xref: /freebsd/sys/kern/subr_pctrie.c (revision 70bc3f4331a1b6e7045ae5326cbe03428503b612)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2013 EMC Corp.
5  * Copyright (c) 2011 Jeffrey Roberson <jeff@freebsd.org>
6  * Copyright (c) 2008 Mayur Shardul <mayur.shardul@gmail.com>
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  */
31 
32 /*
33  * Path-compressed radix trie implementation.
34  *
35  * The implementation takes into account the following rationale:
36  * - Size of the nodes should be as small as possible but still big enough
37  *   to avoid a large maximum depth for the trie.  This is a balance
38  *   between the necessity to not wire too much physical memory for the nodes
39  *   and the necessity to avoid too much cache pollution during the trie
40  *   operations.
41  * - There is not a huge bias toward the number of lookup operations over
42  *   the number of insert and remove operations.  This basically implies
43  *   that optimizations supposedly helping one operation but hurting the
44  *   other might be carefully evaluated.
45  * - On average not many nodes are expected to be fully populated, hence
46  *   level compression may just complicate things.
47  */
48 
49 #include <sys/cdefs.h>
50 __FBSDID("$FreeBSD$");
51 
52 #include "opt_ddb.h"
53 
54 #include <sys/param.h>
55 #include <sys/systm.h>
56 #include <sys/kernel.h>
57 #include <sys/libkern.h>
58 #include <sys/pctrie.h>
59 #include <sys/proc.h>	/* smr.h depends on struct thread. */
60 #include <sys/smr.h>
61 #include <sys/smr_types.h>
62 
63 #ifdef DDB
64 #include <ddb/ddb.h>
65 #endif
66 
67 #define	PCTRIE_MASK	(PCTRIE_COUNT - 1)
68 #define	PCTRIE_LIMIT	(howmany(sizeof(uint64_t) * NBBY, PCTRIE_WIDTH) - 1)
69 
70 /* Flag bits stored in node pointers. */
71 #define	PCTRIE_ISLEAF	0x1
72 #define	PCTRIE_FLAGS	0x1
73 #define	PCTRIE_PAD	PCTRIE_FLAGS
74 
75 /* Returns one unit associated with specified level. */
76 #define	PCTRIE_UNITLEVEL(lev)						\
77 	((uint64_t)1 << ((lev) * PCTRIE_WIDTH))
78 
79 struct pctrie_node;
80 typedef SMR_POINTER(struct pctrie_node *) smr_pctnode_t;
81 
82 struct pctrie_node {
83 	uint64_t	pn_owner;			/* Owner of record. */
84 	uint16_t	pn_count;			/* Valid children. */
85 	uint8_t		pn_clev;			/* Current level. */
86 	int8_t		pn_last;			/* Zero last ptr. */
87 	smr_pctnode_t	pn_child[PCTRIE_COUNT];		/* Child nodes. */
88 };
89 
90 enum pctrie_access { PCTRIE_SMR, PCTRIE_LOCKED, PCTRIE_UNSERIALIZED };
91 
92 static __inline void pctrie_node_store(smr_pctnode_t *p, void *val,
93     enum pctrie_access access);
94 
95 /*
96  * Allocate a node.  Pre-allocation should ensure that the request
97  * will always be satisfied.
98  */
99 static struct pctrie_node *
100 pctrie_node_get(struct pctrie *ptree, pctrie_alloc_t allocfn, uint64_t owner,
101     uint16_t count, uint16_t clevel)
102 {
103 	struct pctrie_node *node;
104 
105 	node = allocfn(ptree);
106 	if (node == NULL)
107 		return (NULL);
108 
109 	/*
110 	 * We want to clear the last child pointer after the final section
111 	 * has exited so lookup can not return false negatives.  It is done
112 	 * here because it will be cache-cold in the dtor callback.
113 	 */
114 	if (node->pn_last != 0) {
115 		pctrie_node_store(&node->pn_child[node->pn_last - 1], NULL,
116 		    PCTRIE_UNSERIALIZED);
117 		node->pn_last = 0;
118 	}
119 	node->pn_owner = owner;
120 	node->pn_count = count;
121 	node->pn_clev = clevel;
122 	return (node);
123 }
124 
125 /*
126  * Free radix node.
