xref: /freebsd/sys/kern/subr_pctrie.c (revision 9e5787d2284e187abb5b654d924394a65772e004)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2013 EMC Corp.
5  * Copyright (c) 2011 Jeffrey Roberson <jeff@freebsd.org>
6  * Copyright (c) 2008 Mayur Shardul <mayur.shardul@gmail.com>
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  */
31 
32 /*
33  * Path-compressed radix trie implementation.
34  *
35  * The implementation takes into account the following rationale:
36  * - Size of the nodes should be as small as possible but still big enough
37  *   to avoid a large maximum depth for the trie.  This is a balance
38  *   between the necessity to not wire too much physical memory for the nodes
39  *   and the necessity to avoid too much cache pollution during the trie
40  *   operations.
41  * - There is not a huge bias toward the number of lookup operations over
42  *   the number of insert and remove operations.  This basically implies
43  *   that optimizations supposedly helping one operation but hurting the
44  *   other might be carefully evaluated.
45  * - On average not many nodes are expected to be fully populated, hence
46  *   level compression may just complicate things.
47  */
48 
49 #include <sys/cdefs.h>
50 __FBSDID("$FreeBSD$");
51 
52 #include "opt_ddb.h"
53 
54 #include <sys/param.h>
55 #include <sys/systm.h>
56 #include <sys/kernel.h>
57 #include <sys/pctrie.h>
58 #include <sys/proc.h>	/* smr.h depends on struct thread. */
59 #include <sys/smr.h>
60 #include <sys/smr_types.h>
61 
62 #ifdef DDB
63 #include <ddb/ddb.h>
64 #endif
65 
66 #define	PCTRIE_MASK	(PCTRIE_COUNT - 1)
67 #define	PCTRIE_LIMIT	(howmany(sizeof(uint64_t) * NBBY, PCTRIE_WIDTH) - 1)
68 
69 /* Flag bits stored in node pointers. */
70 #define	PCTRIE_ISLEAF	0x1
71 #define	PCTRIE_FLAGS	0x1
72 #define	PCTRIE_PAD	PCTRIE_FLAGS
73 
74 /* Returns one unit associated with specified level. */
75 #define	PCTRIE_UNITLEVEL(lev)						\
76 	((uint64_t)1 << ((lev) * PCTRIE_WIDTH))
77 
78 struct pctrie_node;
79 typedef SMR_POINTER(struct pctrie_node *) smr_pctnode_t;
80 
81 struct pctrie_node {
82 	uint64_t	pn_owner;			/* Owner of record. */
83 	uint16_t	pn_count;			/* Valid children. */
84 	uint8_t		pn_clev;			/* Current level. */
85 	int8_t		pn_last;			/* Zero last ptr. */
86 	smr_pctnode_t	pn_child[PCTRIE_COUNT];		/* Child nodes. */
87 };
88 
89 enum pctrie_access { PCTRIE_SMR, PCTRIE_LOCKED, PCTRIE_UNSERIALIZED };
90 
91 static __inline void pctrie_node_store(smr_pctnode_t *p, void *val,
92     enum pctrie_access access);
93 
94 /*
95  * Allocate a node.  Pre-allocation should ensure that the request
96  * will always be satisfied.
97  */
98 static struct pctrie_node *
99 pctrie_node_get(struct pctrie *ptree, pctrie_alloc_t allocfn, uint64_t owner,
100     uint16_t count, uint16_t clevel)
101 {
102 	struct pctrie_node *node;
103 
104 	node = allocfn(ptree);
105 	if (node == NULL)
106 		return (NULL);
107 
108 	/*
109 	 * We want to clear the last child pointer after the final section
110 	 * has exited so lookup can not return false negatives.  It is done
111 	 * here because it will be cache-cold in the dtor callback.
112 	 */
113 	if (node->pn_last != 0) {
114 		pctrie_node_store(&node->pn_child[node->pn_last - 1], NULL,
115 		    PCTRIE_UNSERIALIZED);
116 		node->pn_last = 0;
117 	}
118 	node->pn_owner = owner;
119 	node->pn_count = count;
120 	node->pn_clev = clevel;
121 	return (node);
122 }
123 
124 /*
125  * Free radix node.
