xref: /freebsd/sys/kern/subr_pctrie.c (revision 8bab661a3316d8bd9b9fbd11a3b4371b91507bd2)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2013 EMC Corp.
5  * Copyright (c) 2011 Jeffrey Roberson <jeff@freebsd.org>
6  * Copyright (c) 2008 Mayur Shardul <mayur.shardul@gmail.com>
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  */
31 
32 /*
33  * Path-compressed radix trie implementation.
34  *
35  * The implementation takes into account the following rationale:
36  * - Size of the nodes should be as small as possible but still big enough
37  *   to avoid a large maximum depth for the trie.  This is a balance
38  *   between the necessity to not wire too much physical memory for the nodes
39  *   and the necessity to avoid too much cache pollution during the trie
40  *   operations.
41  * - There is not a huge bias toward the number of lookup operations over
42  *   the number of insert and remove operations.  This basically implies
43  *   that optimizations supposedly helping one operation but hurting the
44  *   other might be carefully evaluated.
45  * - On average not many nodes are expected to be fully populated, hence
46  *   level compression may just complicate things.
47  */
48 
49 #include <sys/cdefs.h>
50 __FBSDID("$FreeBSD$");
51 
52 #include "opt_ddb.h"
53 
54 #include <sys/param.h>
55 #include <sys/systm.h>
56 #include <sys/kernel.h>
57 #include <sys/libkern.h>
58 #include <sys/pctrie.h>
59 #include <sys/proc.h>	/* smr.h depends on struct thread. */
60 #include <sys/smr.h>
61 #include <sys/smr_types.h>
62 
63 #ifdef DDB
64 #include <ddb/ddb.h>
65 #endif
66 
67 #define	PCTRIE_MASK	(PCTRIE_COUNT - 1)
68 #define	PCTRIE_LIMIT	(howmany(sizeof(uint64_t) * NBBY, PCTRIE_WIDTH) - 1)
69 
70 #if PCTRIE_WIDTH == 3
71 typedef uint8_t pn_popmap_t;
72 #elif PCTRIE_WIDTH == 4
73 typedef uint16_t pn_popmap_t;
74 #elif PCTRIE_WIDTH == 5
75 typedef uint32_t pn_popmap_t;
76 #else
77 #error Unsupported width
78 #endif
79 _Static_assert(sizeof(pn_popmap_t) <= sizeof(int),
80     "pn_popmap_t too wide");
81 
82 /* Set of all flag bits stored in node pointers. */
83 #define	PCTRIE_FLAGS	(PCTRIE_ISLEAF)
84 #define	PCTRIE_PAD	PCTRIE_FLAGS
85 
86 struct pctrie_node;
87 typedef SMR_POINTER(struct pctrie_node *) smr_pctnode_t;
88 
89 struct pctrie_node {
90 	uint64_t	pn_owner;			/* Owner of record. */
91 	pn_popmap_t	pn_popmap;			/* Valid children. */
92 	uint8_t		pn_clev;			/* Level * WIDTH. */
93 	smr_pctnode_t	pn_child[PCTRIE_COUNT];		/* Child nodes. */
94 };
95 
96 enum pctrie_access { PCTRIE_SMR, PCTRIE_LOCKED, PCTRIE_UNSERIALIZED };
97 
98 static __inline void pctrie_node_store(smr_pctnode_t *p, void *val,
99     enum pctrie_access access);
100 
101 /*
102  * Map index to an array position for the children of node,
103  */
104 static __inline int
105 pctrie_slot(struct pctrie_node *node, uint64_t index)
106 {
107 	return ((index >> node->pn_clev) & PCTRIE_MASK);
108 }
109 
110 /*
111  * Returns true if index does not belong to the specified node.  Otherwise,
112  * sets slot value, and returns false.
113  */
114 static __inline bool
115 pctrie_keybarr(struct pctrie_node *node, uint64_t index, int *slot)
116 {
117 	index = (index - node->pn_owner) >> node->pn_clev;
118 	if (index >= PCTRIE_COUNT)
119 		return (true);
120 	*slot = index;
121 	return (false);
122 }
123 
124 /*
125  * Allocate a node.  Pre-allocation should ensure that the request
126  * will always be satisfied.