127  */
128 static __inline void
129 pctrie_node_put(struct pctrie *ptree, struct pctrie_node *node,
130     pctrie_free_t freefn, int8_t last)
131 {
132 #ifdef INVARIANTS
133 	int slot;
134 
135 	KASSERT(node->pn_count == 0,
136 	    ("pctrie_node_put: node %p has %d children", node,
137 	    node->pn_count));
138 	for (slot = 0; slot < PCTRIE_COUNT; slot++) {
139 		if (slot == last)
140 			continue;
141 		KASSERT(smr_unserialized_load(&node->pn_child[slot], true) ==
142 		    NULL, ("pctrie_node_put: node %p has a child", node));
143 	}
144 #endif
145 	node->pn_last = last + 1;
146 	freefn(ptree, node);
147 }
148 
149 /*
150  * Return the position in the array for a given level.
151  */
152 static __inline int
153 pctrie_slot(uint64_t index, uint16_t level)
154 {
155 
156 	return ((index >> (level * PCTRIE_WIDTH)) & PCTRIE_MASK);
157 }
158 
159 /* Computes the key (index) with the low-order 'level' radix-digits zeroed. */
160 static __inline uint64_t
161 pctrie_trimkey(uint64_t index, uint16_t level)
162 {
163 	return (index & -PCTRIE_UNITLEVEL(level));
164 }
165 
166 /*
167  * Fetch a node pointer from a slot.
168  */
169 static __inline struct pctrie_node *
170 pctrie_node_load(smr_pctnode_t *p, smr_t smr, enum pctrie_access access)
171 {
172 	switch (access) {
173 	case PCTRIE_UNSERIALIZED:
174 		return (smr_unserialized_load(p, true));
175 	case PCTRIE_LOCKED:
176 		return (smr_serialized_load(p, true));
177 	case PCTRIE_SMR:
178 		return (smr_entered_load(p, smr));
179 	}
180 	__assert_unreachable();
181 }
182 
183 static __inline void
184 pctrie_node_store(smr_pctnode_t *p, void *v, enum pctrie_access access)
185 {
186 	switch (access) {
187 	case PCTRIE_UNSERIALIZED:
188 		smr_unserialized_store(p, v, true);
189 		break;
190 	case PCTRIE_LOCKED:
191 		smr_serialized_store(p, v, true);
192 		break;
193 	case PCTRIE_SMR:
194 		panic("%s: Not supported in SMR section.", __func__);
195 		break;
196 	default:
197 		__assert_unreachable();
198 		break;
199 	}
200 }
201 
202 /*
203  * Get the root node for a tree.
204  */
205 static __inline struct pctrie_node *
206 pctrie_root_load(struct pctrie *ptree, smr_t smr, enum pctrie_access access)
207 {
208 	return (pctrie_node_load((smr_pctnode_t *)&ptree->pt_root, smr, access));
209 }
210 
211 /*
212  * Set the root node for a tree.
213  */
214 static __inline void
215 pctrie_root_store(struct pctrie *ptree, struct pctrie_node *node,
216     enum pctrie_access access)
217 {
218 	pctrie_node_store((smr_pctnode_t *)&ptree->pt_root, node, access);
219 }
220 
221 /*
222  * Returns TRUE if the specified node is a leaf and FALSE otherwise.
223  */
224 static __inline bool
225 pctrie_isleaf(struct pctrie_node *node)
226 {
227 
228 	return (((uintptr_t)node & PCTRIE_ISLEAF) != 0);
229 }
230 
231 /*
232  * Returns the associated val extracted from node.
233  */
234 static __inline uint64_t *
235 pctrie_toval(struct pctrie_node *node)
236 {
237 
238 	return ((uint64_t *)((uintptr_t)node & ~PCTRIE_FLAGS));
239 }
240 
241 /*
242  * Adds the val as a child of the provided node.
