node.  If
445 	 * 'node' is not a leaf, this stores into 'newind' the 'owner' field,
446 	 * which must be first in the node.
447 	 */
448 	index = *val;
449 	node = pctrie_node_load(parentp, NULL, PCTRIE_UNSERIALIZED);
450 	newind = *pctrie_toval(node);
451 
452 	/*
453 	 * From the highest-order bit where the indexes differ,
454 	 * compute the highest level in the trie where they differ.  Then,
455 	 * compute the least index of this subtrie.
456 	 */
457 	_Static_assert(sizeof(long long) >= sizeof(uint64_t),
458 	    "uint64 too wide");
459 	_Static_assert(sizeof(uint64_t) * NBBY <=
460 	    (1 << (sizeof(parent->pn_clev) * NBBY)), "pn_clev too narrow");
461 	parent->pn_clev = rounddown(ilog2(index ^ newind), PCTRIE_WIDTH);
462 	parent->pn_owner = PCTRIE_COUNT;
463 	parent->pn_owner = index & -(parent->pn_owner << parent->pn_clev);
464 
465 
466 	/* These writes are not yet visible due to ordering. */
467 	pctrie_addnode(parent, index, pctrie_toleaf(val), PCTRIE_UNSERIALIZED);
468 	pctrie_addnode(parent, newind, node, PCTRIE_UNSERIALIZED);
469 	/* Synchronize to make the above visible. */
470 	pctrie_node_store(parentp, parent, PCTRIE_LOCKED);
471 }
472 
473 /*
474  * Return the value associated with the node, if the node is a leaf that matches
475  * the index; otherwise NULL.
476  */
477 static __always_inline uint64_t *
478 pctrie_match_value(struct pctrie_node *node, uint64_t index)
479 {
480 	uint64_t *m;
481 
482 	if (!pctrie_isleaf(node) || (m = pctrie_toval(node)) == NULL ||
483 	    *m != index)
484 		m = NULL;
485 	return (m);
486 }
487 
488 /*
489  * Returns the value stored at the index.  If the index is not present,
490  * NULL is returned.
491  */
492 static __always_inline uint64_t *
493 _pctrie_lookup(struct pctrie *ptree, uint64_t index, smr_t smr,
494     enum pctrie_access access)
495 {
496 	struct pctrie_node *node;
497 	int slot;
498 
499 	node = pctrie_root_load(ptree, smr, access);
500 	/* Seek a node that matches index. */
501 	while (!pctrie_isleaf(node) && !pctrie_keybarr(node, index, &slot))
502 		node = pctrie_node_load(&node->pn_child[slot], smr, access);
503 	return (pctrie_match_value(node, index));
504 }
505 
506 /*
507  * Returns the value stored at the index, assuming access is externally
508  * synchronized by a lock.
509  *
510  * If the index is not present, NULL is returned.
511  */
512 uint64_t *
513 pctrie_lookup(struct pctrie *ptree, uint64_t index)
514 {
515 	return (_pctrie_lookup(ptree, index, NULL, PCTRIE_LOCKED));
516 }
517 
518 /*
519  * Returns the value stored at the index without requiring an external lock.
520  *
521  * If the index is not present, NULL is returned.
522  */
523 uint64_t *
524 pctrie_lookup_unlocked(struct pctrie *ptree, uint64_t index, smr_t smr)
525 {
526 	uint64_t *res;
527 
528 	smr_enter(smr);
529 	res = _pctrie_lookup(ptree, index, smr, PCTRIE_SMR);
530 	smr_exit(smr);
531 	return (res);
532 }
533 
534 /*
535  * Returns the last node examined in the search for the index, and updates the
536  * search path to that node.
537  */
538 static __always_inline struct pctrie_node *
539 _pctrie_iter_lookup_node(struct pctrie_iter *it, uint64_t index, smr_t smr,
540     enum pctrie_access access)
541 {
542 	struct pctrie_node *node;
543 	int slot;
544 
545 	/*
546 	 * Climb the search path to find the lowest node from which to start the
547 	 * search for a value matching 'index'.