126  */
127 static __inline void
128 pctrie_node_put(struct pctrie *ptree, struct pctrie_node *node,
129     pctrie_free_t freefn, int8_t last)
130 {
131 #ifdef INVARIANTS
132 	int slot;
133 
134 	KASSERT(node->pn_count == 0,
135 	    ("pctrie_node_put: node %p has %d children", node,
136 	    node->pn_count));
137 	for (slot = 0; slot < PCTRIE_COUNT; slot++) {
138 		if (slot == last)
139 			continue;
140 		KASSERT(smr_unserialized_load(&node->pn_child[slot], true) ==
141 		    NULL, ("pctrie_node_put: node %p has a child", node));
142 	}
143 #endif
144 	node->pn_last = last + 1;
145 	freefn(ptree, node);
146 }
147 
148 /*
149  * Return the position in the array for a given level.
150  */
151 static __inline int
152 pctrie_slot(uint64_t index, uint16_t level)
153 {
154 
155 	return ((index >> (level * PCTRIE_WIDTH)) & PCTRIE_MASK);
156 }
157 
158 /* Trims the key after the specified level. */
159 static __inline uint64_t
160 pctrie_trimkey(uint64_t index, uint16_t level)
161 {
162 	uint64_t ret;
163 
164 	ret = index;
165 	if (level > 0) {
166 		ret >>= level * PCTRIE_WIDTH;
167 		ret <<= level * PCTRIE_WIDTH;
168 	}
169 	return (ret);
170 }
171 
172 /*
173  * Fetch a node pointer from a slot.
174  */
175 static __inline struct pctrie_node *
176 pctrie_node_load(smr_pctnode_t *p, smr_t smr, enum pctrie_access access)
177 {
178 	switch (access) {
179 	case PCTRIE_UNSERIALIZED:
180 		return (smr_unserialized_load(p, true));
181 	case PCTRIE_LOCKED:
182 		return (smr_serialized_load(p, true));
183 	case PCTRIE_SMR:
184 		return (smr_entered_load(p, smr));
185 	}
186 	__assert_unreachable();
187 }
188 
189 static __inline void
190 pctrie_node_store(smr_pctnode_t *p, void *v, enum pctrie_access access)
191 {
192 	switch (access) {
193 	case PCTRIE_UNSERIALIZED:
194 		smr_unserialized_store(p, v, true);
195 		break;
196 	case PCTRIE_LOCKED:
197 		smr_serialized_store(p, v, true);
198 		break;
199 	case PCTRIE_SMR:
200 		panic("%s: Not supported in SMR section.", __func__);
201 		break;
202 	default:
203 		__assert_unreachable();
204 		break;
205 	}
206 }
207 
208 /*
209  * Get the root node for a tree.
210  */
211 static __inline struct pctrie_node *
212 pctrie_root_load(struct pctrie *ptree, smr_t smr, enum pctrie_access access)
213 {
214 	return (pctrie_node_load((smr_pctnode_t *)&ptree->pt_root, smr, access));
215 }
216 
217 /*
218  * Set the root node for a tree.
219  */
220 static __inline void
221 pctrie_root_store(struct pctrie *ptree, struct pctrie_node *node,
222     enum pctrie_access access)
223 {
224 	pctrie_node_store((smr_pctnode_t *)&ptree->pt_root, node, access);
225 }
226 
227 /*
228  * Returns TRUE if the specified node is a leaf and FALSE otherwise.
229  */
230 static __inline bool
231 pctrie_isleaf(struct pctrie_node *node)
232 {
233 
234 	return (((uintptr_t)node & PCTRIE_ISLEAF) != 0);
235 }
236 
237 /*
238  * Returns the associated val extracted from node.
239  */
240 static __inline uint64_t *
241 pctrie_toval(struct pctrie_node *node)
242 {
243 
244 	return ((uint64_t *)((uintptr_t)node & ~PCTRIE_FLAGS));
245 }
246 
247 /*
248  * Adds the val as a child of the provided node.