127  */
128 static struct pctrie_node *
129 pctrie_node_get(struct pctrie *ptree, pctrie_alloc_t allocfn, uint64_t index,
130     uint64_t newind)
131 {
132 	struct pctrie_node *node;
133 
134 	node = allocfn(ptree);
135 	if (node == NULL)
136 		return (NULL);
137 
138 	/*
139 	 * We want to clear the last child pointer after the final section
140 	 * has exited so lookup can not return false negatives.  It is done
141 	 * here because it will be cache-cold in the dtor callback.
142 	 */
143 	if (node->pn_popmap != 0) {
144 		pctrie_node_store(&node->pn_child[ffs(node->pn_popmap) - 1],
145 		    PCTRIE_NULL, PCTRIE_UNSERIALIZED);
146 		node->pn_popmap = 0;
147 	}
148 
149 	/*
150 	 * From the highest-order bit where the indexes differ,
151 	 * compute the highest level in the trie where they differ.  Then,
152 	 * compute the least index of this subtrie.
153 	 */
154 	KASSERT(index != newind, ("%s: passing the same key value %jx",
155 	    __func__, (uintmax_t)index));
156 	_Static_assert(sizeof(long long) >= sizeof(uint64_t),
157 	    "uint64 too wide");
158 	_Static_assert(sizeof(uint64_t) * NBBY <=
159 	    (1 << (sizeof(node->pn_clev) * NBBY)), "pn_clev too narrow");
160 	node->pn_clev = rounddown(flsll(index ^ newind) - 1, PCTRIE_WIDTH);
161 	node->pn_owner = PCTRIE_COUNT;
162 	node->pn_owner = index & -(node->pn_owner << node->pn_clev);
163 	return (node);
164 }
165 
166 /*
167  * Free radix node.
168  */
169 static __inline void
170 pctrie_node_put(struct pctrie *ptree, struct pctrie_node *node,
171     pctrie_free_t freefn)
172 {
173 #ifdef INVARIANTS
174 	int slot;
175 
176 	KASSERT(powerof2(node->pn_popmap),
177 	    ("pctrie_node_put: node %p has too many children %04x", node,
178 	    node->pn_popmap));
179 	for (slot = 0; slot < PCTRIE_COUNT; slot++) {
180 		if ((node->pn_popmap & (1 << slot)) != 0)
181 			continue;
182 		KASSERT(smr_unserialized_load(&node->pn_child[slot], true) ==
183 		    PCTRIE_NULL,
184 		    ("pctrie_node_put: node %p has a child", node));
185 	}
186 #endif
187 	freefn(ptree, node);
188 }
189 
190 /*
191  * Fetch a node pointer from a slot.
192  */
193 static __inline struct pctrie_node *
194 pctrie_node_load(smr_pctnode_t *p, smr_t smr, enum pctrie_access access)
195 {
196 	switch (access) {
197 	case PCTRIE_UNSERIALIZED:
198 		return (smr_unserialized_load(p, true));
199 	case PCTRIE_LOCKED:
200 		return (smr_serialized_load(p, true));
201 	case PCTRIE_SMR:
202 		return (smr_entered_load(p, smr));
203 	}
204 	__assert_unreachable();
205 }
206 
207 static __inline void
208 pctrie_node_store(smr_pctnode_t *p, void *v, enum pctrie_access access)
209 {
210 	switch (access) {
211 	case PCTRIE_UNSERIALIZED:
212 		smr_unserialized_store(p, v, true);
213 		break;
214 	case PCTRIE_LOCKED:
215 		smr_serialized_store(p, v, true);
216 		break;
217 	case PCTRIE_SMR:
218 		panic("%s: Not supported in SMR section.", __func__);
219 		break;
220 	default:
221 		__assert_unreachable();
222 		break;
223 	}
224 }
225 
226 /*
227  * Get the root node for a tree.
228  */
229 static __inline struct pctrie_node *
230 pctrie_root_load(struct pctrie *ptree, smr_t smr, enum pctrie_access access)
231 {
232 	return (pctrie_node_load((smr_pctnode_t *)&ptree->pt_root, smr, access));
233 }
234 
235 /*
236  * Set the root node for a tree.
237  */
238 static __inline void
239 pctrie_root_store(struct pctrie *ptree, struct pctrie_node *node,
240     enum pctrie_access access)
241 {
242 	pctrie_node_store((smr_pctnode_t *)&ptree->pt_root, node, access);
243 }
244 
245 /*
246  * Returns TRUE if the specified node is a leaf and FALSE otherwise.