548 	 */
549 	while (it->top != 0) {
550 		node = it->path[it->top - 1];
551 		KASSERT(!powerof2(node->pn_popmap),
552 		    ("%s: freed node in iter path", __func__));
553 		if (!pctrie_keybarr(node, index, &slot)) {
554 			node = pctrie_node_load(
555 			    &node->pn_child[slot], smr, access);
556 			break;
557 		}
558 		--it->top;
559 	}
560 	if (it->top == 0)
561 		node = pctrie_root_load(it->ptree, smr, access);
562 
563 	/* Seek a node that matches index. */
564 	while (!pctrie_isleaf(node) && !pctrie_keybarr(node, index, &slot)) {
565 		KASSERT(it->top < nitems(it->path),
566 		    ("%s: path overflow in trie %p", __func__, it->ptree));
567 		it->path[it->top++] = node;
568 		node = pctrie_node_load(&node->pn_child[slot], smr, access);
569 	}
570 	return (node);
571 }
572 
573 /*
574  * Returns the value stored at a given index value, possibly NULL.
575  */
576 static __always_inline uint64_t *
577 _pctrie_iter_lookup(struct pctrie_iter *it, uint64_t index, smr_t smr,
578     enum pctrie_access access)
579 {
580 	struct pctrie_node *node;
581 
582 	it->index = index;
583 	node = _pctrie_iter_lookup_node(it, index, smr, access);
584 	return (pctrie_match_value(node, index));
585 }
586 
587 /*
588  * Returns the value stored at a given index value, possibly NULL.
589  */
590 uint64_t *
591 pctrie_iter_lookup(struct pctrie_iter *it, uint64_t index)
592 {
593 	return (_pctrie_iter_lookup(it, index, NULL, PCTRIE_LOCKED));
594 }
595 
596 /*
597  * Returns the value stored at a fixed offset from the current index value,
598  * possibly NULL.
599  */
600 static __always_inline uint64_t *
601 _pctrie_iter_stride(struct pctrie_iter *it, int stride, smr_t smr,
602     enum pctrie_access access)
603 {
604 	uint64_t index = it->index + stride;
605 
606 	/* Detect stride overflow. */
607 	if ((stride > 0) != (index > it->index))
608 		return (NULL);
609 	/* Detect crossing limit */
610 	if ((index < it->limit) != (it->index < it->limit))
611 		return (NULL);
612 
613 	return (_pctrie_iter_lookup(it, index, smr, access));
614 }
615 
616 /*
617  * Returns the value stored at a fixed offset from the current index value,
618  * possibly NULL.
619  */
620 uint64_t *
621 pctrie_iter_stride(struct pctrie_iter *it, int stride)
622 {
623 	return (_pctrie_iter_stride(it, stride, NULL, PCTRIE_LOCKED));
624 }
625 
626 /*
627  * Returns the value stored at one more than the current index value, possibly
628  * NULL, assuming access is externally synchronized by a lock.
629  */
630 uint64_t *
631 pctrie_iter_next(struct pctrie_iter *it)
632 {
633 	return (_pctrie_iter_stride(it, 1, NULL, PCTRIE_LOCKED));
634 }
635 
636 /*
637  * Returns the value stored at one less than the current index value, possibly
638  * NULL, assuming access is externally synchronized by a lock.
639  */
640 uint64_t *
641 pctrie_iter_prev(struct pctrie_iter *it)
642 {
643 	return (_pctrie_iter_stride(it, -1, NULL, PCTRIE_LOCKED));
644 }
645 
646 /*
647  * Returns the value with the least index that is greater than or equal to the
648  * specified index, or NULL if there are no such values.
649  *
650  * Requires that access be externally synchronized by a lock.
651  */
652 static __inline uint64_t *
653 pctrie_lookup_ge_node(struct pctrie_node *node, uint64_t index)
654 {
655 	struct pctrie_node *succ;
656 	uint64_t *m;
657 	int slot;
658 
659 	/*
660 	 * Descend the trie as if performing an ordinary lookup for the
661 	 * specified value.  However, unlike an ordinary lookup, as we descend
662 	 * the trie, we use "succ" to remember the last branching-off point,
663 	 * that is, the interior node under which the least value that is both
664 	 * outside our current path down the trie and greater than the specified
665 	 * index resides.  (The node's popmap makes it fast and easy to
666 	 * recognize a branching-off point.)  If our ordinary lookup fails to
667 	 * yield a value that is greater than or equal to the specified index,
668 	 * then we will exit this loop and perform a lookup starting from
669 	 * "succ".  If "succ" is not NULL, then that lookup is guaranteed to
670 	 * succeed.