249  */
250 static __inline void
251 pctrie_addval(struct pctrie_node *node, uint64_t index, uint16_t clev,
252     uint64_t *val, enum pctrie_access access)
253 {
254 	int slot;
255 
256 	slot = pctrie_slot(index, clev);
257 	pctrie_node_store(&node->pn_child[slot],
258 	    (void *)((uintptr_t)val | PCTRIE_ISLEAF), access);
259 }
260 
261 /*
262  * Returns the slot where two keys differ.
263  * It cannot accept 2 equal keys.
264  */
265 static __inline uint16_t
266 pctrie_keydiff(uint64_t index1, uint64_t index2)
267 {
268 	uint16_t clev;
269 
270 	KASSERT(index1 != index2, ("%s: passing the same key value %jx",
271 	    __func__, (uintmax_t)index1));
272 
273 	index1 ^= index2;
274 	for (clev = PCTRIE_LIMIT;; clev--)
275 		if (pctrie_slot(index1, clev) != 0)
276 			return (clev);
277 }
278 
279 /*
280  * Returns TRUE if it can be determined that key does not belong to the
281  * specified node.  Otherwise, returns FALSE.
282  */
283 static __inline bool
284 pctrie_keybarr(struct pctrie_node *node, uint64_t idx)
285 {
286 
287 	if (node->pn_clev < PCTRIE_LIMIT) {
288 		idx = pctrie_trimkey(idx, node->pn_clev + 1);
289 		return (idx != node->pn_owner);
290 	}
291 	return (false);
292 }
293 
294 /*
295  * Internal helper for pctrie_reclaim_allnodes().
296  * This function is recursive.
297  */
298 static void
299 pctrie_reclaim_allnodes_int(struct pctrie *ptree, struct pctrie_node *node,
300     pctrie_free_t freefn)
301 {
302 	struct pctrie_node *child;
303 	int slot;
304 
305 	KASSERT(node->pn_count <= PCTRIE_COUNT,
306 	    ("pctrie_reclaim_allnodes_int: bad count in node %p", node));
307 	for (slot = 0; node->pn_count != 0; slot++) {
308 		child = pctrie_node_load(&node->pn_child[slot], NULL,
309 		    PCTRIE_UNSERIALIZED);
310 		if (child == NULL)
311 			continue;
312 		if (!pctrie_isleaf(child))
313 			pctrie_reclaim_allnodes_int(ptree, child, freefn);
314 		pctrie_node_store(&node->pn_child[slot], NULL,
315 		    PCTRIE_UNSERIALIZED);
316 		node->pn_count--;
317 	}
318 	pctrie_node_put(ptree, node, freefn, -1);
319 }
320 
321 /*
322  * pctrie node zone initializer.
323  */
324 int
325 pctrie_zone_init(void *mem, int size __unused, int flags __unused)
326 {
327 	struct pctrie_node *node;
328 
329 	node = mem;
330 	node->pn_last = 0;
331 	memset(node->pn_child, 0, sizeof(node->pn_child));
332 	return (0);
333 }
334 
335 size_t
336 pctrie_node_size(void)
337 {
338 
339 	return (sizeof(struct pctrie_node));
340 }
341 
342 /*
343  * Inserts the key-value pair into the trie.
344  * Panics if the key already exists.
345  */
346 int
347 pctrie_insert(struct pctrie *ptree, uint64_t *val, pctrie_alloc_t allocfn)
348 {
349 	uint64_t index, newind;
350 	struct pctrie_node *node, *tmp;
351 	smr_pctnode_t *parentp;
352 	uint64_t *m;
353 	int slot;
354 	uint16_t clev;
355 
356 	index = *val;
357 
358 	/*
359 	 * The owner of record for root is not really important because it
360 	 * will never be used.