247  */
248 static __inline bool
249 pctrie_isleaf(struct pctrie_node *node)
250 {
251 
252 	return (((uintptr_t)node & PCTRIE_ISLEAF) != 0);
253 }
254 
255 /*
256  * Returns val with leaf bit set.
257  */
258 static __inline void *
259 pctrie_toleaf(uint64_t *val)
260 {
261 	return ((void *)((uintptr_t)val | PCTRIE_ISLEAF));
262 }
263 
264 /*
265  * Returns the associated val extracted from node.
266  */
267 static __inline uint64_t *
268 pctrie_toval(struct pctrie_node *node)
269 {
270 
271 	return ((uint64_t *)((uintptr_t)node & ~PCTRIE_FLAGS));
272 }
273 
274 /*
275  * Make 'child' a child of 'node'.
276  */
277 static __inline void
278 pctrie_addnode(struct pctrie_node *node, uint64_t index,
279     struct pctrie_node *child, enum pctrie_access access)
280 {
281 	int slot;
282 
283 	slot = pctrie_slot(node, index);
284 	pctrie_node_store(&node->pn_child[slot], child, access);
285 	node->pn_popmap ^= 1 << slot;
286 	KASSERT((node->pn_popmap & (1 << slot)) != 0,
287 	    ("%s: bad popmap slot %d in node %p", __func__, slot, node));
288 }
289 
290 /*
291  * Internal helper for pctrie_reclaim_allnodes().
292  * This function is recursive.
293  */
294 static void
295 pctrie_reclaim_allnodes_int(struct pctrie *ptree, struct pctrie_node *node,
296     pctrie_free_t freefn)
297 {
298 	struct pctrie_node *child;
299 	int slot;
300 
301 	while (node->pn_popmap != 0) {
302 		slot = ffs(node->pn_popmap) - 1;
303 		child = pctrie_node_load(&node->pn_child[slot], NULL,
304 		    PCTRIE_UNSERIALIZED);
305 		KASSERT(child != PCTRIE_NULL,
306 		    ("%s: bad popmap slot %d in node %p",
307 		    __func__, slot, node));
308 		if (!pctrie_isleaf(child))
309 			pctrie_reclaim_allnodes_int(ptree, child, freefn);
310 		node->pn_popmap ^= 1 << slot;
311 		pctrie_node_store(&node->pn_child[slot], PCTRIE_NULL,
312 		    PCTRIE_UNSERIALIZED);
313 	}
314 	pctrie_node_put(ptree, node, freefn);
315 }
316 
317 /*
318  * pctrie node zone initializer.
319  */
320 int
321 pctrie_zone_init(void *mem, int size __unused, int flags __unused)
322 {
323 	struct pctrie_node *node;
324 
325 	node = mem;
326 	node->pn_popmap = 0;
327 	for (int i = 0; i < nitems(node->pn_child); i++)
328 		pctrie_node_store(&node->pn_child[i], PCTRIE_NULL,
329 		    PCTRIE_UNSERIALIZED);
330 	return (0);
331 }
332 
333 size_t
334 pctrie_node_size(void)
335 {
336 
337 	return (sizeof(struct pctrie_node));
338 }
339 
340 /*
341  * Inserts the key-value pair into the trie.
342  * Panics if the key already exists.
343  */
344 int
345 pctrie_insert(struct pctrie *ptree, uint64_t *val, pctrie_alloc_t allocfn)
346 {
347 	uint64_t index, newind;
348 	struct pctrie_node *leaf, *node, *parent;
349 	smr_pctnode_t *parentp;
350 	int slot;
351 
352 	index = *val;
353 	leaf = pctrie_toleaf(val);
354 
355 	/*
356 	 * The owner of record for root is not really important because it
357 	 * will never be used.
358 	 */
359 	node = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED);
360 	parent = NULL;
361 	for (;;) {
362 		if (pctrie_isleaf(node)) {
363 			if (node == PCTRIE_NULL) {
364 				if (parent == NULL)
365 					ptree->pt_root = leaf;
366 				else
367 					pctrie_addnode(parent, index, leaf,
368 					    PCTRIE_LOCKED);
369 				return (0);
370 			}
371 			newind = *pctrie_toval(node);
372 			if (newind == index)
373 				panic("%s: key %jx is already present",
374 				    __func__, (uintmax_t)index);
375 			break;
376 		}
377 		if (pctrie_keybarr(node, index, &slot)) {
378 			newind = node->pn_owner;
379 			break;
380 		}
381 		parent = node;
382 		node = pctrie_node_load(&node->pn_child[slot], NULL,
383 		    PCTRIE_LOCKED);
384 	}
385 
386 	/*
387 	 * A new node is needed because the right insertion level is reached.