243  */
244 static __inline void
245 pctrie_addval(struct pctrie_node *node, uint64_t index, uint16_t clev,
246     uint64_t *val, enum pctrie_access access)
247 {
248 	int slot;
249 
250 	slot = pctrie_slot(index, clev);
251 	pctrie_node_store(&node->pn_child[slot],
252 	    (void *)((uintptr_t)val | PCTRIE_ISLEAF), access);
253 }
254 
255 /*
256  * Returns the level where two keys differ.
257  * It cannot accept 2 equal keys.
258  */
259 static __inline uint16_t
260 pctrie_keydiff(uint64_t index1, uint64_t index2)
261 {
262 
263 	KASSERT(index1 != index2, ("%s: passing the same key value %jx",
264 	    __func__, (uintmax_t)index1));
265 	CTASSERT(sizeof(long long) >= sizeof(uint64_t));
266 
267 	/*
268 	 * From the highest-order bit where the indexes differ,
269 	 * compute the highest level in the trie where they differ.
270 	 */
271 	return ((flsll(index1 ^ index2) - 1) / PCTRIE_WIDTH);
272 }
273 
274 /*
275  * Returns TRUE if it can be determined that key does not belong to the
276  * specified node.  Otherwise, returns FALSE.
277  */
278 static __inline bool
279 pctrie_keybarr(struct pctrie_node *node, uint64_t idx)
280 {
281 
282 	if (node->pn_clev < PCTRIE_LIMIT) {
283 		idx = pctrie_trimkey(idx, node->pn_clev + 1);
284 		return (idx != node->pn_owner);
285 	}
286 	return (false);
287 }
288 
289 /*
290  * Internal helper for pctrie_reclaim_allnodes().
291  * This function is recursive.
292  */
293 static void
294 pctrie_reclaim_allnodes_int(struct pctrie *ptree, struct pctrie_node *node,
295     pctrie_free_t freefn)
296 {
297 	struct pctrie_node *child;
298 	int slot;
299 
300 	KASSERT(node->pn_count <= PCTRIE_COUNT,
301 	    ("pctrie_reclaim_allnodes_int: bad count in node %p", node));
302 	for (slot = 0; node->pn_count != 0; slot++) {
303 		child = pctrie_node_load(&node->pn_child[slot], NULL,
304 		    PCTRIE_UNSERIALIZED);
305 		if (child == NULL)
306 			continue;
307 		if (!pctrie_isleaf(child))
308 			pctrie_reclaim_allnodes_int(ptree, child, freefn);
309 		pctrie_node_store(&node->pn_child[slot], NULL,
310 		    PCTRIE_UNSERIALIZED);
311 		node->pn_count--;
312 	}
313 	pctrie_node_put(ptree, node, freefn, -1);
314 }
315 
316 /*
317  * pctrie node zone initializer.
318  */
319 int
320 pctrie_zone_init(void *mem, int size __unused, int flags __unused)
321 {
322 	struct pctrie_node *node;
323 
324 	node = mem;
325 	node->pn_last = 0;
326 	memset(node->pn_child, 0, sizeof(node->pn_child));
327 	return (0);
328 }
329 
330 size_t
331 pctrie_node_size(void)
332 {
333 
334 	return (sizeof(struct pctrie_node));
335 }
336 
337 /*
338  * Inserts the key-value pair into the trie.
339  * Panics if the key already exists.
340  */
341 int
342 pctrie_insert(struct pctrie *ptree, uint64_t *val, pctrie_alloc_t allocfn)
343 {
344 	uint64_t index, newind;
345 	struct pctrie_node *node, *tmp;
346 	smr_pctnode_t *parentp;
347 	uint64_t *m;
348 	int slot;
349 	uint16_t clev;
350 
351 	index = *val;
352 
353 	/*
354 	 * The owner of record for root is not really important because it
355 	 * will never be used.