361 	 */
362 	node = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED);
363 	if (node == NULL) {
364 		ptree->pt_root = (uintptr_t)val | PCTRIE_ISLEAF;
365 		return (0);
366 	}
367 	parentp = (smr_pctnode_t *)&ptree->pt_root;
368 	for (;;) {
369 		if (pctrie_isleaf(node)) {
370 			m = pctrie_toval(node);
371 			if (*m == index)
372 				panic("%s: key %jx is already present",
373 				    __func__, (uintmax_t)index);
374 			clev = pctrie_keydiff(*m, index);
375 			tmp = pctrie_node_get(ptree, allocfn,
376 			    pctrie_trimkey(index, clev + 1), 2, clev);
377 			if (tmp == NULL)
378 				return (ENOMEM);
379 			/* These writes are not yet visible due to ordering. */
380 			pctrie_addval(tmp, index, clev, val,
381 			    PCTRIE_UNSERIALIZED);
382 			pctrie_addval(tmp, *m, clev, m, PCTRIE_UNSERIALIZED);
383 			/* Synchronize to make leaf visible. */
384 			pctrie_node_store(parentp, tmp, PCTRIE_LOCKED);
385 			return (0);
386 		} else if (pctrie_keybarr(node, index))
387 			break;
388 		slot = pctrie_slot(index, node->pn_clev);
389 		parentp = &node->pn_child[slot];
390 		tmp = pctrie_node_load(parentp, NULL, PCTRIE_LOCKED);
391 		if (tmp == NULL) {
392 			node->pn_count++;
393 			pctrie_addval(node, index, node->pn_clev, val,
394 			    PCTRIE_LOCKED);
395 			return (0);
396 		}
397 		node = tmp;
398 	}
399 
400 	/*
401 	 * A new node is needed because the right insertion level is reached.
402 	 * Setup the new intermediate node and add the 2 children: the
403 	 * new object and the older edge.
404 	 */
405 	newind = node->pn_owner;
406 	clev = pctrie_keydiff(newind, index);
407 	tmp = pctrie_node_get(ptree, allocfn,
408 	    pctrie_trimkey(index, clev + 1), 2, clev);
409 	if (tmp == NULL)
410 		return (ENOMEM);
411 	slot = pctrie_slot(newind, clev);
412 	/* These writes are not yet visible due to ordering. */
413 	pctrie_addval(tmp, index, clev, val, PCTRIE_UNSERIALIZED);
414 	pctrie_node_store(&tmp->pn_child[slot], node, PCTRIE_UNSERIALIZED);
415 	/* Synchronize to make the above visible. */
416 	pctrie_node_store(parentp, tmp, PCTRIE_LOCKED);
417 
418 	return (0);
419 }
420 
421 /*
422  * Returns the value stored at the index.  If the index is not present,
423  * NULL is returned.
424  */
425 static __always_inline uint64_t *
426 _pctrie_lookup(struct pctrie *ptree, uint64_t index, smr_t smr,
427     enum pctrie_access access)
428 {
429 	struct pctrie_node *node;
430 	uint64_t *m;
431 	int slot;
432 
433 	node = pctrie_root_load(ptree, smr, access);
434 	while (node != NULL) {
435 		if (pctrie_isleaf(node)) {
436 			m = pctrie_toval(node);
437 			if (*m == index)
438 				return (m);
439 			break;
440 		}
441 		if (pctrie_keybarr(node, index))
442 			break;
443 		slot = pctrie_slot(index, node->pn_clev);
444 		node = pctrie_node_load(&node->pn_child[slot], smr, access);
445 	}
446 	return (NULL);
447 }
448 
449 /*
450  * Returns the value stored at the index, assuming access is externally
451  * synchronized by a lock.
452  *
453  * If the index is not present, NULL is returned.
454  */
455 uint64_t *
456 pctrie_lookup(struct pctrie *ptree, uint64_t index)
457 {
458 	return (_pctrie_lookup(ptree, index, NULL, PCTRIE_LOCKED));
459 }
460 
461 /*
462  * Returns the value stored at the index without requiring an external lock.
463  *
464  * If the index is not present, NULL is returned.
465  */
466 uint64_t *
467 pctrie_lookup_unlocked(struct pctrie *ptree, uint64_t index, smr_t smr)
468 {
469 	uint64_t *res;
470 
471 	smr_enter(smr);
472 	res = _pctrie_lookup(ptree, index, smr, PCTRIE_SMR);
473 	smr_exit(smr);
474 	return (res);
475 }
476 
477 /*
478  * Look up the nearest entry at a position bigger than or equal to index,
479  * assuming access is externally synchronized by a lock.