388 	 * Setup the new intermediate node and add the 2 children: the
389 	 * new object and the older edge or object.
390 	 */
391 	parentp = (parent != NULL) ? &parent->pn_child[slot]:
392 	    (smr_pctnode_t *)&ptree->pt_root;
393 	parent = pctrie_node_get(ptree, allocfn, index, newind);
394 	if (parent == NULL)
395 		return (ENOMEM);
396 	/* These writes are not yet visible due to ordering. */
397 	pctrie_addnode(parent, index, leaf, PCTRIE_UNSERIALIZED);
398 	pctrie_addnode(parent, newind, node, PCTRIE_UNSERIALIZED);
399 	/* Synchronize to make the above visible. */
400 	pctrie_node_store(parentp, parent, PCTRIE_LOCKED);
401 	return (0);
402 }
403 
404 /*
405  * Returns the value stored at the index.  If the index is not present,
406  * NULL is returned.
407  */
408 static __always_inline uint64_t *
409 _pctrie_lookup(struct pctrie *ptree, uint64_t index, smr_t smr,
410     enum pctrie_access access)
411 {
412 	struct pctrie_node *node;
413 	uint64_t *m;
414 	int slot;
415 
416 	node = pctrie_root_load(ptree, smr, access);
417 	for (;;) {
418 		if (pctrie_isleaf(node)) {
419 			if ((m = pctrie_toval(node)) != NULL && *m == index)
420 				return (m);
421 			break;
422 		}
423 		if (pctrie_keybarr(node, index, &slot))
424 			break;
425 		node = pctrie_node_load(&node->pn_child[slot], smr, access);
426 	}
427 	return (NULL);
428 }
429 
430 /*
431  * Returns the value stored at the index, assuming access is externally
432  * synchronized by a lock.
433  *
434  * If the index is not present, NULL is returned.
435  */
436 uint64_t *
437 pctrie_lookup(struct pctrie *ptree, uint64_t index)
438 {
439 	return (_pctrie_lookup(ptree, index, NULL, PCTRIE_LOCKED));
440 }
441 
442 /*
443  * Returns the value stored at the index without requiring an external lock.
444  *
445  * If the index is not present, NULL is returned.
446  */
447 uint64_t *
448 pctrie_lookup_unlocked(struct pctrie *ptree, uint64_t index, smr_t smr)
449 {
450 	uint64_t *res;
451 
452 	smr_enter(smr);
453 	res = _pctrie_lookup(ptree, index, smr, PCTRIE_SMR);
454 	smr_exit(smr);
455 	return (res);
456 }
457 
458 /*
459  * Returns the value with the least index that is greater than or equal to the
460  * specified index, or NULL if there are no such values.
461  *
462  * Requires that access be externally synchronized by a lock.
463  */
464 uint64_t *
465 pctrie_lookup_ge(struct pctrie *ptree, uint64_t index)
466 {
467 	struct pctrie_node *node, *succ;
468 	uint64_t *m;
469 	int slot;
470 
471 	/*
472 	 * Descend the trie as if performing an ordinary lookup for the
473 	 * specified value.  However, unlike an ordinary lookup, as we descend
474 	 * the trie, we use "succ" to remember the last branching-off point,
475 	 * that is, the interior node under which the least value that is both
476 	 * outside our current path down the trie and greater than the specified
477 	 * index resides.  (The node's popmap makes it fast and easy to
478 	 * recognize a branching-off point.)  If our ordinary lookup fails to
479 	 * yield a value that is greater than or equal to the specified index,
480 	 * then we will exit this loop and perform a lookup starting from
481 	 * "succ".  If "succ" is not NULL, then that lookup is guaranteed to
482 	 * succeed.
483 	 */
484 	node = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED);
485 	succ = NULL;
486 	for (;;) {
487 		if (pctrie_isleaf(node)) {
488 			if ((m = pctrie_toval(node)) != NULL && *m >= index)
489 				return (m);
490 			break;
491 		}
492 		if (pctrie_keybarr(node, index, &slot)) {
493 			/*
494 			 * If all values in this subtree are > index, then the
495 			 * least value in this subtree is the answer.