356 	 */
357 	node = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED);
358 	if (node == NULL) {
359 		ptree->pt_root = (uintptr_t)val | PCTRIE_ISLEAF;
360 		return (0);
361 	}
362 	parentp = (smr_pctnode_t *)&ptree->pt_root;
363 	for (;;) {
364 		if (pctrie_isleaf(node)) {
365 			m = pctrie_toval(node);
366 			if (*m == index)
367 				panic("%s: key %jx is already present",
368 				    __func__, (uintmax_t)index);
369 			clev = pctrie_keydiff(*m, index);
370 			tmp = pctrie_node_get(ptree, allocfn,
371 			    pctrie_trimkey(index, clev + 1), 2, clev);
372 			if (tmp == NULL)
373 				return (ENOMEM);
374 			/* These writes are not yet visible due to ordering. */
375 			pctrie_addval(tmp, index, clev, val,
376 			    PCTRIE_UNSERIALIZED);
377 			pctrie_addval(tmp, *m, clev, m, PCTRIE_UNSERIALIZED);
378 			/* Synchronize to make leaf visible. */
379 			pctrie_node_store(parentp, tmp, PCTRIE_LOCKED);
380 			return (0);
381 		} else if (pctrie_keybarr(node, index))
382 			break;
383 		slot = pctrie_slot(index, node->pn_clev);
384 		parentp = &node->pn_child[slot];
385 		tmp = pctrie_node_load(parentp, NULL, PCTRIE_LOCKED);
386 		if (tmp == NULL) {
387 			node->pn_count++;
388 			pctrie_addval(node, index, node->pn_clev, val,
389 			    PCTRIE_LOCKED);
390 			return (0);
391 		}
392 		node = tmp;
393 	}
394 
395 	/*
396 	 * A new node is needed because the right insertion level is reached.
397 	 * Setup the new intermediate node and add the 2 children: the
398 	 * new object and the older edge.
399 	 */
400 	newind = node->pn_owner;
401 	clev = pctrie_keydiff(newind, index);
402 	tmp = pctrie_node_get(ptree, allocfn,
403 	    pctrie_trimkey(index, clev + 1), 2, clev);
404 	if (tmp == NULL)
405 		return (ENOMEM);
406 	slot = pctrie_slot(newind, clev);
407 	/* These writes are not yet visible due to ordering. */
408 	pctrie_addval(tmp, index, clev, val, PCTRIE_UNSERIALIZED);
409 	pctrie_node_store(&tmp->pn_child[slot], node, PCTRIE_UNSERIALIZED);
410 	/* Synchronize to make the above visible. */
411 	pctrie_node_store(parentp, tmp, PCTRIE_LOCKED);
412 
413 	return (0);
414 }
415 
416 /*
417  * Returns the value stored at the index.  If the index is not present,
418  * NULL is returned.
419  */
420 static __always_inline uint64_t *
421 _pctrie_lookup(struct pctrie *ptree, uint64_t index, smr_t smr,
422     enum pctrie_access access)
423 {
424 	struct pctrie_node *node;
425 	uint64_t *m;
426 	int slot;
427 
428 	node = pctrie_root_load(ptree, smr, access);
429 	while (node != NULL) {
430 		if (pctrie_isleaf(node)) {
431 			m = pctrie_toval(node);
432 			if (*m == index)
433 				return (m);
434 			break;
435 		}
436 		if (pctrie_keybarr(node, index))
437 			break;
438 		slot = pctrie_slot(index, node->pn_clev);
439 		node = pctrie_node_load(&node->pn_child[slot], smr, access);
440 	}
441 	return (NULL);
442 }
443 
444 /*
445  * Returns the value stored at the index, assuming access is externally
446  * synchronized by a lock.
447  *
448  * If the index is not present, NULL is returned.
449  */
450 uint64_t *
451 pctrie_lookup(struct pctrie *ptree, uint64_t index)
452 {
453 	return (_pctrie_lookup(ptree, index, NULL, PCTRIE_LOCKED));
454 }
455 
456 /*
457  * Returns the value stored at the index without requiring an external lock.
458  *
459  * If the index is not present, NULL is returned.
460  */
461 uint64_t *
462 pctrie_lookup_unlocked(struct pctrie *ptree, uint64_t index, smr_t smr)
463 {
464 	uint64_t *res;
465 
466 	smr_enter(smr);
467 	res = _pctrie_lookup(ptree, index, smr, PCTRIE_SMR);
468 	smr_exit(smr);
469 	return (res);
470 }
471 
472 /*
473  * Look up the nearest entry at a position bigger than or equal to index,
474  * assuming access is externally synchronized by a lock.