671 	 */
672 	succ = NULL;
673 	for (;;) {
674 		if (pctrie_isleaf(node)) {
675 			if ((m = pctrie_toval(node)) != NULL && *m >= index)
676 				return (m);
677 			break;
678 		}
679 		if (pctrie_keybarr(node, index, &slot)) {
680 			/*
681 			 * If all values in this subtree are > index, then the
682 			 * least value in this subtree is the answer.
683 			 */
684 			if (node->pn_owner > index)
685 				succ = node;
686 			break;
687 		}
688 
689 		/*
690 		 * Just in case the next search step leads to a subtree of all
691 		 * values < index, check popmap to see if a next bigger step, to
692 		 * a subtree of all pages with values > index, is available.  If
693 		 * so, remember to restart the search here.
694 		 */
695 		if ((node->pn_popmap >> slot) > 1)
696 			succ = node;
697 		node = pctrie_node_load(&node->pn_child[slot], NULL,
698 		    PCTRIE_LOCKED);
699 	}
700 
701 	/*
702 	 * Restart the search from the last place visited in the subtree that
703 	 * included some values > index, if there was such a place.
704 	 */
705 	if (succ == NULL)
706 		return (NULL);
707 	if (succ != node) {
708 		/*
709 		 * Take a step to the next bigger sibling of the node chosen
710 		 * last time.  In that subtree, all values > index.
711 		 */
712 		slot = pctrie_slot(succ, index) + 1;
713 		KASSERT((succ->pn_popmap >> slot) != 0,
714 		    ("%s: no popmap siblings past slot %d in node %p",
715 		    __func__, slot, succ));
716 		slot += ffs(succ->pn_popmap >> slot) - 1;
717 		succ = pctrie_node_load(&succ->pn_child[slot], NULL,
718 		    PCTRIE_LOCKED);
719 	}
720 
721 	/*
722 	 * Find the value in the subtree rooted at "succ" with the least index.
723 	 */
724 	while (!pctrie_isleaf(succ)) {
725 		KASSERT(succ->pn_popmap != 0,
726 		    ("%s: no popmap children in node %p",  __func__, succ));
727 		slot = ffs(succ->pn_popmap) - 1;
728 		succ = pctrie_node_load(&succ->pn_child[slot], NULL,
729 		    PCTRIE_LOCKED);
730 	}
731 	return (pctrie_toval(succ));
732 }
733 
734 uint64_t *
735 pctrie_lookup_ge(struct pctrie *ptree, uint64_t index)
736 {
737 	return (pctrie_lookup_ge_node(
738 	    pctrie_root_load(ptree, NULL, PCTRIE_LOCKED), index));
739 }
740 
741 uint64_t *
742 pctrie_subtree_lookup_gt(struct pctrie_node *node, uint64_t index)
743 {
744 	if (node == NULL || index + 1 == 0)
745 		return (NULL);
746 	return (pctrie_lookup_ge_node(node, index + 1));
747 }
748 
749 /*
750  * Find first leaf >= index, and fill iter with the path to the parent of that
751  * leaf.  Return NULL if there is no such leaf less than limit.
752  */
753 uint64_t *
754 pctrie_iter_lookup_ge(struct pctrie_iter *it, uint64_t index)
755 {
756 	struct pctrie_node *node;
757 	uint64_t *m;
758 	int slot;
759 
760 	/* Seek a node that matches index. */
761 	node = _pctrie_iter_lookup_node(it, index, NULL, PCTRIE_LOCKED);
762 
763 	/*
764 	 * If no such node was found, and instead this path leads only to nodes
765 	 * < index, back up to find a subtrie with the least value > index.
766 	 */
767 	if (pctrie_isleaf(node) ?