496 			 */
497 			if (node->pn_owner > index)
498 				succ = node;
499 			break;
500 		}
501 
502 		/*
503 		 * Just in case the next search step leads to a subtree of all
504 		 * values < index, check popmap to see if a next bigger step, to
505 		 * a subtree of all pages with values > index, is available.  If
506 		 * so, remember to restart the search here.
507 		 */
508 		if ((node->pn_popmap >> slot) > 1)
509 			succ = node;
510 		node = pctrie_node_load(&node->pn_child[slot], NULL,
511 		    PCTRIE_LOCKED);
512 	}
513 
514 	/*
515 	 * Restart the search from the last place visited in the subtree that
516 	 * included some values > index, if there was such a place.
517 	 */
518 	if (succ == NULL)
519 		return (NULL);
520 	if (succ != node) {
521 		/*
522 		 * Take a step to the next bigger sibling of the node chosen
523 		 * last time.  In that subtree, all values > index.
524 		 */
525 		slot = pctrie_slot(succ, index) + 1;
526 		KASSERT((succ->pn_popmap >> slot) != 0,
527 		    ("%s: no popmap siblings past slot %d in node %p",
528 		    __func__, slot, succ));
529 		slot += ffs(succ->pn_popmap >> slot) - 1;
530 		succ = pctrie_node_load(&succ->pn_child[slot], NULL,
531 		    PCTRIE_LOCKED);
532 	}
533 
534 	/*
535 	 * Find the value in the subtree rooted at "succ" with the least index.
536 	 */
537 	while (!pctrie_isleaf(succ)) {
538 		KASSERT(succ->pn_popmap != 0,
539 		    ("%s: no popmap children in node %p",  __func__, succ));
540 		slot = ffs(succ->pn_popmap) - 1;
541 		succ = pctrie_node_load(&succ->pn_child[slot], NULL,
542 		    PCTRIE_LOCKED);
543 	}
544 	return (pctrie_toval(succ));
545 }
546 
547 /*
548  * Returns the value with the greatest index that is less than or equal to the
549  * specified index, or NULL if there are no such values.
550  *
551  * Requires that access be externally synchronized by a lock.
552  */
553 uint64_t *
554 pctrie_lookup_le(struct pctrie *ptree, uint64_t index)
555 {
556 	struct pctrie_node *node, *pred;
557 	uint64_t *m;
558 	int slot;
559 
560 	/*
561 	 * Mirror the implementation of pctrie_lookup_ge, described above.
562 	 */
563 	node = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED);
564 	pred = NULL;
565 	for (;;) {
566 		if (pctrie_isleaf(node)) {
567 			if ((m = pctrie_toval(node)) != NULL && *m <= index)
568 				return (m);
569 			break;
570 		}
571 		if (pctrie_keybarr(node, index, &slot)) {
572 			if (node->pn_owner < index)
573 				pred = node;
574 			break;
575 		}
576 		if ((node->pn_popmap & ((1 << slot) - 1)) != 0)
577 			pred = node;
578 		node = pctrie_node_load(&node->pn_child[slot], NULL,
579 		    PCTRIE_LOCKED);
580 	}
581 	if (pred == NULL)
582 		return (NULL);
583 	if (pred != node) {
584 		slot = pctrie_slot(pred, index);
585 		KASSERT((pred->pn_popmap & ((1 << slot) - 1)) != 0,
586 		    ("%s: no popmap siblings before slot %d in node %p",
587 		    __func__, slot, pred));
588 		slot = fls(pred->pn_popmap & ((1 << slot) - 1)) - 1;
589 		pred = pctrie_node_load(&pred->pn_child[slot], NULL,
590 		    PCTRIE_LOCKED);
591 	}
592 	while (!pctrie_isleaf(pred)) {
593 		KASSERT(pred->pn_popmap != 0,
594 		    ("%s: no popmap children in node %p",  __func__, pred));
595 		slot = fls(pred->pn_popmap) - 1;
596 		pred = pctrie_node_load(&pred->pn_child[slot], NULL,
597 		    PCTRIE_LOCKED);
598 	}
599 	return (pctrie_toval(pred));
600 }
601 
602 /*
603  * Remove the specified index from the tree.
604  * Panics if the key is not present.