475  */
476 uint64_t *
477 pctrie_lookup_ge(struct pctrie *ptree, uint64_t index)
478 {
479 	struct pctrie_node *stack[PCTRIE_LIMIT];
480 	uint64_t inc;
481 	uint64_t *m;
482 	struct pctrie_node *child, *node;
483 #ifdef INVARIANTS
484 	int loops = 0;
485 #endif
486 	unsigned tos;
487 	int slot;
488 
489 	node = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED);
490 	if (node == NULL)
491 		return (NULL);
492 	else if (pctrie_isleaf(node)) {
493 		m = pctrie_toval(node);
494 		if (*m >= index)
495 			return (m);
496 		else
497 			return (NULL);
498 	}
499 	tos = 0;
500 	for (;;) {
501 		/*
502 		 * If the keys differ before the current bisection node,
503 		 * then the search key might rollback to the earliest
504 		 * available bisection node or to the smallest key
505 		 * in the current node (if the owner is greater than the
506 		 * search key).
507 		 */
508 		if (pctrie_keybarr(node, index)) {
509 			if (index > node->pn_owner) {
510 ascend:
511 				KASSERT(++loops < 1000,
512 				    ("pctrie_lookup_ge: too many loops"));
513 
514 				/*
515 				 * Pop nodes from the stack until either the
516 				 * stack is empty or a node that could have a
517 				 * matching descendant is found.
518 				 */
519 				do {
520 					if (tos == 0)
521 						return (NULL);
522 					node = stack[--tos];
523 				} while (pctrie_slot(index,
524 				    node->pn_clev) == (PCTRIE_COUNT - 1));
525 
526 				/*
527 				 * The following computation cannot overflow
528 				 * because index's slot at the current level
529 				 * is less than PCTRIE_COUNT - 1.
530 				 */
531 				index = pctrie_trimkey(index,
532 				    node->pn_clev);
533 				index += PCTRIE_UNITLEVEL(node->pn_clev);
534 			} else
535 				index = node->pn_owner;
536 			KASSERT(!pctrie_keybarr(node, index),
537 			    ("pctrie_lookup_ge: keybarr failed"));
538 		}
539 		slot = pctrie_slot(index, node->pn_clev);
540 		child = pctrie_node_load(&node->pn_child[slot], NULL,
541 		    PCTRIE_LOCKED);
542 		if (pctrie_isleaf(child)) {
543 			m = pctrie_toval(child);
544 			if (*m >= index)
545 				return (m);
546 		} else if (child != NULL)
547 			goto descend;
548 
549 		/*
550 		 * Look for an available edge or val within the current
551 		 * bisection node.
552 		 */
553                 if (slot < (PCTRIE_COUNT - 1)) {
554 			inc = PCTRIE_UNITLEVEL(node->pn_clev);
555 			index = pctrie_trimkey(index, node->pn_clev);
556 			do {
557 				index += inc;
558 				slot++;
559 				child = pctrie_node_load(&node->pn_child[slot],
560 				    NULL, PCTRIE_LOCKED);
561 				if (pctrie_isleaf(child)) {
562 					m = pctrie_toval(child);
563 					if (*m >= index)
564 						return (m);
565 				} else if (child != NULL)
566 					goto descend;
567 			} while (slot < (PCTRIE_COUNT - 1));
568 		}
569 		KASSERT(child == NULL || pctrie_isleaf(child),
570 		    ("pctrie_lookup_ge: child is radix node"));
571 
572 		/*
573 		 * If a value or edge greater than the search slot is not found
574 		 * in the current node, ascend to the next higher-level node.
575 		 */
576 		goto ascend;
577 descend:
578 		KASSERT(node->pn_clev > 0,
579 		    ("pctrie_lookup_ge: pushing leaf's parent"));
580 		KASSERT(tos < PCTRIE_LIMIT,
581 		    ("pctrie_lookup_ge: stack overflow"));
582 		stack[tos++] = node;
583 		node = child;
584 	}
585 }
586 
587 /*
588  * Look up the nearest entry at a position less than or equal to index,
589  * assuming access is externally synchronized by a lock.