768 	    (m = pctrie_toval(node)) == NULL || *m < index :
769 	    node->pn_owner < index) {
770 		/* Climb the path to find a node with a descendant > index. */
771 		while (it->top != 0) {
772 			node = it->path[it->top - 1];
773 			slot = pctrie_slot(node, index) + 1;
774 			if ((node->pn_popmap >> slot) != 0)
775 				break;
776 			--it->top;
777 		}
778 		if (it->top == 0)
779 			return (NULL);
780 
781 		/* Step to the least child with a descendant > index. */
782 		slot += ffs(node->pn_popmap >> slot) - 1;
783 		node = pctrie_node_load(&node->pn_child[slot], NULL,
784 		    PCTRIE_LOCKED);
785 	}
786 	/* Descend to the least leaf of the subtrie. */
787 	while (!pctrie_isleaf(node)) {
788 		if (it->limit != 0 && node->pn_owner >= it->limit)
789 			return (NULL);
790 		slot = ffs(node->pn_popmap) - 1;
791 		KASSERT(it->top < nitems(it->path),
792 		    ("%s: path overflow in trie %p", __func__, it->ptree));
793 		it->path[it->top++] = node;
794 		node = pctrie_node_load(&node->pn_child[slot], NULL,
795 		    PCTRIE_LOCKED);
796 	}
797 	m = pctrie_toval(node);
798 	if (it->limit != 0 && *m >= it->limit)
799 		return (NULL);
800 	it->index = *m;
801 	return (m);
802 }
803 
804 /*
805  * Find the first leaf with value at least 'jump' greater than the previous
806  * leaf.  Return NULL if that value is >= limit.
807  */
808 uint64_t *
809 pctrie_iter_jump_ge(struct pctrie_iter *it, int64_t jump)
810 {
811 	uint64_t index = it->index + jump;
812 
813 	/* Detect jump overflow. */
814 	if ((jump > 0) != (index > it->index))
815 		return (NULL);
816 	if (it->limit != 0 && index >= it->limit)
817 		return (NULL);
818 	return (pctrie_iter_lookup_ge(it, index));
819 }
820 
821 #ifdef INVARIANTS
822 void
823 pctrie_subtree_lookup_gt_assert(struct pctrie_node *node, uint64_t index,
824     struct pctrie *ptree, uint64_t *res)
825 {
826 	uint64_t *expected;
827 
828 	if (index + 1 == 0)
829 		expected = NULL;
830 	else
831 		expected = pctrie_lookup_ge(ptree, index + 1);
832 	KASSERT(res == expected,
833 	    ("pctrie subtree lookup gt result different from root lookup: "
834 	    "ptree %p, index %ju, subtree %p, found %p, expected %p", ptree,
835 	    (uintmax_t)index, node, res, expected));
836 }
837 #endif
838 
839 /*
840  * Returns the value with the greatest index that is less than or equal to the
841  * specified index, or NULL if there are no such values.
842  *
843  * Requires that access be externally synchronized by a lock.
844  */
845 static __inline uint64_t *
846 pctrie_lookup_le_node(struct pctrie_node *node, uint64_t index)
847 {
848 	struct pctrie_node *pred;
849 	uint64_t *m;
850 	int slot;
851 
852 	/*
853 	 * Mirror the implementation of pctrie_lookup_ge_node, described above.
854 	 */
855 	pred = NULL;
856 	for (;;) {
857 		if (pctrie_isleaf(node)) {
858 			if ((m = pctrie_toval(node)) != NULL && *m <= index)
859 				return (m);
860 			break;
861 		}
862 		if (pctrie_keybarr(node, index, &slot)) {
863 			if (node->pn_owner < index)
864 				pred = node;
865 			break;
866 		}
867 		if ((node->pn_popmap & ((1 << slot) - 1)) != 0)
868 			pred = node;
869 		node = pctrie_node_load(&node->pn_child[slot], NULL,
870 		    PCTRIE_LOCKED);
871 	}
872 	if (pred == NULL)
873 		return (NULL);
874 	if (pred != node) {
875 		slot = pctrie_slot(pred, index);
876 		KASSERT((pred->pn_popmap & ((1 << slot) - 1)) != 0,
877 		    ("%s: no popmap siblings before slot %d in node %p",
878 		    __func__, slot, pred));
879 		slot = ilog2(pred->pn_popmap & ((1 << slot) - 1));
880 		pred = pctrie_node_load(&pred->pn_child[slot], NULL,
881 		    PCTRIE_LOCKED);
882 	}
883 	while (!pctrie_isleaf(pred)) {
884 		KASSERT(pred->pn_popmap != 0,
885 		    ("%s: no popmap children in node %p",  __func__, pred));
886 		slot = ilog2(pred->pn_popmap);
887 		pred = pctrie_node_load(&pred->pn_child[slot], NULL,
888 		    PCTRIE_LOCKED);
889 	}
890 	return (pctrie_toval(pred));
891 }
892 
893 uint64_t *
894 pctrie_lookup_le(struct pctrie *ptree, uint64_t index)
895 {
896 	return (pctrie_lookup_le_node(
897 	    pctrie_root_load(ptree, NULL, PCTRIE_LOCKED), index));
898 }
899 
900 uint64_t *
901 pctrie_subtree_lookup_lt(struct pctrie_node *node, uint64_t index)
902 {
903 	if (node == NULL || index == 0)
904 		return (NULL);
905 	return (pctrie_lookup_le_node(node, index - 1));
906 }
907 
908 /*
909  * Find first leaf <= index, and fill iter with the path to the parent of that
910  * leaf.  Return NULL if there is no such leaf greater than limit.