605  */
606 void
607 pctrie_remove(struct pctrie *ptree, uint64_t index, pctrie_free_t freefn)
608 {
609 	struct pctrie_node *child, *node, *parent;
610 	uint64_t *m;
611 	int slot;
612 
613 	node = NULL;
614 	child = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED);
615 	for (;;) {
616 		if (pctrie_isleaf(child))
617 			break;
618 		parent = node;
619 		node = child;
620 		slot = pctrie_slot(node, index);
621 		child = pctrie_node_load(&node->pn_child[slot], NULL,
622 		    PCTRIE_LOCKED);
623 	}
624 	if ((m = pctrie_toval(child)) == NULL || *m != index)
625 		panic("%s: key not found", __func__);
626 	if (node == NULL) {
627 		pctrie_root_store(ptree, PCTRIE_NULL, PCTRIE_LOCKED);
628 		return;
629 	}
630 	KASSERT((node->pn_popmap & (1 << slot)) != 0,
631 	    ("%s: bad popmap slot %d in node %p",
632 	    __func__, slot, node));
633 	node->pn_popmap ^= 1 << slot;
634 	pctrie_node_store(&node->pn_child[slot], PCTRIE_NULL, PCTRIE_LOCKED);
635 	if (!powerof2(node->pn_popmap))
636 		return;
637 	KASSERT(node->pn_popmap != 0, ("%s: bad popmap all zeroes", __func__));
638 	slot = ffs(node->pn_popmap) - 1;
639 	child = pctrie_node_load(&node->pn_child[slot], NULL, PCTRIE_LOCKED);
640 	KASSERT(child != PCTRIE_NULL,
641 	    ("%s: bad popmap slot %d in node %p", __func__, slot, node));
642 	if (parent == NULL)
643 		pctrie_root_store(ptree, child, PCTRIE_LOCKED);
644 	else {
645 		slot = pctrie_slot(parent, index);
646 		KASSERT(node ==
647 		    pctrie_node_load(&parent->pn_child[slot], NULL,
648 		    PCTRIE_LOCKED), ("%s: invalid child value", __func__));
649 		pctrie_node_store(&parent->pn_child[slot], child,
650 		    PCTRIE_LOCKED);
651 	}
652 	/*
653 	 * The child is still valid and we can not zero the
654 	 * pointer until all SMR references are gone.
655 	 */
656 	pctrie_node_put(ptree, node, freefn);
657 }
658 
659 /*
660  * Remove and free all the nodes from the tree.
661  * This function is recursive but there is a tight control on it as the
662  * maximum depth of the tree is fixed.
663  */
664 void
665 pctrie_reclaim_allnodes(struct pctrie *ptree, pctrie_free_t freefn)
666 {
667 	struct pctrie_node *root;
668 
669 	root = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED);
670 	if (root == PCTRIE_NULL)
671 		return;
672 	pctrie_root_store(ptree, PCTRIE_NULL, PCTRIE_UNSERIALIZED);
673 	if (!pctrie_isleaf(root))
674 		pctrie_reclaim_allnodes_int(ptree, root, freefn);
675 }
676 
677 #ifdef DDB
678 /*
679  * Show details about the given node.
680  */
681 DB_SHOW_COMMAND(pctrienode, db_show_pctrienode)
682 {
683 	struct pctrie_node *node, *tmp;
684 	int slot;
685 	pn_popmap_t popmap;
686 
687         if (!have_addr)
688                 return;
689 	node = (struct pctrie_node *)addr;
690 	db_printf("node %p, owner %jx, children popmap %04x, level %u:\n",
691 	    (void *)node, (uintmax_t)node->pn_owner, node->pn_popmap,
692 	    node->pn_clev / PCTRIE_WIDTH);
693 	for (popmap = node->pn_popmap; popmap != 0; popmap ^= 1 << slot) {
694 		slot = ffs(popmap) - 1;
695 		tmp = pctrie_node_load(&node->pn_child[slot], NULL,
696 		    PCTRIE_UNSERIALIZED);
697 		db_printf("slot: %d, val: %p, value: %p, clev: %d\n",
698 		    slot, (void *)tmp,
699 		    pctrie_isleaf(tmp) ? pctrie_toval(tmp) : NULL,
700 		    node->pn_clev / PCTRIE_WIDTH);
701 	}
702 }
703 #endif /* DDB */
704