590  */
591 uint64_t *
592 pctrie_lookup_le(struct pctrie *ptree, uint64_t index)
593 {
594 	struct pctrie_node *stack[PCTRIE_LIMIT];
595 	uint64_t inc;
596 	uint64_t *m;
597 	struct pctrie_node *child, *node;
598 #ifdef INVARIANTS
599 	int loops = 0;
600 #endif
601 	unsigned tos;
602 	int slot;
603 
604 	node = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED);
605 	if (node == NULL)
606 		return (NULL);
607 	else if (pctrie_isleaf(node)) {
608 		m = pctrie_toval(node);
609 		if (*m <= index)
610 			return (m);
611 		else
612 			return (NULL);
613 	}
614 	tos = 0;
615 	for (;;) {
616 		/*
617 		 * If the keys differ before the current bisection node,
618 		 * then the search key might rollback to the earliest
619 		 * available bisection node or to the largest key
620 		 * in the current node (if the owner is smaller than the
621 		 * search key).
622 		 */
623 		if (pctrie_keybarr(node, index)) {
624 			if (index > node->pn_owner) {
625 				index = node->pn_owner + PCTRIE_COUNT *
626 				    PCTRIE_UNITLEVEL(node->pn_clev);
627 			} else {
628 ascend:
629 				KASSERT(++loops < 1000,
630 				    ("pctrie_lookup_le: too many loops"));
631 
632 				/*
633 				 * Pop nodes from the stack until either the
634 				 * stack is empty or a node that could have a
635 				 * matching descendant is found.
636 				 */
637 				do {
638 					if (tos == 0)
639 						return (NULL);
640 					node = stack[--tos];
641 				} while (pctrie_slot(index,
642 				    node->pn_clev) == 0);
643 
644 				/*
645 				 * The following computation cannot overflow
646 				 * because index's slot at the current level
647 				 * is greater than 0.
648 				 */
649 				index = pctrie_trimkey(index,
650 				    node->pn_clev);
651 			}
652 			index--;
653 			KASSERT(!pctrie_keybarr(node, index),
654 			    ("pctrie_lookup_le: keybarr failed"));
655 		}
656 		slot = pctrie_slot(index, node->pn_clev);
657 		child = pctrie_node_load(&node->pn_child[slot], NULL,
658 		    PCTRIE_LOCKED);
659 		if (pctrie_isleaf(child)) {
660 			m = pctrie_toval(child);
661 			if (*m <= index)
662 				return (m);
663 		} else if (child != NULL)
664 			goto descend;
665 
666 		/*
667 		 * Look for an available edge or value within the current
668 		 * bisection node.
669 		 */
670 		if (slot > 0) {
671 			inc = PCTRIE_UNITLEVEL(node->pn_clev);
672 			index |= inc - 1;
673 			do {
674 				index -= inc;
675 				slot--;
676 				child = pctrie_node_load(&node->pn_child[slot],
677 				    NULL, PCTRIE_LOCKED);
678 				if (pctrie_isleaf(child)) {
679 					m = pctrie_toval(child);
680 					if (*m <= index)
681 						return (m);
682 				} else if (child != NULL)
683 					goto descend;
684 			} while (slot > 0);
685 		}
686 		KASSERT(child == NULL || pctrie_isleaf(child),
687 		    ("pctrie_lookup_le: child is radix node"));
688 
689 		/*
690 		 * If a value or edge smaller than the search slot is not found
691 		 * in the current node, ascend to the next higher-level node.
692 		 */
693 		goto ascend;
694 descend:
695 		KASSERT(node->pn_clev > 0,
696 		    ("pctrie_lookup_le: pushing leaf's parent"));
697 		KASSERT(tos < PCTRIE_LIMIT,
698 		    ("pctrie_lookup_le: stack overflow"));
699 		stack[tos++] = node;
700 		node = child;
701 	}
702 }
703 
704 /*
705  * Remove the specified index from the tree.
706  * Panics if the key is not present.