911  */
912 uint64_t *
913 pctrie_iter_lookup_le(struct pctrie_iter *it, uint64_t index)
914 {
915 	struct pctrie_node *node;
916 	uint64_t *m;
917 	int slot;
918 
919 	/* Seek a node that matches index. */
920 	node = _pctrie_iter_lookup_node(it, index, NULL, PCTRIE_LOCKED);
921 
922 	/*
923 	 * If no such node was found, and instead this path leads only to nodes
924 	 * > index, back up to find a subtrie with the least value > index.
925 	 */
926 	if (pctrie_isleaf(node) ?
927 	    (m = pctrie_toval(node)) == NULL || *m > index :
928 	    node->pn_owner > index) {
929 		/* Climb the path to find a node with a descendant < index. */
930 		while (it->top != 0) {
931 			node = it->path[it->top - 1];
932 			slot = pctrie_slot(node, index);
933 			if ((node->pn_popmap & ((1 << slot) - 1)) != 0)
934 				break;
935 			--it->top;
936 		}
937 		if (it->top == 0)
938 			return (NULL);
939 
940 		/* Step to the greatest child with a descendant < index. */
941 		slot = ilog2(node->pn_popmap & ((1 << slot) - 1));
942 		node = pctrie_node_load(&node->pn_child[slot], NULL,
943 		    PCTRIE_LOCKED);
944 	}
945 	/* Descend to the greatest leaf of the subtrie. */
946 	while (!pctrie_isleaf(node)) {
947 		if (it->limit != 0 && it->limit >=
948 		    node->pn_owner + (PCTRIE_COUNT << node->pn_clev) - 1)
949 			return (NULL);
950 		slot = ilog2(node->pn_popmap);
951 		KASSERT(it->top < nitems(it->path),
952 		    ("%s: path overflow in trie %p", __func__, it->ptree));
953 		it->path[it->top++] = node;
954 		node = pctrie_node_load(&node->pn_child[slot], NULL,
955 		    PCTRIE_LOCKED);
956 	}
957 	m = pctrie_toval(node);
958 	if (it->limit != 0 && *m <= it->limit)
959 		return (NULL);
960 	it->index = *m;
961 	return (m);
962 }
963 
964 /*
965  * Find the first leaf with value at most 'jump' less than the previous
966  * leaf.  Return NULL if that value is <= limit.