480  */
481 uint64_t *
482 pctrie_lookup_ge(struct pctrie *ptree, uint64_t index)
483 {
484 	struct pctrie_node *stack[PCTRIE_LIMIT];
485 	uint64_t inc;
486 	uint64_t *m;
487 	struct pctrie_node *child, *node;
488 #ifdef INVARIANTS
489 	int loops = 0;
490 #endif
491 	unsigned tos;
492 	int slot;
493 
494 	node = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED);
495 	if (node == NULL)
496 		return (NULL);
497 	else if (pctrie_isleaf(node)) {
498 		m = pctrie_toval(node);
499 		if (*m >= index)
500 			return (m);
501 		else
502 			return (NULL);
503 	}
504 	tos = 0;
505 	for (;;) {
506 		/*
507 		 * If the keys differ before the current bisection node,
508 		 * then the search key might rollback to the earliest
509 		 * available bisection node or to the smallest key
510 		 * in the current node (if the owner is greater than the
511 		 * search key).
512 		 */
513 		if (pctrie_keybarr(node, index)) {
514 			if (index > node->pn_owner) {
515 ascend:
516 				KASSERT(++loops < 1000,
517 				    ("pctrie_lookup_ge: too many loops"));
518 
519 				/*
520 				 * Pop nodes from the stack until either the
521 				 * stack is empty or a node that could have a
522 				 * matching descendant is found.
523 				 */
524 				do {
525 					if (tos == 0)
526 						return (NULL);
527 					node = stack[--tos];
528 				} while (pctrie_slot(index,
529 				    node->pn_clev) == (PCTRIE_COUNT - 1));
530 
531 				/*
532 				 * The following computation cannot overflow
533 				 * because index's slot at the current level
534 				 * is less than PCTRIE_COUNT - 1.
535 				 */
536 				index = pctrie_trimkey(index,
537 				    node->pn_clev);
538 				index += PCTRIE_UNITLEVEL(node->pn_clev);
539 			} else
540 				index = node->pn_owner;
541 			KASSERT(!pctrie_keybarr(node, index),
542 			    ("pctrie_lookup_ge: keybarr failed"));
543 		}
544 		slot = pctrie_slot(index, node->pn_clev);
545 		child = pctrie_node_load(&node->pn_child[slot], NULL,
546 		    PCTRIE_LOCKED);
547 		if (pctrie_isleaf(child)) {
548 			m = pctrie_toval(child);
549 			if (*m >= index)
550 				return (m);
551 		} else if (child != NULL)
552 			goto descend;
553 
554 		/*
555 		 * Look for an available edge or val within the current
556 		 * bisection node.
557 		 */
558                 if (slot < (PCTRIE_COUNT - 1)) {
559 			inc = PCTRIE_UNITLEVEL(node->pn_clev);
560 			index = pctrie_trimkey(index, node->pn_clev);
561 			do {
562 				index += inc;
563 				slot++;
564 				child = pctrie_node_load(&node->pn_child[slot],
565 				    NULL, PCTRIE_LOCKED);
566 				if (pctrie_isleaf(child)) {
567 					m = pctrie_toval(child);
568 					if (*m >= index)
569 						return (m);
570 				} else if (child != NULL)
571 					goto descend;
572 			} while (slot < (PCTRIE_COUNT - 1));
573 		}
574 		KASSERT(child == NULL || pctrie_isleaf(child),
575 		    ("pctrie_lookup_ge: child is radix node"));
576 
577 		/*
578 		 * If a value or edge greater than the search slot is not found
579 		 * in the current node, ascend to the next higher-level node.
580 		 */
581 		goto ascend;
582 descend:
583 		KASSERT(node->pn_clev > 0,
584 		    ("pctrie_lookup_ge: pushing leaf's parent"));
585 		KASSERT(tos < PCTRIE_LIMIT,
586 		    ("pctrie_lookup_ge: stack overflow"));
587 		stack[tos++] = node;
588 		node = child;
589 	}
590 }
591 
592 /*
593  * Look up the nearest entry at a position less than or equal to index,
594  * assuming access is externally synchronized by a lock.