707  */
708 void
709 pctrie_remove(struct pctrie *ptree, uint64_t index, pctrie_free_t freefn)
710 {
711 	struct pctrie_node *node, *parent, *tmp;
712 	uint64_t *m;
713 	int i, slot;
714 
715 	node = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED);
716 	if (pctrie_isleaf(node)) {
717 		m = pctrie_toval(node);
718 		if (*m != index)
719 			panic("%s: invalid key found", __func__);
720 		pctrie_root_store(ptree, NULL, PCTRIE_LOCKED);
721 		return;
722 	}
723 	parent = NULL;
724 	for (;;) {
725 		if (node == NULL)
726 			panic("pctrie_remove: impossible to locate the key");
727 		slot = pctrie_slot(index, node->pn_clev);
728 		tmp = pctrie_node_load(&node->pn_child[slot], NULL,
729 		    PCTRIE_LOCKED);
730 		if (pctrie_isleaf(tmp)) {
731 			m = pctrie_toval(tmp);
732 			if (*m != index)
733 				panic("%s: invalid key found", __func__);
734 			pctrie_node_store(&node->pn_child[slot], NULL,
735 			    PCTRIE_LOCKED);
736 			node->pn_count--;
737 			if (node->pn_count > 1)
738 				break;
739 			for (i = 0; i < PCTRIE_COUNT; i++) {
740 				tmp = pctrie_node_load(&node->pn_child[i],
741 				    NULL, PCTRIE_LOCKED);
742 				if (tmp != NULL)
743 					break;
744 			}
745 			KASSERT(tmp != NULL,
746 			    ("%s: invalid node configuration", __func__));
747 			if (parent == NULL)
748 				pctrie_root_store(ptree, tmp, PCTRIE_LOCKED);
749 			else {
750 				slot = pctrie_slot(index, parent->pn_clev);
751 				KASSERT(pctrie_node_load(
752 					&parent->pn_child[slot], NULL,
753 					PCTRIE_LOCKED) == node,
754 				    ("%s: invalid child value", __func__));
755 				pctrie_node_store(&parent->pn_child[slot], tmp,
756 				    PCTRIE_LOCKED);
757 			}
758 			/*
759 			 * The child is still valid and we can not zero the
760 			 * pointer until all SMR references are gone.
761 			 */
762 			node->pn_count--;
763 			pctrie_node_put(ptree, node, freefn, i);
764 			break;
765 		}
766 		parent = node;
767 		node = tmp;
768 	}
769 }
770 
771 /*
772  * Remove and free all the nodes from the tree.
773  * This function is recursive but there is a tight control on it as the
774  * maximum depth of the tree is fixed.
775  */
776 void
777 pctrie_reclaim_allnodes(struct pctrie *ptree, pctrie_free_t freefn)
778 {
779 	struct pctrie_node *root;
780 
781 	root = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED);
782 	if (root == NULL)
783 		return;
784 	pctrie_root_store(ptree, NULL, PCTRIE_UNSERIALIZED);
785 	if (!pctrie_isleaf(root))
786 		pctrie_reclaim_allnodes_int(ptree, root, freefn);
787 }
788 
789 #ifdef DDB
790 /*
791  * Show details about the given node.
792  */
793 DB_SHOW_COMMAND(pctrienode, db_show_pctrienode)
794 {
795 	struct pctrie_node *node, *tmp;
796 	int i;
797 
798         if (!have_addr)
799                 return;
800 	node = (struct pctrie_node *)addr;
801 	db_printf("node %p, owner %jx, children count %u, level %u:\n",
802 	    (void *)node, (uintmax_t)node->pn_owner, node->pn_count,
803 	    node->pn_clev);
804 	for (i = 0; i < PCTRIE_COUNT; i++) {
805 		tmp = pctrie_node_load(&node->pn_child[i], NULL,
806 		    PCTRIE_UNSERIALIZED);
807 		if (tmp != NULL)
808 			db_printf("slot: %d, val: %p, value: %p, clev: %d\n",
809 			    i, (void *)tmp,
810 			    pctrie_isleaf(tmp) ? pctrie_toval(tmp) : NULL,
811 			    node->pn_clev);
812 	}
813 }
814 #endif /* DDB */
815