967  */
968 uint64_t *
969 pctrie_iter_jump_le(struct pctrie_iter *it, int64_t jump)
970 {
971 	uint64_t index = it->index - jump;
972 
973 	/* Detect jump overflow. */
974 	if ((jump > 0) != (index < it->index))
975 		return (NULL);
976 	if (it->limit != 0 && index <= it->limit)
977 		return (NULL);
978 	return (pctrie_iter_lookup_le(it, index));
979 }
980 
981 #ifdef INVARIANTS
982 void
983 pctrie_subtree_lookup_lt_assert(struct pctrie_node *node, uint64_t index,
984     struct pctrie *ptree, uint64_t *res)
985 {
986 	uint64_t *expected;
987 
988 	if (index == 0)
989 		expected = NULL;
990 	else
991 		expected = pctrie_lookup_le(ptree, index - 1);
992 	KASSERT(res == expected,
993 	    ("pctrie subtree lookup lt result different from root lookup: "
994 	    "ptree %p, index %ju, subtree %p, found %p, expected %p", ptree,
995 	    (uintmax_t)index, node, res, expected));
996 }
997 #endif
998 
999 static void
1000 pctrie_remove(struct pctrie *ptree, uint64_t index, struct pctrie_node *parent,
1001     struct pctrie_node *node, struct pctrie_node **freenode)
1002 {
1003 	struct pctrie_node *child;
1004 	int slot;
1005 
1006 	if (node == NULL) {
1007 		pctrie_root_store(ptree, PCTRIE_NULL, PCTRIE_LOCKED);
1008 		return;
1009 	}
1010 	slot = pctrie_slot(node, index);
1011 	KASSERT((node->pn_popmap & (1 << slot)) != 0,
1012 	    ("%s: bad popmap slot %d in node %p",
1013 	    __func__, slot, node));
1014 	node->pn_popmap ^= 1 << slot;
1015 	pctrie_node_store(&node->pn_child[slot], PCTRIE_NULL, PCTRIE_LOCKED);
1016 	if (!powerof2(node->pn_popmap))
1017 		return;
1018 	KASSERT(node->pn_popmap != 0, ("%s: bad popmap all zeroes", __func__));
1019 	slot = ffs(node->pn_popmap) - 1;
1020 	child = pctrie_node_load(&node->pn_child[slot], NULL, PCTRIE_LOCKED);
1021 	KASSERT(child != PCTRIE_NULL,
1022 	    ("%s: bad popmap slot %d in node %p", __func__, slot, node));
1023 	if (parent == NULL)
1024 		pctrie_root_store(ptree, child, PCTRIE_LOCKED);
1025 	else {
1026 		slot = pctrie_slot(parent, index);
1027 		KASSERT(node ==
1028 		    pctrie_node_load(&parent->pn_child[slot], NULL,
1029 		    PCTRIE_LOCKED), ("%s: invalid child value", __func__));
1030 		pctrie_node_store(&parent->pn_child[slot], child,
1031 		    PCTRIE_LOCKED);
1032 	}
1033 	/*
1034 	 * The child is still valid and we can not zero the
1035 	 * pointer until all SMR references are gone.
1036 	 */
1037 	pctrie_node_put(node);
1038 	*freenode = node;
1039 }
1040 
1041 /*
1042  * Remove the specified index from the tree, and return the value stored at
1043  * that index.  If the index is not present, return NULL.
1044  */
1045 uint64_t *
1046 pctrie_remove_lookup(struct pctrie *ptree, uint64_t index,
1047     struct pctrie_node **freenode)
1048 {
1049 	struct pctrie_node *child, *node, *parent;
1050 	uint64_t *m;
1051 	int slot;
1052 
1053 	DEBUG_POISON_POINTER(parent);
1054 	*freenode = node = NULL;
1055 	child = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED);
1056 	while (!pctrie_isleaf(child)) {
1057 		parent = node;
1058 		node = child;
1059 		slot = pctrie_slot(node, index);
1060 		child = pctrie_node_load(&node->pn_child[slot], NULL,
1061 		    PCTRIE_LOCKED);
1062 	}
1063 	m = pctrie_match_value(child, index);
1064 	if (m != NULL)
1065 		pctrie_remove(ptree, index, parent, node, freenode);
1066 	return (m);
1067 }
1068 
1069 /*
1070  * Remove from the trie the leaf last chosen by the iterator, and
1071  * adjust the path if it's last member is to be freed.
1072  */
1073 uint64_t *
1074 pctrie_iter_remove(struct pctrie_iter *it, struct pctrie_node **freenode)
1075 {
1076 	struct pctrie_node *child, *node, *parent;
1077 	uint64_t *m;
1078 	int slot;
1079 
1080 	DEBUG_POISON_POINTER(parent);
1081 	*freenode = NULL;
1082 	if (it->top >= 1) {
1083 		parent = (it->top >= 2) ? it->path[it->top - 2] : NULL;
1084 		node = it->path[it->top - 1];
1085 		slot = pctrie_slot(node, it->index);
1086 		child = pctrie_node_load(&node->pn_child[slot], NULL,
1087 		    PCTRIE_LOCKED);
1088 	} else {
1089 		node = NULL;
1090 		child = pctrie_root_load(it->ptree, NULL, PCTRIE_LOCKED);
1091 	}
1092 	m = pctrie_match_value(child, it->index);
1093 	if (m != NULL)
1094 		pctrie_remove(it->ptree, it->index, parent, node, freenode);
1095 	if (*freenode != NULL)
1096 		--it->top;
1097 	return (m);
1098 }
1099 
1100 /*
1101  * Return the current leaf, assuming access is externally synchronized by a
1102  * lock.