595  */
596 uint64_t *
597 pctrie_lookup_le(struct pctrie *ptree, uint64_t index)
598 {
599 	struct pctrie_node *stack[PCTRIE_LIMIT];
600 	uint64_t inc;
601 	uint64_t *m;
602 	struct pctrie_node *child, *node;
603 #ifdef INVARIANTS
604 	int loops = 0;
605 #endif
606 	unsigned tos;
607 	int slot;
608 
609 	node = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED);
610 	if (node == NULL)
611 		return (NULL);
612 	else if (pctrie_isleaf(node)) {
613 		m = pctrie_toval(node);
614 		if (*m <= index)
615 			return (m);
616 		else
617 			return (NULL);
618 	}
619 	tos = 0;
620 	for (;;) {
621 		/*
622 		 * If the keys differ before the current bisection node,
623 		 * then the search key might rollback to the earliest
624 		 * available bisection node or to the largest key
625 		 * in the current node (if the owner is smaller than the
626 		 * search key).
627 		 */
628 		if (pctrie_keybarr(node, index)) {
629 			if (index > node->pn_owner) {
630 				index = node->pn_owner + PCTRIE_COUNT *
631 				    PCTRIE_UNITLEVEL(node->pn_clev);
632 			} else {
633 ascend:
634 				KASSERT(++loops < 1000,
635 				    ("pctrie_lookup_le: too many loops"));
636 
637 				/*
638 				 * Pop nodes from the stack until either the
639 				 * stack is empty or a node that could have a
640 				 * matching descendant is found.
641 				 */
642 				do {
643 					if (tos == 0)
644 						return (NULL);
645 					node = stack[--tos];
646 				} while (pctrie_slot(index,
647 				    node->pn_clev) == 0);
648 
649 				/*
650 				 * The following computation cannot overflow
651 				 * because index's slot at the current level
652 				 * is greater than 0.
653 				 */
654 				index = pctrie_trimkey(index,
655 				    node->pn_clev);
656 			}
657 			index--;
658 			KASSERT(!pctrie_keybarr(node, index),
659 			    ("pctrie_lookup_le: keybarr failed"));
660 		}
661 		slot = pctrie_slot(index, node->pn_clev);
662 		child = pctrie_node_load(&node->pn_child[slot], NULL,
663 		    PCTRIE_LOCKED);
664 		if (pctrie_isleaf(child)) {
665 			m = pctrie_toval(child);
666 			if (*m <= index)
667 				return (m);
668 		} else if (child != NULL)
669 			goto descend;
670 
671 		/*
672 		 * Look for an available edge or value within the current
673 		 * bisection node.
674 		 */
675 		if (slot > 0) {
676 			inc = PCTRIE_UNITLEVEL(node->pn_clev);
677 			index |= inc - 1;
678 			do {
679 				index -= inc;
680 				slot--;
681 				child = pctrie_node_load(&node->pn_child[slot],
682 				    NULL, PCTRIE_LOCKED);
683 				if (pctrie_isleaf(child)) {
684 					m = pctrie_toval(child);
685 					if (*m <= index)
686 						return (m);
687 				} else if (child != NULL)
688 					goto descend;
689 			} while (slot > 0);
690 		}
691 		KASSERT(child == NULL || pctrie_isleaf(child),
692 		    ("pctrie_lookup_le: child is radix node"));
693 
694 		/*
695 		 * If a value or edge smaller than the search slot is not found
696 		 * in the current node, ascend to the next higher-level node.
697 		 */
698 		goto ascend;
699 descend:
700 		KASSERT(node->pn_clev > 0,
701 		    ("pctrie_lookup_le: pushing leaf's parent"));
702 		KASSERT(tos < PCTRIE_LIMIT,
703 		    ("pctrie_lookup_le: stack overflow"));
704 		stack[tos++] = node;
705 		node = child;
706 	}
707 }
708 
709 /*
710  * Remove the specified index from the tree.
711  * Panics if the key is not present.
712  */
713 void
714 pctrie_remove(struct pctrie *ptree, uint64_t index, pctrie_free_t freefn)
715 {
716 	struct pctrie_node *node, *parent, *tmp;
717 	uint64_t *m;
718 	int i, slot;
719 
720 	node = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED);
721 	if (pctrie_isleaf(node)) {
722 		m = pctrie_toval(node);
723 		if (*m != index)
724 			panic("%s: invalid key found", __func__);
725 		pctrie_root_store(ptree, NULL, PCTRIE_LOCKED);
726 		return;
727 	}
728 	parent = NULL;
729 	for (;;) {
730 		if (node == NULL)
731 			panic("pctrie_remove: impossible to locate the key");
732 		slot = pctrie_slot(index, node->pn_clev);
733 		tmp = pctrie_node_load(&node->pn_child[slot], NULL,
734 		    PCTRIE_LOCKED);
735 		if (pctrie_isleaf(tmp)) {
736 			m = pctrie_toval(tmp);
737 			if (*m != index)
738 				panic("%s: invalid key found", __func__);
739 			pctrie_node_store(&node->pn_child[slot], NULL,
740 			    PCTRIE_LOCKED);
741 			node->pn_count--;
742 			if (node->pn_count > 1)
743 				break;
744 			for (i = 0; i < PCTRIE_COUNT; i++) {
745 				tmp = pctrie_node_load(&node->pn_child[i],
746 				    NULL, PCTRIE_LOCKED);
747 				if (tmp != NULL)
748 					break;
749 			}
750 			KASSERT(i != PCTRIE_COUNT,
751 			    ("%s: invalid node configuration", __func__));
752 			if (parent == NULL)
753 				pctrie_root_store(ptree, tmp, PCTRIE_LOCKED);
754 			else {
755 				slot = pctrie_slot(index, parent->pn_clev);
756 				KASSERT(pctrie_node_load(
757 					&parent->pn_child[slot], NULL,
758 					PCTRIE_LOCKED) == node,
759 				    ("%s: invalid child value", __func__));
760 				pctrie_node_store(&parent->pn_child[slot], tmp,
761 				    PCTRIE_LOCKED);
762 			}
763 			/*
764 			 * The child is still valid and we can not zero the
765 			 * pointer until all SMR references are gone.
766 			 */
767 			node->pn_count--;
768 			pctrie_node_put(ptree, node, freefn, i);
769 			break;
770 		}
771 		parent = node;
772 		node = tmp;
773 	}
774 }
775 
776 /*
777  * Remove and free all the nodes from the tree.
778  * This function is recursive but there is a tight control on it as the
779  * maximum depth of the tree is fixed.
780  */
781 void
782 pctrie_reclaim_allnodes(struct pctrie *ptree, pctrie_free_t freefn)
783 {
784 	struct pctrie_node *root;
785 
786 	root = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED);
787 	if (root == NULL)
788 		return;
789 	pctrie_root_store(ptree, NULL, PCTRIE_UNSERIALIZED);
790 	if (!pctrie_isleaf(root))
791 		pctrie_reclaim_allnodes_int(ptree, root, freefn);
792 }
793 
794 #ifdef DDB
795 /*
796  * Show details about the given node.
797  */
798 DB_SHOW_COMMAND(pctrienode, db_show_pctrienode)
799 {
800 	struct pctrie_node *node, *tmp;
801 	int i;
802 
803         if (!have_addr)
804                 return;
805 	node = (struct pctrie_node *)addr;
806 	db_printf("node %p, owner %jx, children count %u, level %u:\n",
807 	    (void *)node, (uintmax_t)node->pn_owner, node->pn_count,
808 	    node->pn_clev);
809 	for (i = 0; i < PCTRIE_COUNT; i++) {
810 		tmp = pctrie_node_load(&node->pn_child[i], NULL,
811 		    PCTRIE_UNSERIALIZED);
812 		if (tmp != NULL)
813 			db_printf("slot: %d, val: %p, value: %p, clev: %d\n",
814 			    i, (void *)tmp,
815 			    pctrie_isleaf(tmp) ? pctrie_toval(tmp) : NULL,
816 			    node->pn_clev);
817 	}
818 }
819 #endif /* DDB */
820