1103  */
1104 uint64_t *
1105 pctrie_iter_value(struct pctrie_iter *it)
1106 {
1107 	struct pctrie_node *node;
1108 	int slot;
1109 
1110 	if (it->top == 0)
1111 		node = pctrie_root_load(it->ptree, NULL,
1112 		    PCTRIE_LOCKED);
1113 	else {
1114 		node = it->path[it->top - 1];
1115 		slot = pctrie_slot(node, it->index);
1116 		node = pctrie_node_load(&node->pn_child[slot], NULL,
1117 		    PCTRIE_LOCKED);
1118 	}
1119 	return (pctrie_toval(node));
1120 }
1121 
1122 /*
1123  * Walk the subtrie rooted at *pnode in order, invoking callback on leaves and
1124  * using the leftmost child pointer for path reversal, until an interior node
1125  * is stripped of all children, and returned for deallocation, with *pnode left
1126  * pointing to the parent of that node.
1127  */
1128 static __always_inline struct pctrie_node *
1129 pctrie_reclaim_prune(struct pctrie_node **pnode, struct pctrie_node *parent,
1130     pctrie_cb_t callback, int keyoff, void *arg)
1131 {
1132 	struct pctrie_node *child, *node;
1133 	int slot;
1134 
1135 	node = *pnode;
1136 	while (node->pn_popmap != 0) {
1137 		slot = ffs(node->pn_popmap) - 1;
1138 		node->pn_popmap ^= 1 << slot;
1139 		child = pctrie_node_load(&node->pn_child[slot], NULL,
1140 		    PCTRIE_UNSERIALIZED);
1141 		pctrie_node_store(&node->pn_child[slot], PCTRIE_NULL,
1142 		    PCTRIE_UNSERIALIZED);
1143 		if (pctrie_isleaf(child)) {
1144 			if (callback != NULL)
1145 				callback(pctrie_toptr(child, keyoff), arg);
1146 			continue;
1147 		}
1148 		/* Climb one level down the trie. */
1149 		pctrie_node_store(&node->pn_child[0], parent,
1150 		    PCTRIE_UNSERIALIZED);
1151 		parent = node;
1152 		node = child;
1153 	}
1154 	*pnode = parent;
1155 	return (node);
1156 }
1157 
1158 /*
1159  * Recover the node parent from its first child and continue pruning.
1160  */
1161 static __always_inline struct pctrie_node *
1162 pctrie_reclaim_resume_compound(struct pctrie_node **pnode,
1163     pctrie_cb_t callback, int keyoff, void *arg)
1164 {
1165 	struct pctrie_node *parent, *node;
1166 
1167 	node = *pnode;
1168 	if (node == NULL)
1169 		return (NULL);
1170 	/* Climb one level up the trie. */
1171 	parent = pctrie_node_load(&node->pn_child[0], NULL,
1172 	    PCTRIE_UNSERIALIZED);
1173 	pctrie_node_store(&node->pn_child[0], PCTRIE_NULL, PCTRIE_UNSERIALIZED);
1174 	return (pctrie_reclaim_prune(pnode, parent, callback, keyoff, arg));
1175 }
1176 
1177 /*
1178  * Find the trie root, and start pruning with a NULL parent.
1179  */
1180 static __always_inline struct pctrie_node *
1181 pctrie_reclaim_begin_compound(struct pctrie_node **pnode,
1182     struct pctrie *ptree,
1183     pctrie_cb_t callback, int keyoff, void *arg)
1184 {
1185 	struct pctrie_node *node;
1186 
1187 	node = pctrie_root_load(ptree, NULL, PCTRIE_UNSERIALIZED);
1188 	pctrie_root_store(ptree, PCTRIE_NULL, PCTRIE_UNSERIALIZED);
1189 	if (pctrie_isleaf(node)) {
1190 		if (callback != NULL && node != PCTRIE_NULL)
1191 			callback(pctrie_toptr(node, keyoff), arg);
1192 		return (NULL);
1193 	}
1194 	*pnode = node;
1195 	return (pctrie_reclaim_prune(pnode, NULL, callback, keyoff, arg));
1196 }
1197 
1198 struct pctrie_node *
1199 pctrie_reclaim_resume(struct pctrie_node **pnode)
1200 {
1201 	return (pctrie_reclaim_resume_compound(pnode, NULL, 0, NULL));
1202 }
1203 
1204 struct pctrie_node *
1205 pctrie_reclaim_begin(struct pctrie_node **pnode, struct pctrie *ptree)
1206 {
1207 	return (pctrie_reclaim_begin_compound(pnode, ptree, NULL, 0, NULL));
1208 }
1209 
1210 struct pctrie_node *
1211 pctrie_reclaim_resume_cb(struct pctrie_node **pnode,
1212     pctrie_cb_t callback, int keyoff, void *arg)
1213 {
1214 	return (pctrie_reclaim_resume_compound(pnode, callback, keyoff, arg));
1215 }
1216 
1217 struct pctrie_node *
1218 pctrie_reclaim_begin_cb(struct pctrie_node **pnode, struct pctrie *ptree,
1219     pctrie_cb_t callback, int keyoff, void *arg)
1220 {
1221 	return (pctrie_reclaim_begin_compound(pnode, ptree,
1222 	    callback, keyoff, arg));
1223 }
1224 
1225 /*
1226  * Replace an existing value in the trie with another one.
1227  * Panics if there is not an old value in the trie at the new value's index.
1228  */
1229 uint64_t *
1230 pctrie_replace(struct pctrie *ptree, uint64_t *newval)
1231 {
1232 	struct pctrie_node *leaf, *parent, *node;
1233 	uint64_t *m;
1234 	uint64_t index;
1235 	int slot;
1236 
1237 	leaf = pctrie_toleaf(newval);
1238 	index = *newval;
1239 	node = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED);
1240 	parent = NULL;
1241 	for (;;) {
1242 		if (pctrie_isleaf(node)) {
1243 			if ((m = pctrie_toval(node)) != NULL && *m == index) {
1244 				if (parent == NULL)
1245 					ptree->pt_root = leaf;
1246 				else
1247 					pctrie_node_store(
1248 					    &parent->pn_child[slot], leaf,
1249 					    PCTRIE_LOCKED);
1250 				return (m);
1251 			}
1252 			break;
1253 		}
1254 		if (pctrie_keybarr(node, index, &slot))
1255 			break;
1256 		parent = node;
1257 		node = pctrie_node_load(&node->pn_child[slot], NULL,
1258 		    PCTRIE_LOCKED);
1259 	}
1260 	panic("%s: original replacing value not found", __func__);
1261 }
1262 
1263 #ifdef DDB
1264 /*
1265  * Show details about the given node.
1266  */
1267 DB_SHOW_COMMAND(pctrienode, db_show_pctrienode)
1268 {
1269 	struct pctrie_node *node, *tmp;
1270 	int slot;
1271 	pn_popmap_t popmap;
1272 
1273         if (!have_addr)
1274                 return;
1275 	node = (struct pctrie_node *)addr;
1276 	db_printf("node %p, owner %jx, children popmap %04x, level %u:\n",
1277 	    (void *)node, (uintmax_t)node->pn_owner, node->pn_popmap,
1278 	    node->pn_clev / PCTRIE_WIDTH);
1279 	for (popmap = node->pn_popmap; popmap != 0; popmap ^= 1 << slot) {
1280 		slot = ffs(popmap) - 1;
1281 		tmp = pctrie_node_load(&node->pn_child[slot], NULL,
1282 		    PCTRIE_UNSERIALIZED);
1283 		db_printf("slot: %d, val: %p, value: %p, clev: %d\n",
1284 		    slot, (void *)tmp,
1285 		    pctrie_isleaf(tmp) ? pctrie_toval(tmp) : NULL,
1286 		    node->pn_clev / PCTRIE_WIDTH);
1287 	}
1288 }
1289 #endif /* DDB */
1290